Advances in Psychological Science ›› 2020, Vol. 28 ›› Issue (4): 588-603.doi: 10.3724/SP.J.1042.2020.00588
• Regular Articles • Previous Articles Next Articles
Received:
2019-08-16
Online:
2020-04-15
Published:
2020-02-24
Contact:
ZHANG Qingfang
E-mail:zhang@ruc.edu.cn
CLC Number:
CAI Xiao, ZHANG Qingfang. The integration mechanisms of feedforward and feedback control in speech motor system[J]. Advances in Psychological Science, 2020, 28(4): 588-603.
1 | 张清芳, 杨玉芳 . ( 2003). 言语产生中的词汇通达理论. 心理科学进展, 11( 1), 6-11. |
2 | Alsius A., Mitsuya T., & Munhall K . ( 2013). Does compensation in auditory feedback require attention? Journal of the Acoustical Society of America, 19( 1), 3342. |
3 | Ballard K. J., Halaki M., Sowman P. F., Kha A., Daliri A., Robin D., .. Guenther F . ( 2018). An investigation of compensation and adaptation to auditory perturbations in individuals with acquired apraxia of speech. Frontiers in Human Neuroscience, 12, 510. |
4 | Ballard K. J., Tourville J., & Robin D. A . ( 2014). Behavioral, computational, and neuroimaging studies of acquired apraxia of speech. Frontiers in Human Neuroscience, 8, 892. |
5 | Bauer J. J., Mittal J., Larson C. R., & Hain T. C . ( 2006). Vocal responses to unanticipated perturbations in voice loudness feedback: An automatic mechanism for stabilizing voice amplitude. Journal of the Acoustical Society of America, 119( 4), 2363-2371. |
6 | Behroozmand R., Ibrahim N., Korzyukov O., Robin D. A., & Larson C. R . ( 2015). Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control. Frontiers in Neuroscience, 9, 109. |
7 | Behroozmand, R., & Larson, C . ( 2011). Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback. BMC Neuroscience, 12( 1), 54-63. |
8 | Behroozmand R., Sangtian S., Korzyukov O., & Larson C. R . ( 2016). A temporal predictive code for voice motor control: Evidence from ERP and behavioral responses to pitch-shifted auditory feedback. Brain Research, 1636, 1-12. |
9 | Bohland, J. W., & Guenther, F. H . ( 2006). An fMRI investigation of syllable sequence production. NeuroImage, 32( 2), 821-841. |
10 | Cai, S . ( 2012). Online control of articulation based on auditory feedback in normal speech and stuttering: Behavioral and modeling studies (Unpublished doctorial dissertation). Massachusetts Institute of Technology, Cambridge. |
11 | Cai S., Beal D. S., Ghosh S. S., Tiede M. K., Guenther F. H., & Perkell J. S . ( 2012). Weak responses to auditory feedback perturbation during articulation in persons who stutter: Evidence for abnormal auditory-motor transformation. PLoS ONE, 7( 7), e41830. |
12 | Cai S., Ghosh S. S., Guenther F. H., & Perkell J. S . ( 2010). Adaptive auditory feedback control of the production of formant trajectories in the Mandarin triphthong /iau/ and its pattern of generalization. Journal of the Acoustical Society of America, 128( 4), 2033-2048. |
13 | Cai S., Ghosh S. S., Guenther F. H., & Perkell J. S . ( 2011). Focal manipulations of formant trajectories reveal a role of auditory feedback in the online control of both within- syllable and between-syllable speech timing. Journal of Neuroscience, 31( 45), 16483-16490. |
14 | Cavanagh, J. F., & Frank, M. J . ( 2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18( 8), 414-421. |
15 | Chang E. F., Niziolek C. A., Knight R. T., Nagarajan S. S., & Houde J. F . ( 2013). Human cortical sensorimotor network underlying feedback control of vocal pitch. Proceedings of the National Academy of Sciences, 110( 7), 2653-2658. |
16 | Chen Z., Chen X., Liu P., Huang D., & Liu H . ( 2012). Effect of temporal predictability on the neural processing of self-triggered auditory stimulation during vocalization. BMC Neuroscience, 13( 1), 1-10. |
17 | Chen Z., Liu P., Jones J. A., Huang D., & Liu H . ( 2010). Sex-related differences in vocal responses to pitch feedback perturbations during sustained vocalization. Journal of the Acoustical Society of America, 128(6), EL355-EL360. |
18 | Chen Z., Liu P., Wang E. Q., Larson C. R., Huang D., & Liu H . ( 2012). ERP correlates of language-specific processing of auditory pitch feedback during self-vocalization. Brain and Language, 121( 1), 25-34. |
19 | Chen Z., Wong F. C. K., Jones J. A., Li W., Liu P., Chen X., & Liu H . ( 2015). Transfer effect of speech-sound learning on auditory-motor processing of perceived vocal pitch errors. Scientific Reports, 5, 13134. |
20 | Civier O., Tasko S. M., & Guenther F. H . ( 2010). Overreliance on auditory feedback may lead to sound/syllable repetitions: simulations of stuttering and fluency-inducing conditions with a neural model of speech production. Journal of Fluency Disorders, 35( 3), 246-279. |
21 | Cowie R., Douglas-Cowie E., & Kerr A. G . ( 1982). A study of speech deterioration in post-lingually deafened adults. The Journal of Laryngology & Otology, 96( 2), 101-112. |
22 | Cruikshank L. C., Singhal A., Hueppelsheuser M., & Caplan J. B . ( 2012). Theta oscillations reflect a putative neural mechanism for human sensorimotor integration. Journal of Neurophysiology, 107( 1), 65-77. |
23 | Daliri, A., & Max, L . ( 2015a). Electrophysiological evidence for a general auditory prediction deficit in adults who stutter. Brain and Language, 150, 37-44. |
24 | Daliri, A., & Max, L . ( 2015b). Modulation of auditory processing during speech movement planning is limited in adults who stutter. Brain and Language, 143, 59-68. |
25 | Daliri A., Wieland E. A., Cai S., Guenther F. H., & Chang S.-E . ( 2017). Auditory-motor adaptation is reduced in adults who stutter but not in children who stutter. Developmental Science, 21( 2), e12521. |
26 | Delvaux, V., & Soquet, A . ( 2007). The influence of ambient speech on adult speech productions through unintentional imitation. Phonetica, 64( 2-3), 145-173. |
27 | Franken M. K., Acheson D. J., Mcqueen J. M., Peter H., & Frank E . ( 2018). Opposing and following responses in sensorimotor speech control: Why responses go both ways. Psychonomic Bulletin & Review, 25( 4), 1458-1467. |
28 | Franken M. K., Frank E., Acheson D. J., Mcqueen J. M., Peter H., & Jan-Mathijs S . ( 2018). Self-monitoring in the cerebral cortex: Neural responses to small pitch shifts in auditory feedback during speech production. NeuroImage, 179, 326-336. |
29 | Franklin, D. W., & Wolpert, D. M . ( 2011). Computational mechanisms of sensorimotor control. Neuron, 72( 3), 425-442. |
30 | Fu C. H., Vythelingum G. N., Brammer M. J., Williams S. C., Amaro E., Jr., Andrew C. M., … McGuire K. P . ( 2006). An fMRI study of verbal self-monitoring: Neural correlates of auditory verbal feedback. Cerebral Cortex, 16( 7), 969-977. |
31 | Golfinopoulos E., Tourville J. A., Bohland J. W., Ghosh S. S., Nieto-Castanon A., & Guenther F. H . ( 2011). fMRI investigation of unexpected somatosensory feedback perturbation during speech. NeuroImage, 55( 3), 1324-1338. |
32 | Golfinopoulos E., Tourville J. A., & Guenther F. H . ( 2010). The integration of large-scale neural network modeling and functional brain imaging in speech motor control. NeuroImage, 52( 3), 862-874. |
33 | Gould J., Lane H., Vick J., Perkell J. S., Matthies M. L., & Zandipour M . ( 2001). Changes in speech intelligibility of postlingually deaf adults after cochlear implantation. Ear and Hearing, 22( 6), 453-460. |
34 | Grafton S. T., Schmitt P., van Horn J., & Diedrichsen J . ( 2008). Neural substrates of visuomotor learning based on improved feedback control and prediction. NeuroImage, 39( 3), 1383-1395. |
35 | Guenther, F. H . ( 1994). A neural network model of speech acquisition and motor equivalent speech production. Biological Cybernetics, 72( 1), 43-53. |
36 | Guenther, F. H . ( 1995). Speech sound acquisition, coarticulation, and rate effects in a neural network model of speech production. Psychological Review, 102( 3), 594-621. |
37 | Guenther, F . ( 2006). Cortical interactions underlying the production of speech sounds. Journal of Communication Disorders, 39( 5), 350-365. |
38 | Guenther F. H. ( 2006). Neural control of speech . Cambridge, MA: MIT Press. |
39 | Guenther F. H., Ghosh S. S., & Tourville J. A . ( 2006). Neural modeling and imaging of the cortical interactions underlying syllable production. Brain and Language, 96( 3), 280-301. |
40 | Guenther, F., & Vladusich, T . ( 2012). A neural theory of speech acquisition and production. Journal of Neurolinguistics, 25( 5), 408-422. |
41 | Heinks‐Maldonado T. H., Mathalon D. H., Gray M., & Ford J. M . ( 2005). Fine‐tuning of auditory cortex during speech production. Psychophysiology, 42( 2), 180-190. |
42 | Heinks-Maldonado T. H., Nagarajan S. S., & Houde J. F . ( 2006). Magnetoencephalographic evidence for a precise forward model in speech production. Neuroreport, 17( 13), 1375-1379. |
43 | Hickok, G . ( 2012). Computational neuroanatomy of speech production. Nature Reviews Neuroscience, 13( 2), 135-145. |
44 | Hickok G., Houde J., & Rong F . ( 2011). Sensorimotor integration in speech processing: Computational basis and neural organization. Neuron, 69( 3), 407-422. |
45 | Hickok G., Okada K., & Serences J. T . ( 2009). Area Spt in the human planum temporale supports sensory-motor integration for speech processing. Journal of Neurophysiology, 101( 5), 2725-2732. |
46 | Houde, J. F., & Chang, E. F . ( 2015). The cortical computations underlying feedback control in vocal production. Current Opinion in Neurobiology, 33, 174-181. |
47 | Houde, J. F., & Nagarajan, S. S . ( 2011). Speech production as state feedback control. Frontiers in Human Neuroscience, 5, 82. |
48 | Houde J. F., Nagarajan S. S., Sekihara K., & Merzenich M. M . ( 2002). Modulation of the auditory cortex during speech: An MEG study. Journal of Cognitive Neuroscience, 14( 8), 1125-1138. |
49 | Indefrey, P . ( 2011). The spatial and temporal signatures of word production components: A critical update. Frontiers in Psychology, 2, 255. |
50 | Indefrey, P., & Levelt, W. J. M . ( 2004). The spatial and temporal signatures of word production components. Cognition, 92( 1-2), 101-144. |
51 | Ito, M . ( 2000). Mechanisms of motor learning in the cerebellum. Brain Research, 886( 1-2), 237-245. |
52 | Iuzzini-Seigel J., Hogan T. P., Guarino A. J., & Green J. R . ( 2015). Reliance on auditory feedback in children with childhood apraxia of speech. Journal of Communication Disorders, 54, 32-42. |
53 | Jones, J. A., & Keough, D . ( 2008). Auditory-motor mapping for pitch control in singers and nonsingers. Experimental Brain Research, 190( 3), 279-287. |
54 | Jones J. A., Scheerer N., & Tumber A . ( 2013). The relationship between vocal pitch feedback error and event-related brain potentials. In Proceedings of Meetings on Acoustics, Vol. 19, 060151. |
55 | Kakimoto A., Ito S., Okada H., Nishizawa S., Minoshima S., & Ouchi Y . ( 2016). Age-related sex-specific changes in brain metabolism and morphology. Journal of Nuclear Medicine, 57( 2), 221-225. |
56 | Kalpouzos G., Nyberg L., . ( 2010). Asymmetry of memory in the brain. In K. Hugdahl, R. Westerhausen, (Eds). The two halves of the brain: Information processing in the cerebral hemispheres. MIT Press, Cambridge, MA, USA. 499-530. |
57 | Kearney, E., & Guenther, F. H . ( 2019). Articulating: The neural mechanisms of speech production. Language, Cognition and Neuroscience, 34( 9), 1-16. |
58 | Kearney E., Nieto-Castoñón A., Weerathunge H. R., Falsini R., Daliri A., Abur D., .. Guenther F. H . ( 2020). A simple 3-parameter model for examining adaptation in speech and voice production. Frontiers in Psychology, 10, 2995. |
59 | Keough D., Hawco C., & Jones J. A . ( 2013). Auditory-motor adaptation to frequency-altered auditory feedback occurs when participants ignore feedback. BMC Neuroscience, 14( 1), 25-35. |
60 | Kort N. S., Nagarajan S. S., & Houde J. F . ( 2014). A bilateral cortical network responds to pitch perturbations in speech feedback. NeuroImage, 86, 525-535. |
61 | Korzyukov O., Karvelis L., Behroozmand R., & Larson C. R . ( 2012). ERP correlates of auditory processing during automatic correction of unexpected perturbations in voice auditory feedback. International Journal of Psychophysiology, 83( 1), 71-78. |
62 | Korzyukov O., Sattler L., Behroozmand R., & Larson C. R . ( 2012). Neuronal mechanisms of voice control are affected by implicit expectancy of externally triggered perturbations in auditory feedback. PLoS One, 7( 7), e41216. |
63 | Lametti D. R., Krol S. A., Shiller D. M., & Ostry D. J . ( 2014). Brief periods of auditory perceptual training can determine the sensory targets of speech motor learning. Psychological Science, 25( 7), 1325-1336. |
64 | Lametti D. R., Nasir S. M., & Ostry D. J . ( 2012). Sensory preference in speech production revealed by simultaneous alteration of auditory and somatosensory feedback. Journal of Neuroscience, 32( 27), 9351-9358. |
65 | Lane, H., & Webster, J. W . ( 1991). Speech deterioration in postlingually deafened adults. Journal of the Acoustical Society of America, 89( 2), 859-866. |
66 | Levelt W. J. M., Roelofs A., & Meyer A. S . ( 1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22( 1), 1-75. |
67 | Li J., Hu H., Chen N., Jones J. A., Wu D., Liu P., & Liu H . ( 2018). Aging and sex influence cortical auditory-motor integration for speech control. Frontiers in Neuroscience, 12, 749. |
68 | Liu H., Meshman M., Behroozmand R., & Larson C. R . ( 2011). Differential effects of perturbation direction and magnitude on the neural processing of voice pitch feedback. Clinical Neurophysiology, 122( 5), 951-957. |
69 | Liu H., Russo N., & Larson C. R . ( 2010). Age-related differences in vocal responses to pitch feedback perturbations: A preliminary study. Journal of the Acoustical Society of America, 127( 2), 1042-1046. |
70 | Liu H., Wang E. Q., Chen Z., Liu P., Larson C. R., & Huang D . ( 2010). Effect of tonal native language on voice fundamental frequency responses to pitch feedback perturbations during sustained vocalizations. Journal of the Acoustical Society of America, 128( 6), 3739-3746. |
71 | Liu, X., & Tian, X . ( 2018). The functional relations among motor-based prediction, sensory goals and feedback in learning non-native speech sounds: Evidence from adult Mandarin Chinese speakers with an auditory feedback masking paradigm. Scientific Reports, 8( 1), 11910. |
72 | Liu Y., Hu H., Jones J., Guo Z., Li W., Chen X., … Liu H . ( 2015). Selective and divided attention modulates auditory-vocal integration in the processing of pitch feedback errors. European Journal of Neuroscience, 42( 3), 1895-1904. |
73 | Maas E., Mailend M. L., & Guenther F. H . ( 2015). Feedforward and feedback control in apraxia of speech: Effects of noise masking on vowel production. Journal of Speech, Language, and Hearing Research, 58( 2), 185-200. |
74 | Mitsuya T., Munhall K. G., & Purcell D. W . ( 2017). Modulation of auditory-motor learning in response to formant perturbation as a function of delayed auditory feedback. Journal of the Acoustical Society of America, 141( 4), 2758-2767. |
75 | Munhall K. G., Macdonald E. N., Byrne S. K., & Johnsrude I . ( 2009). Talkers alter vowel production in response to real-time formant perturbation even when instructed not to compensate. Journal of the Acoustical Society of America, 125( 1), 384-390. |
76 | New A. B., Robin D. A., Parkinson A. L., Duffy J. R., McNeil M. R., Piguet O., … Ballard K . ( 2015). Altered resting-state network connectivity in stroke patients with and without apraxia of speech. NeuroImage: Clinical, 8, 429-439. |
77 | Ning L.-H., Loucks T. M., & Shih C . ( 2015). The effects of language learning and vocal training on sensorimotor control of lexical tone. Journal of Phonetics, 51, 50-69. |
78 | Ning L.-H., Shih C., & Loucks T. M . ( 2014). Mandarin tone learning in L2 adults: A test of perceptual and sensorimotor contributions. Speech Communication, 63-64, 55-69. |
79 | Niziolek C. A., Nagarajan S. S., & Houde J. F . ( 2013). What does motor efference copy represent? Evidence from speech production. Journal of Neuroscience, 33( 41), 16110-16116. |
80 | Oller, D. K., & Eilers, R. E . ( 1988). The role of audition in infant babbling. Child Development, 59( 2), 441-449. |
81 | O’Reilly J. X., Mesulam M. M., & Nobre A. C . ( 2008). The cerebellum predicts the timing of perceptual events. Journal of Neuroscience, 28( 9), 2252-2260. |
82 | Parkinson A. L., Flagmeier S. G., Manes J. L., Larson C. R., Rogers B., & Robin D. A . ( 2012). Understanding the neural mechanisms involved in sensory control of voice production. NeuroImage, 61( 1), 314-322. |
83 | Parrell B., Agnew Z., Nagarajan S., Houde J., & Ivry R. B . ( 2017). Impaired feedforward control and enhanced feedback control of speech in patients with cerebellar degeneration. The Journal of Neuroscience, 37( 38), 9249-9258. |
84 | Parrell B., Lammert A. C., Ciccarelli G., & Quatieri T. F . ( 2019). Current models of speech motor control: A control-theoretic overview of architectures and properties. Journal of the Acoustical Society of America, 145( 3), 1456-1481. |
85 | Patel R., Reilly K. J., Archibald E., Cai S., & Guenther F. H . ( 2015). Responses to intensity-shifted auditory feedback during running speech. Journal of Speech Language and Hearing Research, 58( 6), 1687-1694. |
86 | Perkell, J. S . ( 2012). Movement goals and feedback and feedforward control mechanisms in speech production. Journal of Neurolinguistics, 25( 5), 382-407. |
87 | Reilly, K. J., & Pettibone, C . ( 2017). Vowel generalization and its relation to adaptation during perturbations of auditory feedback. Journal of Neurophysiology, 118( 5), 2925-2934. |
88 | Saltzman, E., & Munhall, K . ( 1989). A dynamical approach to gestural patterning in speech production. Ecological Psychology, 1( 4), 333-382. |
89 | Scheerer N. E., Behich J., Liu H., & Jones J. A . ( 2013). ERP correlates of the magnitude of pitch errors detected in the human voice. Neuroscience, 240, 176-185. |
90 | Scheerer, N. E., & Jones, J. A . ( 2012). The relationship between vocal accuracy and variability to the level of compensation to altered auditory feedback. Neuroscience Letters, 529( 2), 128-132. |
91 | Scheerer, N. E., & Jones, J. A . ( 2014). The predictability of frequency-altered auditory feedback changes the weighting of feedback and feedforward input for speech motor control. European Journal of Neuroscience, 40( 12), 3793-3806. |
92 | Scheerer, N. E., & Jones, J. A . ( 2018). Detecting our own vocal errors: An event-related study of the thresholds for perceiving and compensating for vocal pitch errors. Neuropsychologia, 114, 158-167. |
93 | Scheerer N. E., Liu H., & Jones J. A . ( 2013). The developmental trajectory of vocal and event-related potential responses to frequency-altered auditory feedback. European Journal of Neuroscience, 38( 8), 3189-3200. |
94 | Simmonds A. J., Wise R. J., & Leech R . ( 2011). Two tongues, one brain: Imaging bilingual speech production. Frontiers in Psychology, 2, 166. |
95 | Swink, S., & Stuart, A . ( 2012). The effect of gender on the N1-P2 auditory complex while listening and speaking with altered auditory feedback. Brain and Language, 122( 1), 25-33. |
96 | Terband H., Rodd J., & Maas E . ( 2015). Simulations of feedforward and feedback control in apraxia of speech (AOS): Effects of noise masking on vowel production in the DIVA model. In The 18th International Congress of Phonetic Sciences (ICPhS 2015). Glasgow, UK. |
97 | Tian, X., & Poeppel, D . ( 2010). Mental imagery of speech and movement implicates the dynamics of internal forward models. Frontiers in Psychology, 1, 166. |
98 | Tian, X., & Poeppel, D . ( 2012). Mental imagery of speech: Linking motor and perceptual systems through internal simulation and estimation. Frontiers in Human Neuroscience, 6, 314. |
99 | Tian, X., & Poeppel, D . ( 2015). Dynamics of self-monitoring and error detection in speech production: Evidence from mental imagery and MEG. Journal of Cognitive Neuroscience, 27( 2), 352-364. |
100 | Tian X., Zarate J. M., & Poeppel D . ( 2016). Mental imagery of speech implicates two mechanisms of perceptual reactivation. Cortex, 77( 7), 1-12. |
101 | Tourville, J. A., & Guenther, F. H . ( 2011). The DIVA model: A neural theory of speech acquisition and production. Language and Cognitive Processes, 26( 7), 952-981. |
102 | Tourville J. A., Reilly K. J., & Guenther F. H . ( 2008). Neural mechanisms underlying auditory feedback control of speech. NeuroImage, 39( 3), 1429-1443. |
103 | Toyomura A., Koyama S., Miyamaoto T., Terao A., Omori T., Murohashi H., & Kurikl S . ( 2007). Neural correlates of auditory feedback control in human. Neuroscience, 146( 2), 499-503. |
104 | Tumber A. K., Scheerer N. E., & Jones J. A . ( 2014). Attentional demands influence vocal compensations to pitch errors heard in auditory feedback. PLoS ONE, 9( 10), e109968. |
105 | Tye-Murray, N, & Spencer, L . ( 1995). Acquisition of speech by children who have prolonged cochlear implant experience. Journal of Speech and Hearing Research, 38( 2), 327-337. |
106 | Wolpert D. M., Diedrichsen J., & Flanagan J. R . ( 2011). Principles of sensorimotor learning. Nature Reviews Neuroscience, 12( 12), 739-751. |
107 | Zheng Z. Z., Munhall K. G., & Johnsrude I. S . ( 2010). Functional overlap between regions involved in speech perception and in monitoring oneʼs own voice during speech production. Journal of Cognitive Neuroscience, 22( 8), 1770-1781. |
[1] | YE Shuqi, YIN Junting, LI Zhaoxian, LUO Junlong. The influence mechanism of emotion on intuitive and analytical processing [J]. Advances in Psychological Science, 2023, 31(5): 736-746. |
[2] | LI Yadan, DU Ying, XIE Cong, LIU Chunyu, YANG Yilong, LI Yangping, QIU Jiang. A meta-analysis of the relationship between semantic distance and creative thinking [J]. Advances in Psychological Science, 2023, 31(4): 519-534. |
[3] | YU Jie, CHEN Youguo. Spatiotemporal interference effect: An explanation based on Bayesian models [J]. Advances in Psychological Science, 2023, 31(4): 597-607. |
[4] | WANG Yongli, GE Shengnan, Lancy Lantin Huang, WAN Qin, LU Haidan. Neural mechanism of speech imagery [J]. Advances in Psychological Science, 2023, 31(4): 608-621. |
[5] | YANG Qing, LI Yaqin. Is uncertainty bad? Mixed findings and explanatory model of error processing under uncertainty [J]. Advances in Psychological Science, 2023, 31(3): 338-349. |
[6] | WANG Xudong, HE Yaji, FAN Huiyong, LUO Yangmei, CHEN Xuhai. The advantages and disadvantages of interpersonal anger: Evidence from meta-analysis [J]. Advances in Psychological Science, 2023, 31(3): 386-401. |
[7] | LI Qingyang, YIN Junting, LUO Junlong. Legs move, thoughts flow: Physical exercise influences creative thinking [J]. Advances in Psychological Science, 2023, 31(3): 455-466. |
[8] | CHEN Zi-Wei, FU Di, LIU Xun. Better to misidentify than to miss: A review of occurrence mechanisms and applications of face pareidolia [J]. Advances in Psychological Science, 2023, 31(2): 240-255. |
[9] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
[10] | XIE Caifeng, WU Jiahua, XU Liying, YU Feng, ZHAND Yuyan, XIE Yingying. The process motivation model of algorithmic decision-making approach and avoidance [J]. Advances in Psychological Science, 2023, 31(1): 60-77. |
[11] | YE Weihao, YU Meiqi, ZHANG Lihui, GAO Qi, FU Mingzhu, LU Jiamei. Negative emotion granularity: Its mechanisms and related interventions [J]. Advances in Psychological Science, 0, (): 0-0. |
[12] | ZHU Chuanlin, LIU Dianzhi, LUO Wenbo. The cognitive and brain mechanisms of how emotional experience affecting individuals’ utilization of estimation strategies [J]. Advances in Psychological Science, 2022, 30(12): 2639-2649. |
[13] | SHI Hanwen, LI Yutong, SUI Xue. Effects of emotional word types: behavioral and neural evidence for discrimination between emotion-label and emotion-laden words [J]. Advances in Psychological Science, 2022, 30(12): 2696-2707. |
[14] | CHEN Yutian, CHEN Rui, LI Peng. The development of concept and theoretical models of “chunking” in working memory [J]. Advances in Psychological Science, 2022, 30(12): 2708-2717. |
[15] | SHI Huiying, TANG Jie, LIU Pingping. Instability of the watching eyes effect and perceived norms: A new perspective [J]. Advances in Psychological Science, 2022, 30(12): 2718-2734. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||