Advances in Psychological Science ›› 2024, Vol. 32 ›› Issue (11): 1814-1828.doi: 10.3724/SP.J.1042.2024.01814
• Research Method • Previous Articles Next Articles
GAO Xuliang, LI Ning
Received:
2023-12-25
Online:
2024-11-15
Published:
2024-09-05
CLC Number:
GAO Xuliang, LI Ning. Application of machine learning methods in test security[J]. Advances in Psychological Science, 2024, 32(11): 1814-1828.
[1] 韩丹, 郭庆科, 王昭, 陈雪霞. (2008). 考试抄袭识别的心理测量学研究回顾. 心理科学进展, 16(1), 175-183. [2] 胡佳琪, 黄美薇, 骆方. (2020). 考试作弊甄别技术的研究进展:个体作弊的甄别. 中国考试, (11), 32-36. [3] 黄美薇, 潘逸沁, 骆方. (2020). 结合选择题与主观题信息的两阶段作弊甄别方法. 心理科学, 43(1), 75-80. [4] 刘冬予, 骆方, 屠焯然, 饶思敬, 沈阳. (2024). 人工智能技术赋能心理学发展的现状与挑战. 北京师范大学学报(自然科学版), 60(1), 30-37. [5] 刘玥, 刘红云. (2021). 心理与教育测验中异常作答处理的新技术: 混合模型方法. 心理科学进展, 29(9), 1696-1710. [6] 骆方, 王欣夷, 徐永泽, 封慰. (2020). 考试作弊甄别技术的研究进展:团体作弊的甄别. 中国考试, (11), 37-41. [7] 童昊, 喻晓锋, 秦春影, 彭亚风, 钟小缘. (2022). 多级计分测验中基于残差统计量的被试拟合研究. 心理学报, 54(9), 1122-1136. [8] 王昭, 郭庆科, 岳艳. (2007). 心理测验中个人拟合研究的回顾与展望. 心理科学进展, 15(3), 559-566. [9] 徐静, 骆方, 马彦珍, 胡路明, 田雪涛. (2024). 开放式情境判断测验的自动化评分. 心理学报, 56(6), 831-844. [10] 张龙飞, 王晓雯, 蔡艳, 涂冬波. (2020). 心理与教育测验中异常反应侦查新技术:变点分析法. 心理科学进展, 28(9), 1462-1477. [11] 钟晓钰, 李铭尧, 李凌艳. (2021). 问卷调查中被试不认真作答的控制与识别. 心理科学进展, 29(2), 225-237. [12] 钟小缘, 喻晓锋, 苗莹, 秦春影, 彭亚风, 童昊. (2022). 基于作答时间数据的改变点分析在检测加速作答中的探索——已知和未知项目参数. 心理学报, 54(10), 1277-1292. [13] Alpaydin, E. (2020). Introduction to machine learning. MIT press. [14] Alsabhan, W. (2023). Student cheating detection in higher education by implementing machine learning and LSTM techniques. Sensors, 23(8), 4149. [15] Arias V. B., Garrido L. E., Jenaro C., Martínez-Molina A., & Arias B. (2020). A little garbage in, lots of garbage out: Assessing the impact of careless responding in personality survey data. Behavior Research Methods, 52(6), 2489-2505. [16] Arthur W., Jr., Hagen E., & George F., Jr. (2021). The lazy or dishonest respondent: Detection and prevention. Annual Review of Organizational Psychology and Organizational Behavior, 8, 105-137. [17] Cavalcanti E. R., Pires C. E., Cavalcanti E. P., & Pires V. F. (2012). Detection and evaluation of cheating on college exams using supervised classification. Informatics in Education, 11(2), 169-190. [18] Chan, K., & Stolfo, J. (1997). On the accuracy of meta- learning for scalable data mining. Journal of Intelligent Information Systems, 8(1), 5-28 [19] Chawla N. V., Bowyer K. W., Hall L. O., & Kegelmeyer W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357. [20] Chen R. C., Dewi C., Huang S. W., & Caraka R. E. (2020). Selecting critical features for data classification based on machine learning methods. Journal of Big Data, 7(1), 52. [21] Cizek, G. J., & Wollack, J. A. (Eds.). (2017). Handbook of quantitative methods for detecting cheating on tests. New York, NY: Routledge. [22] Curran, P. G. (2016). Methods for the detection of carelessly invalid responses in survey data. Journal of Experimental Social Psychology, 66, 4-19. [23] Di Mattia,F., Galeone, P., De Simoni, M., & Ghelfi, E.(2019). A survey on gans for anomaly detection. arxiv preprint arxiv:1906.11632. https://doi.org/10.48550/arXiv.1906.11632 [24] Dong X., Yu Z., Cao W., Shi Y., & Ma Q. (2020). A survey on ensemble learning. Frontiers of Computer Science, 14, 241-258. [25] Du M., Liu N., & Hu X. (2019). Techniques for interpretable machine learning. Communications of the ACM, 63(1), 68-77. [26] Foltýnek T., Meuschke N., & Gipp B. (2019). Academic plagiarism detection: A systematic literature review. ACM Computing Surveys (CSUR), 52(6), 1-42. [27] Goodfellow I., Bengio Y., & Courville A. (2016). Deep learning. MIT press. [28] Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., ... Bengio Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144. [29] Gorgun, G., & Bulut, O. (2022). Identifying aberrant responses in intelligent tutoring systems: An application of anomaly detection methods. Psychological Test and Assessment Modeling, 64(4), 359-384. [30] Heaton, J. (2016). An empirical analysis of feature engineering for predictive modeling. In SoutheastCon 2016 (pp. 1-6). IEEE. [31] Hodge, V., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22(2), 85-126. [32] Huang J. L., Liu M., & Bowling N. A. (2015). Insufficient effort responding: Examining an insidious confound in survey data. Journal of Applied Psychology, 100(3), 828-845. [33] Hussein F., Al-Ahmad A., El-Salhi S., Alshdaifat E. A., & Al-Hami M. T. (2022). Advances in contextual action recognition: Automatic cheating detection using machine learning techniques. Data, 7(9), 122. [34] Jiao H., Yadav C., & Li G. (2023). Integrating psychometric analysis and machine learning to augment data for cheating detection in large-scale assessment. OSF. https://doi.org/10.31234/osf.io/fjz2c [35] Kamalov F., Sulieman H., & Santandreu Calonge D. (2021). Machine learning based approach to exam cheating detection. Plos One, 16(8), e0254340. https://doi.org/10.1371/journal.pone.0254340 [36] Karabatsos, G. (2003). Comparing the aberrant response detection performance of thirty-six person-fit statistics. Applied Measurement in Education, 16(4), 277-298. [37] Kim D., Woo A., & Dickison P. (2016). Identifying and investigating aberrant responses using psychometrics- based and machine learning-based approaches. In G. J. Cizek & J. A.Wollack (Eds.), Handbook of quantitative methods for detecting cheating on tests (pp. 70-97). New York, NY: Routledge. [38] Liao M., Patton J., Yan R., & Jiao H. (2021). Mining process data to detect aberrant test takers. Measurement: Interdisciplinary Research and Perspectives, 19(2), 93-105. [39] Man K., Harring J. R., & Sinharay S. (2019). Use of data mining methods to detect test fraud. Journal of Educational Measurement, 56(2), 251-279. [40] Meng, H., & Ma, Y. (2023). Machine learning-based profiling in test cheating detection. Educational Measurement: Issues and Practice, 42(1), 59-75. [41] Pan Y., Sinharay S., Livne O., & Wollack J. A. (2022). A machine learning approach for detecting item compromise and preknowledge in computerized adaptive testing. Psychological Test and Assessment Modeling, 64(4), 385-424. [42] Pan, Y., & Wollack, J. A. (2021). An unsupervised-learning- based approach to compromised items detection. Journal of Educational Measurement, 58(3), 413-433. [43] Pan, Y., & Wollack, J. A. (2023). A machine learning approach for the simultaneous detection of preknowledge in examinees and items when both are unknown. Educational Measurement: Issues and Practice, 42(1), 76-98. [44] Ranger J., Schmidt N.,& Wolgast, A.(2020). The detection of cheating on E-exams in higher education—The performance of several old and some new indicators. Frontiers in Psychology, 11, 568825. https://doi.org/10.3389/fpsyg.2020.568825 [45] Ranger J., Schmidt N., & Wolgast A. (2023). Detecting cheating in large-scale assessment: The transfer of detectors to new tests. Educational and Psychological Measurement, 83(5), 1033-1058. [46] Rodríguez-Villalobos M., Fernandez-Garza J., & Heredia-Escorza Y. (2023). Monitoring methods and student performance in distance education exams. The International Journal of Information and Learning Technology, 40(2), 164-176. [47] Schroeders U., Schmidt C., & Gnambs T. (2022). Detecting careless responding in survey data using stochastic gradient boosting. Educational and Psychological Measurement, 82(1), 29-56. [48] Sinharay, S. (2017). Detection of item preknowledge using likelihood ratio test and score test. Journal of Educational and Behavioral Statistics, 42(1), 46-68. [49] Stekhoven, D., & Bühlmann, P. (2012). MissForest - non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112-118. [50] Taloni A., Scorcia V., & Giannaccare G. (2024). Modern threats in academia: Evaluating plagiarism and artificial intelligence detection scores of ChatGPT. Eye, 38(2), 397-400. [51] Tang S., Samuel S., & Li Z. (2023). Detecting atypical test-taking behavior with behavior prediction using LSTM. Psychological Test and Assessment Modeling, 65(2), 76-124. [52] Thomas, S. L. (2016). So happy together? Combining Rasch and item response theory model estimates with support vector machines to detect test fraud. (Unpublished doctorial dissertation). University of Virginia. [53] Tiong L. C.O., & Lee, H. J.(2021). E-cheating prevention measures: Detection of cheating at online examinations using deep learning approach--a case study. arXiv preprint arXiv:2101.09841. https://doi.org/10.48550/arXiv.2101.09841 [54] Ullah A., Xiao H., & Barker T. (2019). A dynamic profile questions approach to mitigate impersonation in online examinations. Journal of Grid Computing, 17, 209-223. [55] van der Linden, W. J., & Guo, F. (2008). Bayesian procedures for identifying aberrant response-time patterns in adaptive testing. Psychometrika, 73, 365-384. [56] van Krimpen-Stoop, E. M. L. A., & Meijer, R. R. (2001). CUSUM-based person-fit statistics for adaptive testing. Journal of Educational and Behavioral Statistics, 26(2), 199-217. [57] Ward, M. K., & Meade, A. W. (2023). Dealing with careless responding in survey data: Prevention, identification, and recommended best practices. Annual Review of Psychology, 74, 577-596. [58] Weiss K., Khoshgoftaar T. M., & Wang D. (2016). A survey of transfer learning. Journal of Big Data, 3, 1-40. [59] Welz, M., & Alfons, A. (2023). I don't care anymore: Identifying the onset of careless responding. arXiv preprint arXiv:2303.07167. https://doi.org/10.48550/arXiv.2303.07167 [60] Zenati H., Foo C. S., Lecouat B., Manek G., & Chandrasekhar V. R. (2018). Efficient gan-based anomaly detection. arxiv preprint arxiv:1802.06222. https://doi.org/10.48550/arXiv.1802.06222 [61] Zhen, Y., & Zhu, X. (2024). An ensemble learning approach based on TabNet and machine learning models for cheating detection in educational tests. Educational and Psychological Measurement, 84(4), 780-809. [62] Zhou, T., & Jiao, H. (2022). Data augmentation in machine learning for cheating detection in large-scale assessment: An illustration with the blending ensemble learning algorithm. Psychological Test and Assessment Modeling, 64(4), 425-444. [63] Zhou, T., & Jiao, H. (2023). Exploration of the stacking ensemble machine learning algorithm for cheating detection in large-scale assessment. Educational and Psychological Measurement, 83(4), 831-854. [64] Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 3(1), 1-130. [65] Zhu Z., Arthur D., & Chang H. H. (2022). A new person-fit method based on machine learning in CDM in education. British Journal of Mathematical and Statistical Psychology, 75(3), 616-637. [66] Zimek A., Schubert E., & Kriegel H. P. (2012). A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal, 5(5), 363-387. [67] Zopluoglu, C. (2019). Detecting examinees with item preknowledge in large-scale testing using extreme gradient boosting (XGBoost). Educational and Psychological Measurement, 79(5), 931-961. |
[1] | Xunbing Shen, Xiaoqing Mei, Min Gao, Zhencai Chen, Yafang Li, Mingliang Gong. Eyes are the Windows of Lies [J]. Advances in Psychological Science, 2023, 31(suppl.): 172-172. |
[2] | Yuxi Zhou, Xunbing Shen. Emotion Elicitation Promote the Disclosure of Facial Deception Cues [J]. Advances in Psychological Science, 2023, 31(suppl.): 179-179. |
[3] | CHEN Xinwen, LI Hongjie, DING Yulong. Exploring the neural representation patterns in event-related EEG/MEG signals: The methods based on classification decoding and representation similarity analysis [J]. Advances in Psychological Science, 2023, 31(2): 173-195. |
[4] | BU Xiaoou, WANG Yao, DU Yawen, WANG Pei. Application of machine learning in early screening of children with dyslexia [J]. Advances in Psychological Science, 2023, 31(11): 2092-2015. |
[5] | LIU Xiaohan, CHEN Minglong, GUO Jing. Application of machine learning in prognosis and trajectory of post-traumatic stress disorder in children [J]. Advances in Psychological Science, 2022, 30(4): 851-862. |
[6] | HOU Tingting, CHEN Xiao, KONG Depeng, SHAO Xiujun, LIN Fengxun, LI Kaiyun. Application of machine learning in early identification and diagnosis of autistic children [J]. Advances in Psychological Science, 2022, 30(10): 2321-2337. |
[7] | WEN Zhonglin, FANG Jie, SHEN Jiaqi, TAN Yitian, LI Dingxin, MA Yiming. A review of research on psychological statistics in China’s mainland from 2001 to 2020 [J]. Advances in Psychological Science, 2021, 29(8): 1331-1344. |
[8] | SU Yue, LIU Mingming, ZHAO Nan, LIU Xiaoqian, ZHU Tingshao. Identifying psychological indexes based on social media data: A machine learning method [J]. Advances in Psychological Science, 2021, 29(4): 571-585. |
[9] | ZHANG Longfei, WANG Xiaowen, CAI Yan, TU Dongbo. Change point analysis: A new method to detect aberrant responses in psychological and educational testing [J]. Advances in Psychological Science, 2020, 28(9): 1462-1477. |
[10] | ZHENG Hong, PU Cheng-cheng, WANG Yi, Raymond C. K. CHAN. The classification of schizophrenia based on brain structural features: A machine learning approach [J]. Advances in Psychological Science, 2020, 28(2): 252-265. |
[11] | DONG Jianyu, WEI Wenqi, WU Ke, NI Na, WANG Canfei, FU Ying, PENG Xin. The application of machine learning in depression [J]. Advances in Psychological Science, 2020, 28(2): 266-274. |
[12] | LIANG Jing, RUAN Qiannan, LI He, MA Mengqing, YAN Wenjing. Deception detection based on memory-response conflict: A cognitive load approach [J]. Advances in Psychological Science, 2020, 28(10): 1619-1630. |
[13] | OU Jianxin, WU Yin, LIU Jinting, LI Hong. Computational psychiatry: A new perspective on research and clinical applications in depression [J]. Advances in Psychological Science, 2020, 28(1): 111-127. |
[14] | Dingrui Liu, Yi Jiang. Opposite modulation effects of conscious and nonconscious ensemble processing on perceptual decision making [J]. Advances in Psychological Science, 2019, 27(suppl.): 98-98. |
[15] | HU Chuan-Peng, KONG Xiang-Zhen, Eric-Jan WAGENMAKERS, Alexander LY, PENG Kaiping. The Bayes factor and its implementation in JASP: A practical primer [J]. Advances in Psychological Science, 2018, 26(6): 951-965. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||