Advances in Psychological Science ›› 2024, Vol. 32 ›› Issue (10): 1659-1669.doi: 10.3724/SP.J.1042.2024.01659
• Regular Articles • Previous Articles Next Articles
SUI Xue1, LI Yulin1, YUE Zeming1, LIU Xin1, LI Yutong1, LIU Shunhua2
Received:
2024-01-10
Online:
2024-10-15
Published:
2024-08-13
SUI Xue, LI Yulin, YUE Zeming, LIU Xin, LI Yutong, LIU Shunhua. Prediction formation during speech perception: Factors and neural mechanisms[J]. Advances in Psychological Science, 2024, 32(10): 1659-1669.
[1] 刘志方, 仝文, 张智君, 赵亚军. (2020). 语境预测性对阅读中字词加工过程的影响: 眼动证据. [2] 仝文, 余雪, 刘志方, 朱星宇, 齐琦. (2022). 快慢读者利用语境信息的差异: 加工深度的作用. [3] 王霞, 卢家楣, 陈武英. (2019). 情绪词加工过程及其情绪效应特点: ERP的证据. [4] 王祯, 管健. (2021). 积极刻板印象会产生消极影响? [5] 杨琪, 蒋晓鸣, 周晓林. (2022). 语言理解中的预设加工. [6] Afflerbach, P. (1990). The influence of prior knowledge and text genre on readers' prediction strategies. [7] Aristei S., Knoop C. A., Lubrich O., Nehrlich T., Enge A., Stark K.,. Abdel Rahman R. (2022). Affect as Anaesthetic: How emotional contexts modulate the processing of counterintuitive concepts. [8] Baetens K., der Cruyssen L. V., Achtziger A., Vandekerckhove M., & Van Overwalle F. (2011). N400 and LPP in spontaneous trait inferences. [9] Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. [10] Bornkessel-Schlesewsky I., Sharrad I., Howlett C. A., Alday P. M., Corcoran A. W., Bellan V., … Schlesewsky M. (2022). Rapid adaptation of predictive models during language comprehension: Aperiodic EEG slope, individual alpha frequency and idea density modulate individual differences in real-time model updating. [11] Broderick M. P., Di Liberto G. M., Anderson A. J., Rofes A., & Lalor E. C. (2021). Dissociable electrophysiological measures of natural language processing reveal differences in speech comprehension strategy in healthy ageing. [12] Broeker L., Ewolds H., de Oliveira R. F., Künzell S., & Raab M. (2020). Additive effects of prior knowledge and predictive visual information in improving continuous tracking performance. [13] Canal, P., Garnham, A. [14] Davis M. H.,& Sohoglu, E. (2020). Three functions of prediction error for Bayesian inference in speech perception. The cognitive neurosciences (6th edn) (Gazzaniga, M. et al., eds), pp. 177-189, MIT Press. [15] Diekman, A. B., & Eagly, A. H. (2000). Stereotypes as dynamic constructs: Women and men of the past, present, and future. [16] Dikker, S., & Pylkkänen, L. (2013). Predicting language: MEG evidence for lexical preactivation. [17] Ding J., Wang L., & Yang Y. (2016). The dynamic influence of emotional words on sentence comprehension: An ERP study. [18] Ding J., Wang L., & Yang Y. (2019). The influence of emotional words on predictive processing during sentence comprehension. [19] Ehrlich, S. F., & Rayner, K. (1981). Contextual effects on word perception and eye movements during reading. [20] Elman, J. L. (2009). On the meaning of words and dinosaur bones: Lexical knowledge without a lexicon. [21] Federmeier K. D., Wlotko E. W., De Ochoa-Dewald E., & Kutas M. (2007). Multiple effects of sentential constraint on word processing. [22] Frazier, L., & Fodor, J. D. (1978). The sausage machine: A new two-stage parsing model. [23] Frisson S., Harvey D. R., & Staub A. (2017). No prediction error cost in reading: Evidence from eye movements. [24] Friston K. J., Bastos A. M., Pinotsis D., & Litvak V. (2015). LFP and oscillations—What do they tell us? [25] Gaschler R., Kemper M., Zhao F., Pumpe I., Ruderisch C. B., Röttger E., & Haider H. (2018). Differential effects of cue-based and sequence knowledge-based predictability on multitasking performance. [26] Goldstein A., Zada Z., Buchnik E., Schain M., Price A., Aubrey B.,. Hasson U. (2022). Shared computational principles for language processing in humans and deep language models. [27] Grant A., Grey S., & van Hell, J. G. (2020). Male fashionistas and female football fans: Gender stereotypes affect neurophysiological correlates of semantic processing during speech comprehension. [28] Gubelmann, R., & Handschuh, S. (2022). Context matters: A pragmatic study of PLMs’ negation understanding. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers), 4602-4621. Dublin, Ireland. [29] Hegarty, P., & Pratto, F. (2001). The effects of social category norms and stereotypes on explanations for intergroup differences. [30] Hinojosa J. A., Moreno E. M., & Ferré P. (2019). Affective neurolinguistics: Towards a framework for reconciling language and emotion. [31] Hinojosa J. A., Moreno E. M., & Ferré P. (2020). Affective neurolinguistics: Towards a framework for reconciling language and emotion. [32] Hoeks J. C., Stowe L. A., & Doedens G. (2004). Seeing words in context: The interaction of lexical and sentence level information during reading.Cognitive brain research, 19(1), 59-73. [33] Hopp, H., & Godfroid, A. (2023). Introduction: Second language acquisition and psycholinguistics. In A. Godfroid, & H. Hopp.(Eds.). [34] Huang Z., Feng C., & Qu Q. (2023). Predicting coarse-grained semantic features in language comprehension: Evidence from ERP representational similarity analysis and Chinese classifier. [35] Hubbard, R. J., & Federmeier, K. D. (2021). Representational pattern similarity of electrical brain activity reveals rapid and specific prediction during language comprehension. [36] Kahalon R., Shnabel N., & Becker J. C. (2020). The effects of exposure to positive gender stereotypes on women’s and men’s performance in counter-stereotypical tasks and pursuit of agentic and communal goals. [37] Kendeou, P., & Van Den Broek, P. (2007). The effects of prior knowledge and text structure on comprehension processes during reading of scientific texts. [38] Kriegeskorte N., Mur M., & Bandettini P. A. (2008). Representational similarity analysis-connecting the branches of systems neuroscience. [39] Kutas, M., & Hillyard, S. A. (1984). Event-Related Brain Potentials (ERPs) Elicited by novel stimuli during sentence processing.Annals of the New York Academy of Sciences, 425, 236-241. DOI: 10.1111/j.1749-6632.1984.tb23540.x. [40] Kwisthout, J., & Van Rooij, I. (2020). Computational resource demands of a predictive Bayesian brain. [41] Lieder, F., & Griffiths, T. L. (2020). Resource-rational analysis: Understanding human cognition as the optimal use of limited computational resources. Behavioral and Brain Sciences 43, e1: 1-60. [42] Luke, S. G., & Christianson, K. (2016). Limits on lexical prediction during reading. [43] Lund T. C., Sidhu D. M., & Pexman P. M. (2019). Sensitivity to emotion information in children’s lexical processing. [44] Macdonald, S. E. (1994). Gorillas' (gorilla gorilla gorilla) spatial memory in a foraging task. [45] Malmir, A., & Taji, N. (2021). The interplay of action, context, and linguistic vs. non-linguistic resources in L2 pragmatic performance: The case of requests and refusals.Language Related Research, 12(3), 215-253. [46] McNally, L. (2013). Semantics and pragmatics.WIREs Cognitive Science, 4(3), 285-297. [47] Pfister R., Heinemann A., Kiesel A., Thomaschke R., & Janczyk M. (2012). Do endogenous and exogenous action control compete for perception? [48] Piai V., Anderson K. L., Lin J. J., Dewar C., Parvizi J., Dronkers N. F., & Knight R. T. (2016). Direct brain recordings reveal hippocampal rhythm underpinnings of language processing. [49] Regel S., Coulson S., & Gunter T. C. (2010). The communicative style of a speaker can affect language comprehension? ERP evidence from the comprehension of irony. [50] Reuter T., Emberson L., Romberg A., & Lew-Williams C. (2018). Individual differences in nonverbal prediction and vocabulary size in infancy. [51] Ryskin R., Levy R. P., & Fedorenko E. (2020). Do domain- general executive resources play a role in linguistic prediction? Re-evaluation of the evidence and a path forward. [52] Ryskin, R., & Nieuwland, M. S. (2023). Prediction during language comprehension: What is next? [53] Shain C., Blank I. A., van Schijndel M., Schuler W., & Fedorenko E. (2020). fMRI reveals language-specific predictive coding during naturalistic sentence comprehension. [54] Smith R., Snow P., Serry T., & Hammond L. (2021). The role of background knowledge in reading comprehension: A critical review. [55] Sohoglu E., Peelle J. E., Carlyon R. P., & Davis M. H. (2012). Predictive top-down integration of prior knowledge during speech perception. [56] Tanenhaus M. K.,& Trueswell, C. (1995). Sentence comprehension. In J. L. Miller, & P. D. Eimas (Eds.). Speech, language, and communication (pp. 217-262). San Diego, CA: Academic Press. [57] Thomas, S. (1995). Predictive strategies in teaching reading comprehension. [58] Ufer, C., & Blank, H. (2023). Multivariate analysis of brain activity patterns as a tool to understand predictive processes in speech perception.Language, Cognition and Neuroscience, 1-17. [59] van Berkum, J. J. A. (2018). Language comprehension, emotion, and sociality: Aren’t we missing something? In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of psycholinguistics (pp. 644-670). Oxford University Press. [60] van Berkum, J. J. A. (2019). Language comprehension and emotion: Where are the interfaces, and who cares? In G. I. de Zubicaray, & N. O. Schiller (Eds.), The Oxford handbook of neurolinguistics (pp. 736-766). Oxford University Press. [61] van Berkum, J. J. A., van den Brink D., Tesink C. M. J. Y., Kos M., & Hagoort P. (2008). The neural integration of speaker and message. [62] processing. [63] van den Brink D., van Berkum, J. J. A., Bastiaansen M. C. M., Tesink C. M. J. Y., Kos M., Buitelaar J. K., & Hagoort P. (2012). Empathy matters: ERP evidence for inter-individual differences in social language Vandello, J. A., Hettinger, V. E., Bosson, J. K., & Siddiqi, J. (2013). When equal isn't really equal: The masculine dilemma of seeking work flexibility. [64] Villiger, D. (2023). Stereotypes and self-fulfilling prophecies in the Bayesian brain.Inquiry, 1-25. [65] Wang L., Bastiaansen M., & Yang Y. (2015). The influence of emotional salience on the integration of person names into context. [66] Wang L., Kuperberg G., & Jensen O. (2018). Specific lexico-semantic predictions are associated with unique spatial and temporal patterns of neural activity. [67] Wang L., Wlotko E., Alexander E., Schoot L., Kim M., Warnke L., & Kuperberg G. R. (2020). Neural evidence for the prediction of animacy features during language comprehension: Evidence from MEG and EEG representational similarity analysis. [68] Wei W., Huang Z., Feng C., & Qu Q. (2023). Predicting phonological information in language comprehension: Evidence from ERP representational similarity analysis and Chinese idioms. [69] White K. R., Crites S. L., Taylor J. H., & Corral G. (2009). Wait, what? Assessing stereotype incongruities using the N400 ERP component. [70] Wrobel, M. R. (2020). The impact of lexicon adaptation on the emotion mining from software engineering artifacts. [71] Yao Z., Xuan Y., & Zhu X. (2019). Effect of experience information on emotional word processing in alexithymia. [72] Zhang Q., Ding J., Zhang Z., Yang X., & Yang Y. (2021). The effect of congruent emotional context in emotional word processing during discourse comprehension. [73] Zhang Q., Mou C., Yang X., Yang Y., & Li L. (2022). EXPRESS: The effect of contextual arousal on the integration of emotional words during discourse comprehension. |
[1] | GAO Cheng, LIU Chang. How do processing fluency, expectation, and epistemic goals influence aesthetic judgment? A perspective of multi-model integration [J]. Advances in Psychological Science, 2024, 32(11): 1872-1881. |
[2] | YE Fang, QIU Huilin, JIANG Ke, LI Changjin. Interpretation model of role reversal based on predictive processing theory [J]. Advances in Psychological Science, 2023, 31(8): 1504-1516. |
[3] | LI Xueyu, GAO Shenchun. Predictive processing and the bounds of cognition: A phenomenological perspective [J]. Advances in Psychological Science, 2023, 31(7): 1186-1194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||