Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (2): 191-201.doi: 10.3724/SP.J.1042.2025.0191
• Conceptual Framework • Next Articles
PAN Yun2,3, YANG Huanyu1,2(), ZHU Jun2, JIA Liangzhi2
Received:
2024-08-01
Online:
2025-02-15
Published:
2024-12-06
Contact:
YANG Huanyu
E-mail:1320961328@qq.com
CLC Number:
PAN Yun, YANG Huanyu, ZHU Jun, JIA Liangzhi. Cognitive mechanism and neural basis of groupitizing strategies in numerosity perception[J]. Advances in Psychological Science, 2025, 33(2): 191-201.
[1] | 戴隆农, 潘运. (2021). 数字-空间联结的内在机制: 基于工作记忆的视角. 心理科学, 44(4), 793-799. |
[2] | 兰哲, 陈霖. (1998). 拓扑性质知觉的大脑半球功能不对称性研究. 心理科学, 21(3), 205-208. |
[3] | 刘炜, 张智君, 赵亚军. (2012). 基于数量感知的数量适应. 心理学报, 44(10), 1297-1308. |
[4] | 徐继红, 司继伟, 周新林, 董奇. (2010). 数量估计的研究回顾. 心理科学, 33(3), 646-648. |
[5] | 张真, 苏彦捷. (2007). 人类数能力的演化基础——数能力比较研究的启示. 心理科学进展, 15(1), 57-63. |
[6] | 朱滢. (2005). 陈霖的拓扑性质知觉理论. 心理科学, 28(5), 1031-1034. |
[7] | Anobile, G., Arrighi, R., Castaldi, E., & Burr, D. C. (2021a). A sensorimotor numerosity system. Trends in Cognitive Sciences, 25(1), 24-36. |
[8] | Anobile, G., Arrighi, R., Togoli, I., & Burr, D. C. (2016). A shared numerical representation for action and perception. Elife, 5, e16161. |
[9] | Anobile, G., Castaldi, E., Maldonado Moscoso, P. A., Arrighi, R., & Burr, D. (2021b). Groupitizing improves estimation of numerosity of auditory sequences. Frontiers in Human Neuroscience, 15, 339. |
[10] | Anobile, G., Castaldi, E., Moscoso, P. A. M., Burr, D. C., & Arrighi, R. (2020a). “Groupitizing”: A strategy for numerosity estimation. Scientific Reports, 10(1), 13436. |
[11] | Anobile, G., Domenici, N., Togoli, I., Burr, D., & Arrighi, R. (2020b). Distortions of visual time induced by motor adaptation. Journal of Experimental Psychology: General, 149(7), 1333-1343. |
[12] | Barlow, H., & HILL, R. (1964). Evidence for a physiological explanation of the waterfall phenomenon and figural after-effects. Nature, 200, 1345-1347. |
[13] |
Burr, D., Anobile, G., Castaldi, E., & Arrighi, R. (2021). Numbers in action. Behavioral and Brain Sciences, 44, e185.
doi: 10.1017/S0140525X21000996 pmid: 34907873 |
[14] |
Burr, D., & Ross, J. (2008). A visual sense of number. Current Biology, 18(6), 425-428.
doi: 10.1016/j.cub.2008.02.052 pmid: 18342507 |
[15] | Cai, Y., Hofstetter, S., Harvey, B. M., & Dumoulin, S. O. (2022). Attention drives human numerosity-selective responses. Cell Reports, 39(13), 111005. |
[16] | Caponi, C., Maldonado, M. P., Castaldi, E., Arrighi, R., & Grasso, P. A. (2023). EEG signature of grouping strategies in numerosity perception. Frontiers in Neuroscience, 17, 1190317. |
[17] | Cheng, X., Lin, C., Lou, C., Zhang, W., Han, Y., Ding, X., & Fan, Z. (2021). Small numerosity advantage for sequential enumeration on RSVP stimuli: An object individuation- based account. Psychological Research, 85(2), 734-763. |
[18] | Cicchini, G. M., Anobile, G., Burr, D. C., Marchesini, P., & Arrighi, R. (2023). The role of non-numerical information in the perception of temporal numerosity. Frontiers in Psychology, 14, 1197064. |
[19] | Ciccione, L., & Dehaene, S. (2020). Grouping mechanisms in numerosity perception. Open Mind, 4, 102-118. |
[20] |
Czarnecka, M., Rączy, K., Szewczyk, J., Paplińska, M., Jednoróg, K., Marchewka, A., ... Szwed, M. (2023). Overlapping but separate number representations in the intraparietal sulcus—Probing format- and modality- independence in sighted Braille readers. Cortex, 162, 65-80.
doi: 10.1016/j.cortex.2023.01.011 pmid: 37003099 |
[21] | de Hevia, M. D., Izard, V., Coubart, A., Spelke, E. S., & Streri, A. (2014). Representations of space, time, and number in neonates. Proceedings of the National Academy of Sciences, 111(13), 4809-4813. |
[22] |
Dehaene, S., & Changeux, J. (1993). Development of Elementary Numerical abilities: A neuronal model. Journal of Cognitive Neuroscience, 5(4), 390-407.
doi: 10.1162/jocn.1993.5.4.390 pmid: 23964915 |
[23] |
Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355-361.
pmid: 9720604 |
[24] |
Elder, J. H., Oleskiw, T. D., & Fruend, I. (2018). The role of global cues in the perceptual grouping of natural shapes. Journal of Vision, 18(12), 14.
doi: 10.1167/18.12.14 pmid: 30458519 |
[25] |
Fornaciai, M., Togoli, I., & Arrighi, R. (2018). Motion- induced compression of perceived numerosity. Scientific Reports, 8(1), 6966.
doi: 10.1038/s41598-018-25244-8 pmid: 29725026 |
[26] | Grasso, P. A., Anobile, G., Arrighi, R., Burr, D. C., & Cicchini, G. M. (2022). Numerosity perception is tuned to salient environmental features. iScience, 25(4), 104104. |
[27] |
Guillaume, M., Roy, E., Van Rinsveld, A., Starkey, G., Uncapher, M., & Mccandliss, B. (2022). Groupitizing reflects conceptual developments in math cognition and inequities in math achievement from childhood through adolescence. Child Development, 94(2), 335-347.
doi: 10.1111/cdev.13859 pmid: 36484357 |
[28] |
Harvey, B. M., Klein, B. P., Petridou, N., & Dumoulin, S. O. (2013). Topographic representation of numerosity in the human parietal cortex. Science, 341(6150), 1123-1126.
doi: 10.1126/science.1239052 pmid: 24009396 |
[29] | Hayden, A., Bhatt, R., & Quinn, P. (2006). Infants’ sensitivity to uniform connectedness as a cue for perceptual organization. Psychonomic Bulletin & Review, 13(2), 257-261. |
[30] | He, L., Zhang, J., Zhou, T., & Chen, L. (2009). Connectedness affects dot numerosity judgment: Implications for configural processing. Psychonomic Bulletin & Review, 16(3), 509-517. |
[31] | He, L., Zhou, K., Zhou, T., He, S., & Chen, L. (2015). Topology-defined units in numerosity perception. Proceedings of the National Academy of Sciences of the United States of America, 112(41), E5647-E5655. |
[32] |
Hubbard, E., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature reviews. Neuroscience, 6, 435-448.
pmid: 15928716 |
[33] | Humphreys, G. W., & Riddoch, J. (1993). Interactions between object and space systems revealed through neuropsychology. Attention and Performance, 14, 143-162. |
[34] |
Luna, D., Villalba-Garcia, C., Montoro, P. R., & Hinojosa, J. A. (2016). Dominance dynamics of competition between intrinsic and extrinsic grouping cues. Acta Psychologica, 170, 146-154.
doi: 10.1016/j.actpsy.2016.07.001 pmid: 27423888 |
[35] | Maldonado Moscoso, P. A., Castaldi, E., Burr, D. C., Arrighi, R., & Anobile, G. (2020). Grouping strategies in number estimation extend the subitizing range. Scientific Reports, 10(1), 14979. |
[36] |
Maldonado, M. P., Greenlee, M. W., Anobile, G., Arrighi, R., Burr, D. C., & Castaldi, E. (2021). Groupitizing modifies neural coding of numerosity. Human Brain Mapping, 43(3), 915-928.
doi: 10.1002/hbm.25694 pmid: 34877718 |
[37] |
Malone, S. A., Pritchard, V. E., Heron-Delaney, M., Burgoyne, K., Lervåg, A., & Hulme, C. (2019). The relationship between numerosity discrimination and arithmetic skill reflects the approximate number system and cannot be explained by inhibitory control. Journal of Experimental Child Psychology, 184, 220-231.
doi: S0022-0965(18)30141-3 pmid: 30935590 |
[38] | Montoro, P. R., Villalba-García, C., Luna, D., & Hinojosa, J. A. (2017). Common region wins the competition between extrinsic grouping cues: Evidence from a task without explicit attention to grouping. Psychonomic Bulletin & Review, 24(6), 1856-1861. |
[39] |
Palmer, S. E. (1992). Common region: A new principle of perceptual grouping. Cognitive Psychology, 24(3), 436-447.
pmid: 1516361 |
[40] | Palmer, S. E., & Beck, D. M. (2007). The repetition discrimination task: An objective method for studying perceptual grouping. Perception & Psychophysics, 69(1), 68-78. |
[41] | Palmer, S., & Rock, I. (1994). On the nature and order of organizational processing: A reply to Peterson. Psychonomic Bulletin & Review, 1(4), 515-519. |
[42] |
Pan, Y., Yang, H., Li, M., Zhang, J., & Cui, L. (2021). Grouping strategies in numerosity perception between intrinsic and extrinsic grouping cues. Scientific Reports, 11(1), 17605.
doi: 10.1038/s41598-021-96944-x pmid: 34475472 |
[43] |
Pennock, I. M. L., Schmidt, T. T., Zorbek, D., & Blankenburg, F. (2021). Representation of visual numerosity information during working memory in humans: An fMRI decoding study. Human Brain Mapping, 42(9), 2778-2789.
doi: 10.1002/hbm.25402 pmid: 33694232 |
[44] |
Piazza, M., Mechelli, A., Butterworth, B., & Price, C. J. (2002). Are subitizing and counting implemented as separate or functionally overlapping processes? Neuroimage, 15(2), 435-446.
pmid: 11798277 |
[45] |
Piazza, M., & Izard, V. (2009). How humans count: Numerosity and the parietal cortex. Neuroscientist, 15(3), 261-273.
doi: 10.1177/1073858409333073 pmid: 19436075 |
[46] |
Revkin, S., Piazza, M., Izard, V., Cohen, L., & Dehaene, S. (2008). Does subitizing reflect numerical estimation? Psychological Science, 19(6), 607-614.
doi: 10.1111/j.1467-9280.2008.02130.x pmid: 18578852 |
[47] |
Simon, O., Mangin, J., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33(3), 475-487.
pmid: 11832233 |
[48] | Simon, T., & Vaishnavi, S. (1996). Subitizing and counting depend on different attentional mechanisms: Evidence from visual enumeration in afterimages. Perception & Psychophysics, 58, 915-926. |
[49] | Soltész, F., Szucs, D., & Szucs, L. (2010). Relationships between magnitude representation, counting and memory in 4- to 7-year-old children: A developmental study. Behavioral and Brain Functions, 6(1), 13. |
[50] | Starkey, G. S., & McCandliss, B. D. (2014). The emergence of “groupitizing” in children’s numerical cognition. Journal of Experimental Child Psychology, 126, 120-137. |
[51] | Thompson, P., & Burr, D. (2009). Visual aftereffects. Current Biology, 19(1), R11-R14. |
[52] |
Togoli, I., Crollen, V., Arrighi, R., & Collignon, O. (2020). The shared numerical representation for action and perception develops independently from vision. Cortex, 129, 436-445.
doi: S0010-9452(20)30191-X pmid: 32580065 |
[53] | Tsouli, A., Harvey, B. M., Hofstetter, S., Cai, Y., van der Smagt, M. J., Te, P. S., & Dumoulin, S. O. (2022). The role of neural tuning in quantity perception. Trends in Cognitive Sciences, 26(1), 11-24. |
[54] |
Tudusciuc, O., & Nieder, A. (2007). Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 104(36), 14513-14518.
doi: 10.1073/pnas.0705495104 pmid: 17724337 |
[55] |
Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. Psychological Bulletin, 138(6), 1172-1217.
doi: 10.1037/a0029333 pmid: 22845751 |
[56] |
Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483-488.
doi: 10.1016/j.tics.2003.09.002 pmid: 14585444 |
[57] | Wege, T., Trezise, K., & Inglis, M. (2021). Finding the subitizing in groupitizing: Evidence for parallel subitizing of dots and groups in grouped arrays. Psychonomic Bulletin & Review, 29, 476-484. |
[58] | Wender, K., & Rothkegel, R. (2000). Subitizing and its subprocesses. Psychological research, 64(2), 81-92. |
[59] | Whalen, J., Gallistel, C. R., & Gelman, R. (2016). Nonverbal Counting in Humans: The Psychophysics of Number Representation. Psychological Science, 10(2), 130-137. |
[60] | Zhang, D., Zhou, L., Yang, A., Li, S., Chang, C., Liu, J., & Zhou, K. (2023). A connectome-based neuromarker of nonverbal number acuity and arithmetic skills. Cerebral Cortex, 33(3), 881-894. |
[61] | Zorzi, M., Stoianov, I., & Umiltà, C. (2005). Computational modeling of numerical cognition. Handbook of Mathematical Cognition, 5, 67-84. |
[1] | ZHENG Hao, CHEN Rongrong, MAI Xiaoqin. The cognitive and neural mechanism of third-party punishment [J]. Advances in Psychological Science, 2024, 32(2): 398-412. |
[2] | Jian Xu, Lihong Chen. Neuropsychological Evidence for Action-based Effects on Visual Size Perception [J]. Advances in Psychological Science, 2023, 31(suppl.): 56-56. |
[3] | Baoqi GONG, Wei JIN, Pinglei BAO. Object Space as the Foundation for Object Recognition in the Human Ventral Temporal Cortex [J]. Advances in Psychological Science, 2023, 31(suppl.): 153-153. |
[4] | Nihong Chen, Hailin Ai, Xincheng Lu. Context-dependent Attentional Spotlight in Pulvinar-V1 Interaction [J]. Advances in Psychological Science, 2023, 31(suppl.): 160-160. |
[5] | Yuwei Cui, MiYoung Kwon, Nihong Chen. Learning Improves Peripheral Vision via Enhanced Cortico-cortical Communications [J]. Advances in Psychological Science, 2023, 31(suppl.): 161-161. |
[6] | Xue-Chun Shen, Zhou-Kui-Dong Shan, Shu-Guang Kuai, Li Li. Neural Correlates of the Detection of Real Optic Flow in the Human Brain [J]. Advances in Psychological Science, 2023, 31(suppl.): 169-169. |
[7] | Rongjie Hu, Jie Liang, Yiwen Ding, Shuang Jian, Xiuwen Wu, Yanming Wang, Zhen Liang, Bensheng Qiu, Xiaoxiao Wang. MRGazerII: Camera-free Decoding Eye Movements from Functional Magnetic Resonance Imaging [J]. Advances in Psychological Science, 2023, 31(suppl.): 174-174. |
[8] | Hailin Ai, Weiru Lin, Nihong Chen, Peng Zhang. Mesoscale Functional Organization and Connectivity of Color, Disparity, and Naturalistic Texture in Human Second Visual Area [J]. Advances in Psychological Science, 2023, 31(suppl.): 10-10. |
[9] | LIANG Fei, JIANG Yao, XIAO Tingwei, DONG Jie, WANG Fushun. Basic emotion and its neural basis: Evidence from fMRI and machine-vision studies [J]. Advances in Psychological Science, 2022, 30(8): 1832-1843. |
[10] | YU Jiayu, JIN Yuxi, LIANG Dandan. Brain activation differences in lexical-semantics processing in autistic population: A meta-analysis of fMRI studies [J]. Advances in Psychological Science, 2022, 30(11): 2448-2460. |
[11] | XIE Ying, LIU Yutong, CHEN Mingliang, LIANG Andi. The cognitive psychological process of brand consumption journey: The perspective of neuromarketing [J]. Advances in Psychological Science, 2021, 29(11): 2024-2042. |
[12] | NA Yuting, ZHAO Yuwen, GUAN Lili. The neural mechanism of self-face recognition: An ALE meta-analysis of fMRI studies [J]. Advances in Psychological Science, 2021, 29(10): 1783-1795. |
[13] | YANG Xiaoli, ZOU Yan. Can we really empathize? The influence of vicarious ostracism on individuals and its theoretical explanation [J]. Advances in Psychological Science, 2020, 28(9): 1575-1585. |
[14] | RAN Guangming, LI Rui, ZHANG Qi. Neural mechanism underlying recognition of dynamic emotional faces in social anxiety [J]. Advances in Psychological Science, 2020, 28(12): 1979-1988. |
[15] | Shaobing Gao, Yongjie Li. Combining bottom-up and top-down visual mechanisms for color constancy under varying illumination [J]. Advances in Psychological Science, 2019, 27(suppl.): 96-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||