Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (3): 506-519.doi: 10.3724/SP.J.1042.2025.0506
• Regular Articles • Previous Articles Next Articles
GAO Baixue1, XIE Yunlong1, LUO Junlong1,2, HE Wen1,2()
Received:
2024-11-29
Online:
2025-03-15
Published:
2025-01-24
CLC Number:
GAO Baixue, XIE Yunlong, LUO Junlong, HE Wen. Application of machine learning to improve the predictive performance of non-suicidal self-injury: A systematic review[J]. Advances in Psychological Science, 2025, 33(3): 506-519.
作者 | 样本量 | 纳入变量 | 分析数据类型 | 主要研究对象 |
---|---|---|---|---|
潘婵 等, | 835 | 19 | 问卷数据 | 大学生 |
Arora et al., | 29759 | 13 | 人口学数据 问卷数据 | 自伤成年人 |
Bao et al., | 2385 | 25 | 人口学数据 问卷数据 | 中学生 |
Chen et al., | 114 (纵向) | 6个问卷共89项 | 问卷数据 | 自伤人群 |
Cliffe et al., | 7188 | 未说明 | 临床病例数据 人口学数据 | 饮食失调患者 |
Farajzadeh & Sadeghzadeh, | 245 | 19个问卷共662项 | 问卷数据 | 自伤者 |
Fox et al., | 926 (纵向) | 39 | 人口学数据 问卷数据 | 自伤青少年 |
Guo et al., | 5807 | 21 | 问卷数据 | 6~16岁学生 |
Kappes et al., | 356 | 512 | 临床病例数据 问卷数据 | 精神分裂谱系障碍患者 |
Kumar et al., | 6, 037, 479 | 185234 | 临床病例数据; 人口学数据 | 自伤患者 |
Kyron et al., | 3690 | 12 | 问卷数据 | 精神病患者 |
Lang et al., | 117 (NSSI) 84 (正常) | 25 | 人口统计数据; fMRI 数据 | 自伤者 |
Lu et al., | 87975 (结构) 249 (非结构) | 结构化4种 非结构化4种 | 非结构化笔记 人口学数据 | 囚犯 |
Marti-Puig et al., | 2144 | 6 | 活动和情绪数据 EMA数据 | 年轻自伤者 |
Murner-Lavanchy et al., | 149 (NSSI) 40 (正常) | 7 | 临床病例数据 | 自伤患者 |
Murner-Lavanchy et al., | 240 (NSSI) 49 (正常) | 24 | 问卷数据 行为数据 人口学数据 | 240NSSI青少年 49普通青少年 |
Su et al., | 296 | 497 | 问卷数据 行为数据 人口学数据 | 自伤自杀青少年 |
Swaminathan et al., | 721 | / | 文本信息 | 有意图自伤者 |
Xian et al., | 1.2 TB图片、视频、文本 | / | 图片数据 | 自伤者 |
Xu et al., | 112 (NSSI) 98 (正常) | 82 | 问卷数据 基因数据 人口学数据 | 自伤者 |
Yang et al., | 186 | 7 | 人口学数据 问卷数据 | 情绪障碍的青少年 |
Yin et al., | 38389 | 16 | 临床病例数据 | 0~17岁自伤者 |
Zhong et al., | 13304 | 26 | 人口学数据 问卷数据 | 中国西部青少年 |
Zhou et al., | 7967 | 20 | 家长及学生 问卷数据 | 青少年与其父母 |
作者 | 样本量 | 纳入变量 | 分析数据类型 | 主要研究对象 |
---|---|---|---|---|
潘婵 等, | 835 | 19 | 问卷数据 | 大学生 |
Arora et al., | 29759 | 13 | 人口学数据 问卷数据 | 自伤成年人 |
Bao et al., | 2385 | 25 | 人口学数据 问卷数据 | 中学生 |
Chen et al., | 114 (纵向) | 6个问卷共89项 | 问卷数据 | 自伤人群 |
Cliffe et al., | 7188 | 未说明 | 临床病例数据 人口学数据 | 饮食失调患者 |
Farajzadeh & Sadeghzadeh, | 245 | 19个问卷共662项 | 问卷数据 | 自伤者 |
Fox et al., | 926 (纵向) | 39 | 人口学数据 问卷数据 | 自伤青少年 |
Guo et al., | 5807 | 21 | 问卷数据 | 6~16岁学生 |
Kappes et al., | 356 | 512 | 临床病例数据 问卷数据 | 精神分裂谱系障碍患者 |
Kumar et al., | 6, 037, 479 | 185234 | 临床病例数据; 人口学数据 | 自伤患者 |
Kyron et al., | 3690 | 12 | 问卷数据 | 精神病患者 |
Lang et al., | 117 (NSSI) 84 (正常) | 25 | 人口统计数据; fMRI 数据 | 自伤者 |
Lu et al., | 87975 (结构) 249 (非结构) | 结构化4种 非结构化4种 | 非结构化笔记 人口学数据 | 囚犯 |
Marti-Puig et al., | 2144 | 6 | 活动和情绪数据 EMA数据 | 年轻自伤者 |
Murner-Lavanchy et al., | 149 (NSSI) 40 (正常) | 7 | 临床病例数据 | 自伤患者 |
Murner-Lavanchy et al., | 240 (NSSI) 49 (正常) | 24 | 问卷数据 行为数据 人口学数据 | 240NSSI青少年 49普通青少年 |
Su et al., | 296 | 497 | 问卷数据 行为数据 人口学数据 | 自伤自杀青少年 |
Swaminathan et al., | 721 | / | 文本信息 | 有意图自伤者 |
Xian et al., | 1.2 TB图片、视频、文本 | / | 图片数据 | 自伤者 |
Xu et al., | 112 (NSSI) 98 (正常) | 82 | 问卷数据 基因数据 人口学数据 | 自伤者 |
Yang et al., | 186 | 7 | 人口学数据 问卷数据 | 情绪障碍的青少年 |
Yin et al., | 38389 | 16 | 临床病例数据 | 0~17岁自伤者 |
Zhong et al., | 13304 | 26 | 人口学数据 问卷数据 | 中国西部青少年 |
Zhou et al., | 7967 | 20 | 家长及学生 问卷数据 | 青少年与其父母 |
类型 | 结果 |
---|---|
人口学变量 | 性别(女性)、年龄、与谁(父亲)一起生活、教育水平、除居住地以外的任何地方的入院来源、未定居的住所、白人种族、年轻和失业; 民族; 社会经济地位 |
情绪因素 | 心理痛苦、抑郁、情绪反应性、自我厌恶、焦虑不安、压力、情绪失控、容忍、避免疼痛; 非适应性认知情绪调节策略; 管理消极情绪自我效能感; 情绪调节自我效能感; 表达积极情绪自我效能感 |
认知因素 | 抽象思维问题、沉思、一般智力低于正常组; 有害思想 |
家庭因素 | 家庭、家庭动态因素、家庭功能、家庭冲突和父母抑郁、父母精神困扰的求助行为、家庭团聚; 童年遭受身体虐待; 父母依恋 |
人际关系 | 偏离同伴关系; 同伴依恋; 积极沟通 |
自伤史 | 前一个月的自我切割\未来NSSI的自评可能性、自我伤害想法、自杀想法和行为、死亡愿望、自残史 |
精神障碍因素 | 物质使用障碍、药物滥用; 精神共病, 饮食失调患者、边缘型人格障碍; 精神病史、网络成瘾、COVID-19相关PTSD、学业焦虑和睡眠、心理病理学和药物治疗、心理治疗; 精神疾病家族史 |
生理因素 | NSSI生物学表型, 主要由低催产素水平、高白细胞和疼痛敏感性降低组成; NTRK2基因; 兴奋性和抑制性神经元异常; 脑部疾病 |
人格因素 | 偏执、边缘化和表演性人格 |
学校因素 | 学校心理意识; 学校参与 |
其它因素 | 含糖饮料消费、疫情引起的生活方式改变、屏幕使用时间; 中毒; 窒息; 行为问题 |
保护性因素 | 生活满意度、青少年的积极发展; 身体健康 |
类型 | 结果 |
---|---|
人口学变量 | 性别(女性)、年龄、与谁(父亲)一起生活、教育水平、除居住地以外的任何地方的入院来源、未定居的住所、白人种族、年轻和失业; 民族; 社会经济地位 |
情绪因素 | 心理痛苦、抑郁、情绪反应性、自我厌恶、焦虑不安、压力、情绪失控、容忍、避免疼痛; 非适应性认知情绪调节策略; 管理消极情绪自我效能感; 情绪调节自我效能感; 表达积极情绪自我效能感 |
认知因素 | 抽象思维问题、沉思、一般智力低于正常组; 有害思想 |
家庭因素 | 家庭、家庭动态因素、家庭功能、家庭冲突和父母抑郁、父母精神困扰的求助行为、家庭团聚; 童年遭受身体虐待; 父母依恋 |
人际关系 | 偏离同伴关系; 同伴依恋; 积极沟通 |
自伤史 | 前一个月的自我切割\未来NSSI的自评可能性、自我伤害想法、自杀想法和行为、死亡愿望、自残史 |
精神障碍因素 | 物质使用障碍、药物滥用; 精神共病, 饮食失调患者、边缘型人格障碍; 精神病史、网络成瘾、COVID-19相关PTSD、学业焦虑和睡眠、心理病理学和药物治疗、心理治疗; 精神疾病家族史 |
生理因素 | NSSI生物学表型, 主要由低催产素水平、高白细胞和疼痛敏感性降低组成; NTRK2基因; 兴奋性和抑制性神经元异常; 脑部疾病 |
人格因素 | 偏执、边缘化和表演性人格 |
学校因素 | 学校心理意识; 学校参与 |
其它因素 | 含糖饮料消费、疫情引起的生活方式改变、屏幕使用时间; 中毒; 窒息; 行为问题 |
保护性因素 | 生活满意度、青少年的积极发展; 身体健康 |
(*为纳入系统分析的文献) | |
[1] |
白荣, 高叶淼, 李金文, 刘霞. (2023). 远近端人际压力与FKBP5基因对青少年自伤行为的联合影响: 基于发展的视角. 心理学报, 55(9), 1477-1488.
doi: 10.3724/SP.J.1041.2023.01477 |
[2] |
邓洵, 陈宁, 王单单, 赵欢欢, 贺雯. (2022). 自伤行为的神经生理机制及共病障碍比较. 心理科学进展, 30(7), 1561-1573.
doi: 10.3724/SP.J.1042.2022.01561 |
[3] | 董波, 陈艾睿, 张明. (2021). 机器学习在解决过拟合现象中的作用. 心理科学, 44(2), 274-281. |
[4] |
董健宇, 韦文棋, 吴珂, 妮娜, 王粲霏, 付莹, 彭歆. (2020). 机器学习在抑郁症领域的应用. 心理科学进展, 28(2), 266-274.
doi: 10.3724/SP.J.1042.2020.00266 |
[5] | 何厚建, 乐发国, 胡茂荣, 唐金香, 罗若云, 任倩怡, 孙晓岚. (2020). 国外非自杀性自伤研究现状——基于CiteSpace可视化分析. 现代预防医学, 47(20), 3660-3664. |
[6] |
胡义秋, 曾子豪, 彭丽仪, 王宏才, 刘双金, 杨琴, 方晓义. (2023). 亲子关系和父母教育卷入对青少年抑郁、自伤和自杀意念的影响: 挫败感和人生意义感的作用. 心理学报, 55(1), 129-141.
doi: 10.3724/SP.J.1041.2023.00129 |
[7] | 黄任之, 丁立平, 黄敏. (2013). 青少年非自杀性自我伤害行为现状、影响因素及干预. 中国临床心理学杂志, 21(6), 965-967. |
[8] | 江光荣, 于丽霞, 郑莺, 冯玉, 凌霄. (2011). 自伤行为研究: 现状、问题与建议. 心理科学进展, 19(6), 861-873. |
[9] |
蒋家丽, 李立言, 李子颖, 雷秀雅, 孟泽龙. (2022). 青少年非自杀性自伤行为持续和停止的预测性因素. 心理科学进展, 30(7), 1536-1545.
doi: 10.3724/SP.J.1042.2022.01536 |
[10] | * 潘婵, 刘晓容, 石相孜, 赵文欣, 田萌, 陈思远, 张宛筑. (2023). 基于机器学习构建贵州省大学生非自杀性自伤行为的预测模型. 中国学校卫生, 44(8), 1198-1202+1206. |
[11] |
卜晓鸥, 王耀, 杜亚雯, 王沛. (2023). 机器学习在发展性阅读障碍儿童早期筛查中的应用. 心理科学进展, 31(11), 2092-2105.
doi: 10.3724/SP.J.1042.2023.02092 |
[12] | 孙蒙, 史战明, 陈登国, 吉航西, 罗丽霞, 张渝雪. (2020). 非自杀性自伤与精神障碍关系研究进展. 国际精神病学杂志, 47(1), 11-13+24. |
[13] | 王玉龙, 赵婧斐, 蔺秀云. (2024). 家庭风险因素对青少年自伤的累积效应及其性别差异. 心理发展与教育, 40(2), 240-247. |
[14] | 徐小明. (2023). 机器学习方法用于构建青少年自杀自伤行为预警模型研究 [博士学位论文]. 重庆医科大学. |
[15] | 颜赟慈. (2015). 自伤行为中疼痛和见血的情绪调节作用 [硕士学位论文]. 华中师范大学. |
[16] | 杨佳欣, 田于胜, 付熙, 李亚敏. (2023). 青少年非自杀性自伤影响因素的研究进展. 中国临床心理学杂志, 31(5), 1145-1149. |
[17] | 杨柳, 王钰. (2015). 泛化误差的各种交叉验证估计方法综述. 计算机应用研究, 32(5), 1287-1290+1297. |
[18] | 尹斐, 姜文龙, 周郁秋, 杨金伟, 杨楠. (2023). 生态系统视域下青少年非自杀性自伤行为影响因素的优势分析. 中国健康教育, 39(6), 517-522. |
[19] | 尹慧芳, 徐浩林, 刘肇瑞, 张一娇, 秦丹妮, 黄悦勤. (2022). 青少年非自杀性自伤行为的理论模型研究. 中国心理卫生杂志, 36(8), 707-713. |
[20] | 周志华. (2016). 机器学习. 北京: 清华大学出版社. |
[21] | Ahn, C. Y., & Lee, J. S. (2024). Digital phenotyping for real-time monitoring of nonsuicidal self-injury: Protocol for a prospective observational study. JMIR Research Protocols, 13(1), e53597, Advance online publication, doi: 10.2196/53597. |
[22] | Akbari, M., Seydavi, M., Firoozabadi, M. A., & Babaeifard, M. (2024). Distress tolerance and lifetime frequency of non-suicidal self-injury (NSSI): A systematic review and meta-analysis. Clinical Psychology & Psychotherapy, 31(1), e2957. |
[23] | * Arora, A., Bojko, L., Kumar, S., Lillington, J., Panesar, S., & Petrungaro, B. (2023). Assessment of machine learning algorithms in national data to classify the risk of self-harm among young adults in hospital: A retrospective study. International Journal of Medical Informatics, 177, 105164. |
[24] |
Baer, M. M., Tull, M. T., Forbes, C. N., Richmond, J. R., & Gratz, K. L. (2020). Methods matter: Nonsuicidal self-injury in the form of cutting is uniquely associated with suicide attempt severity in patients with substance use disorders. Suicide and Life-Threatening Behavior, 50(2), 397-407.
doi: 10.1111/sltb.12596 pmid: 31621951 |
[25] | * Bao, J., Wan, J., Li, H., & Sun, F. (2024). Psychological pain and sociodemographic factors classified suicide attempt and non-suicidal self-injury in adolescents. Acta Psychologica, 246, 104271. |
[26] | Belfort, E. L., & Miller, L. (2018). Relationship between adolescent suicidality, self-injury, and media habits. Child and Adolescent Psychiatric Clinics, 27(2), 159-169. |
[27] | Bhadra, S., & Kumar, C. J. (2022). An insight into diagnosis of depression using machine learning techniques: A systematic review. Current Medical Research and Opinion, 38(5), 749-771. |
[28] |
Burke, T. A., Ammerman, B. A., & Jacobucci, R. (2019). The use of machine learning in the study of suicidal and non-suicidal self-injurious thoughts and behaviors: A systematic review. Journal of Affective Disorders, 245, 869-884.
doi: S0165-0327(18)31750-6 pmid: 30699872 |
[29] | Case, J. A. C., Burke, T. A., Siegel, D. M., Piccirillo, M. L., Alloy, L. B., & Olino, T. (2020). Functions of non-suicidal self-injury in late adolescence: A latent class analysis. Archives of Suicide Research Official Journal of the International Academy for Suicide Research, 24(sup2), S165-S186. |
[30] | Castillo-Sánchez, G., Marques, G., Dorronzoro, E., Rivera- Romero, O., Franco-Martín, M., & De la Torre-Díez, I. (2020). Suicide risk assessment using machine learning and social networks: A scoping review. Journal of Medical Systems, 44(12), 205. |
[31] | * Chen, S. C., Huang, H. C., Liu, S. I., & Chen, S. H. (2024). Prediction of repeated self-harm in six months: Comparison of traditional psychometrics with random forest algorithm. OMEGA-Journal of Death and Dying, 88(4), 1403-1429. |
[32] | Christoforou, R., Boyes, M., & Hasking, P. (2021). Emotion profiles of university students engaging in non-suicidal self-injury: Association with functions of self-injury and other mental health concerns. Psychiatry Research, 305, 114253. |
[33] | * Cliffe, C., Seyedsalehi, A., Vardavoulia, K., Bittar, A., Velupillai, S., Shetty, H., Schmidt, U., & Dutta, R. (2021). Using natural language processing to extract self-harm and suicidality data from a clinical sample of patients with eating disorders: A retrospective cohort study. BMJ Open, 11(12), e053808. |
[34] |
Collins, G. S., Reitsma, J. B., Altman, D. G., & Moons, K. G. (2015). Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. Annals of Internal Medicine, 162(1), 55-63.
doi: 10.7326/M14-0697 pmid: 25560714 |
[35] | Daukantaite, D., Lundh, L. G., Wangby-Lundh, M., Clareus, B., Bjarehed, J., Zhou, Y., & Liljedahl, S. I. (2021). What happens to young adults who have engaged in self- injurious behavior as adolescents? A 10-year follow-up. European Child & Adolescent Psychiatry, 30(3), 475-492. |
[36] |
De Luca, L., Pastore, M., Palladino, B. E., Reime, B., Warth, P., & Menesini, E. (2023). The development of Non-Suicidal Self-Injury (NSSI) during adolescence: A systematic review and Bayesian meta-analysis. Journal of Affective Disorders, 339, 648-659.
doi: 10.1016/j.jad.2023.07.091 pmid: 37479039 |
[37] |
Dixon-Gordon, K. L., Turner, B. J., Haliczer, L. A., Gratz, K. L., Tull, M. T., & Chapman, A. L. (2022). Self-injury motives: A person-centered examination. Suicide and Life-Threatening Behavior, 52(4), 812-827.
doi: 10.1111/sltb.12865 pmid: 35362639 |
[38] | * Farajzadeh, N., & Sadeghzadeh, N. (2023). NSSI questionnaires revisited: A data mining approach to shorten the NSSI questionnaires. PlOS ONE, 18(4), e0284588. |
[39] |
Feczko, E., Miranda-Dominguez, O., Marr, M., Graham, A. M., Nigg, J. T., & Fair, D. A. (2019). The heterogeneity problem: Approaches to identify psychiatric subtypes. Trends in Cognitive Sciences, 23(7), 584-601.
doi: S1364-6613(19)30092-0 pmid: 31153774 |
[40] |
Fox, K. R., Franklin, J. C., Ribeiro, J. D., Kleiman, E. M., Bentley, K. H., & Nock, M. K. (2015). Meta-analysis of risk factors for nonsuicidal self-injury. Clinical Psychology Review, 42, 156-167.
doi: 10.1016/j.cpr.2015.09.002 pmid: 26416295 |
[41] |
* Fox, K. R., Huang, X., Linthicum, K. P., Wang, S. B., Franklin, J. C., & Ribeiro, J. D. (2019). Model complexity improves the prediction of nonsuicidal self-injury. Journal of Consulting and Clinical Psychology, 87(8), 684-692.
doi: 10.1037/ccp0000421 pmid: 31219275 |
[42] |
Franklin, J. C., Ribeiro, J. D., Fox, K. R., Bentley, K. H., Kleiman, E. M., Huang, X., ... Nock, M. K. (2017). Risk factors for suicidal thoughts and behaviors: A meta-analysis of 50 years of research. Psychological Bulletin, 143(2), 187-232.
doi: 10.1037/bul0000084 pmid: 27841450 |
[43] | Fu, X., Yang, J., Liao, X., Ou, J., Li, Y., & Chen, R. (2020). Parents’ attitudes toward and experience of non-suicidal self-injury in adolescents: A qualitative study. Frontiers in Psychiatry, 11, 538756. |
[44] | Gee, B. L., Han, J., Benassi, H., & Batterham, P. J. (2020). Suicidal thoughts, suicidal behaviours and self-harm in daily life: A systematic review of ecological momentary assessment studies. Digital Health, 6. doi: 10.1177/2055207620963958 |
[45] |
Guérin-Marion, C., Bureau, J. -F., Lafontaine, M. -F., Gaudreau, P., & Martin, J. (2021). Profiles of emotion dysregulation among university students who self-Injure: Associations with parent-child relationships and non-suicidal self-injury characteristics. Journal of Youth and Adolescence, 50(4), 767-787.
doi: 10.1007/s10964-020-01378-9 pmid: 33449284 |
[46] | * Guo, X., Wang, L., Li, Z., Feng, Z., Lu, L., Jiang, L., & Zhao, L. (2024). Factors and pathways of non-suicidal self-injury in children: Insights from computational causal analysis. Frontiers in Public Health, 12, 1305746. |
[47] | Haregu, T., Chen, Q., Arafat, S. M. Y., Cherian, A., & Armstrong, G. (2023). Prevalence, correlates and common methods of non-suicidal self-injury in South Asia: A systematic review. BMJ Open, 13(11), e074776. |
[48] | Hasking, P., Lewis, S. P., & Tonta, K. (2023). A person- centred conceptualisation of non-suicidal self-injury recovery: A practical guide. Counselling Psychology Quarterly, 37(3), 376-397. |
[49] | Hasking, P., Whitlock, J., Voon, D., & Rose, A. (2017). A cognitive-emotional model of NSSI: Using emotion regulation and cognitive processes to explain why people self-injure. Cognition and Emotion, 31(8), 1543-1556. |
[50] | He, H., Hong, L., Jin, W., Xu, Y., Kang, W., Liu, J., ... Zhao, K. (2023). Heterogeneity of non-suicidal self-injury behavior in adolescents with depression: Latent class analysis. BMC Psychiatry, 23(1), 1-13. |
[51] | Hooley, J. M., & Franklin, J. C. (2018). Why do people hurt themselves? A new conceptual model of non-suicidal self-injury. Clinical Psychological Science, 6(3), 428-451. |
[52] | Jaiswal, J. K., & Samikannu, R. (2017). Application of random forest algorithm on feature subset selection and classification and regression. In World Congress on Computing and Communication Technologies (WCCCT), Tiruchirappalli, India, doi: 10.1109/WCCCT.2016.25. |
[53] | * Kappes, J. R., Huber, D. A., Kirchebner, J., Sonnweber, M., Günther, M. P., & Lau, S. (2023). Self-Harm among forensic psychiatric inpatients with schizophrenia spectrum disorders: An explorative analysis. International Journal of Offender Therapy and Comparative Criminology, 67(4), 352-372. |
[54] | Kentopp, S. (2021). Deep transfer learning for prediction of health risk behaviors in adolescent psychiatric patients [Unpublished doctoral dissertation]. Colorado State University. |
[55] | Kinchin, I., Doran, C. M., Hall, W. D., & Meurk, C. (2017). Understanding the true economic impact of self-harming behaviour. The Lancet Psychiatry, 4(12), 900-901. |
[56] |
* Kumar, P., Nestsiarovich, A., Nelson, S. J., Kerner, B., Perkins, D. J., & Lambert, C. G. (2020). Imputation and characterization of uncoded self-harm in major mental illness using machine learning. Journal of the American Medical Informatics Association, 27(1), 136-146.
doi: 10.1093/jamia/ocz173 pmid: 31651956 |
[57] | * Kyron, M. J., Hooke, G. R., & Page, A. C. (2021). Prediction and network modelling of self-harm through daily self-report and history of self-injury. Psychological Medicine, 51(12), 1992-2002. |
[58] | * Lang, A. N., Zhong, Y., Lei, W., Xiao, Y., Hang, Y., Xie, Y., ... Wang, C. (2024). Neural mechanism of non-adaptive cognitive emotion regulation in patients with non-suicidal self-injury. Comprehensive Psychiatry, 133, 152487. |
[59] |
Lanza, S. T., & Cooper, B. R. (2016). Latent class analysis for developmental research. Child Development Perspectives, 10(1), 59-64.
doi: 10.1111/cdep.12163 pmid: 31844424 |
[60] |
* Lu, H., Barrett, A., Pierce, A., Zheng, J., Wang, Y., Chiang, C., & Rakovski, C. (2023). Predicting suicidal and self-injurious events in a correctional setting using AI algorithms on unstructured medical notes and structured data. Journal of Psychiatric Research, 160, 19-27.
doi: 10.1016/j.jpsychires.2023.01.032 pmid: 36773344 |
[61] | Martinez-Ales, G., & Keyes, K. M. (2019). Fatal and non-fatal self-injury in the USA: Critical review of current trends and innovations in prevention. Current Psychiatry Reports, 21(10), 1-11. |
[62] | * Marti-Puig, P., Capra, C., Vega, D., Llunas, L., & Solé-Casals, J. (2022). A machine learning approach for predicting non-suicidal self-injury in young adults. Sensors, 22(13), 4790. |
[63] | * Murner-Lavanchy, I., Koenig, J., Reichl, C., Josi, J., Cavelti, M., & Kaess, M. (2024). The quest for a biological phenotype of adolescent non-suicidal self-injury: A machine- learning approach. Translational Psychiatry, 14(1), 56. |
[64] | * Murner-Lavanchy, I., Koenig, J., Lerch, S., van der Venne, P., Hoper, S., Resch, F., & Kaess, M. (2022). Neurocognitive functioning in adolescents with non-suicidal self-injury. Journal of Affective Disorders, 311, 55-62. |
[65] | Nitkowski, D., & Petermann, F. (2010). Non-suicidal self-injury and comorbid mental disorders: A review. Fortschritte der Neurologie-Psychiatrie, 79(1), 9-20. |
[66] |
Nock, M. K. (2009). Why do people hurt themselves? New insights into the nature and functions of self-injury. Current Directions in Psychological Science, 18(2), 78-83.
doi: 10.1111/j.1467-8721.2009.01613.x pmid: 20161092 |
[67] | Peel-Wainwright, K. M., Hartley, S., Boland, A., Rocca, E., Langer, S., & Taylor, P. J. (2021). The interpersonal processes of non-suicidal self-injury: A systematic review and meta-synthesis. Psychology and Psychotherapy: Theory, Research and Practice, 94(4), 1059-1082. |
[68] | Qu, D., Wen, X., Liu, B., Zhang, X., He, Y., Chen, D., ... Chen, R. (2023). Non-suicidal self-injury in Chinese population: A scoping review of prevalence, method, risk factors and preventive interventions. The Lancet Regional Health. Western Pacific, 37, 100794. https://doi.org/10.1016/.lanwpc.2023.100794 |
[69] |
Radziwiłłowicz, W., & Lewandowska, M. (2017). Deliberate self-injury functions and their clinical correlates among adolescent psychiatric inpatients. Psychiatria Polska, 51(2), 303-322.
doi: 63802 pmid: 28581539 |
[70] | Rahman, F., Webb, R. T., & Wittkowski, A. (2021). Risk factors for self-harm repetition in adolescents: A systematic review. Clinical Psychology Review, 88, 102048. |
[71] |
Ribeiro, J. D., Franklin, J. C., Fox, K. R., Bentley, K. H., Kleiman, E. M., Chang, B. P., & Nock, M. K. (2016). Self-injurious thoughts and behaviors as risk factors for future suicide ideation, attempts, and death: A meta- analysis of longitudinal studies. Psychological Medicine, 46(2), 225-236.
doi: 10.1017/S0033291715001804 pmid: 26370729 |
[72] |
Siddaway, A. P., Quinlivan, L., Kapur, N., O'Connor, R. C., & de Beurs, D. (2020). Cautions, concerns, and future directions for using machine learning in relation to mental health problems and clinical and forensic risks: A brief comment on “Model complexity improves the prediction of nonsuicidal self-injury” (Fox et al., 2019). Journal of Consulting and Clinical Psychology, 88(4), 384-387.
doi: 10.1037/ccp0000485 pmid: 32134292 |
[73] | Simundic, A. -M. (2009). Measures of diagnostic accuracy: Basic definitions. EJIFCC, 19(4), 203-211. |
[74] | Staniland, L., Hasking, P., Boyes, M., & Lewis, S. (2021). Stigma and nonsuicidal self-injury: Application of a conceptual framework. Stigma and Health, 6(3), 312-323. |
[75] | Steinhoff, A., Ribeaud, D., Kupferschmid, S., Raible-Destan, N., Quednow, B. B., Hepp, U., ... Shanahan, L. (2021). Self-injury from early adolescence to early adulthood: Age-related course, recurrence, and services use in males and females from the community. European Child & Adolescent Psychiatry, 30(6), 937-951. |
[76] |
Steyerberg, E. W., Harrell Jr, F. E., Borsboom, G. J., Eijkemans, M. J. C., Vergouwe, Y., & Habbema, J. D. F. (2001). Internal validation of predictive models: Efficiency of some procedures for logistic regression analysis. Journal of Clinical Epidemiology, 54(8), 774-781.
doi: 10.1016/s0895-4356(01)00341-9 pmid: 11470385 |
[77] | * Su, R., John, J. R., & Lin, P. -I. (2023). Machine learning- based prediction for self-harm and suicide attempts in adolescents. Psychiatry Research, 328, 115446. |
[78] | * Swaminathan, A., Lopez, I., Mar, R. A. G., Heist, T., McClintock, T., Caoili, K., ... Nock, M. K. (2023). Natural language processing system for rapid detection and intervention of mental health crisis chat messages. NPJ Digital Medicine, 6(1), 1-9. |
[79] | Syed, S., Kingsbury, M., Bennett, K., Manion, I., & Colman, I. (2020). Adolescents’ knowledge of a peer’s non- suicidal self-injury and own non-suicidal self-injury and suicidality. Acta Psychiatrica Scandinavica, 142(5), 366-373. |
[80] |
Tang, J., Li, G., Chen, B., Huang, Z., Zhang, Y., Chang, H., ... Yu, Y. (2018). Prevalence of and risk factors for non-suicidal self-injury in rural China: Results from a nationwide survey in China. Journal of Affective Disorders, 226, 188-195.
doi: S0165-0327(17)30468-8 pmid: 28988001 |
[81] | Walsh, C. G., Ribeiro, J. D., & Franklin, J. C. (2017). Predicting risk of suicide attempts over time through machine learning. Clinical Psychological Science, 5(3), 457-469. |
[82] | Wang, Z., Li, D., Chen, Y., Tao, Z., Jiang, L., He, X., & Zhang, W. (2024). Understanding the subtypes of non- suicidal self-injury: A new conceptual framework based on a systematic review. Psychiatry Research, 334, 115816. |
[83] | * Xian, L., Vickers, S. D., Giordano, A. L., Lee, J., Kim, I. K., & Ramaswamy, L. (2019). Selfharm on Instagram: Quantitative analysis and classification of non-suicidal self-injury. In 2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI), Los Angeles, CA, USA, doi: 10.1109/CogMI48466.2019.00017. |
[84] | Xiao, Q., Song, X., Huang, L., Hou, D., & Huang, X. (2022). Global prevalence and characteristics of non-suicidal self-injury between 2010 and 2021 among a non-clinical sample of adolescents: A meta-analysis. Frontiers in Psychiatry, 13, 912441. |
[85] | * Xu, X. M., Liu, Y. S., Hong, S., Liu, C., Cao, J., Chen, X. R., ... Kuang, L. (2024). The prediction of self-harm behaviors in young adults with multi-modal data: An XGBoost approach. Journal of Affective Disorders Reports, 16, 100723. |
[86] | * Yang, J., Chen, Y., Yao, G., Wang, Z., Fu, X., Tian, Y., & Li, Y. (2022). Key factors selection on adolescents with non-suicidal self-injury: A support vector machine based approach. Frontiers in Public Health, 10, 1049069. |
[87] |
Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100-1122.
doi: 10.1177/1745691617693393 pmid: 28841086 |
[88] | * Yin, X., Ma, D., Zhu, K., & Li, D. (2021). Identifying intentional injuries among children and adolescents based on Machine Learning. PLOS ONE, 16(1), e0245437. |
[89] | * Zhong, Y., He, J., Luo, J., Zhao, J., Cen, Y., Song, Y., ... Luo, J. (2024). A machine learning algorithm-based model for predicting the risk of non-suicidal self-injury among adolescents in western China: A multicentre cross-sectional study. Journal of Affective Disorders, 345, 369-377. |
[90] |
* Zhou, S. C., Zhou, Z., Tang, Q., Yu, P., Zou, H., Liu, Q., ... Luo, D. (2024). Prediction of non-suicidal self-injury in adolescents at the family level using regression methods and machine learning. Journal of Affective Disorders, 352, 67-75.
doi: 10.1016/j.jad.2024.02.039 pmid: 38360362 |
[1] | GAO Xuliang, LI Ning. Application of machine learning methods in test security [J]. Advances in Psychological Science, 2024, 32(11): 1814-1828. |
[2] | JIANG Jianwu, LONG Hanhuan, HU Jieyu. A meta-analysis of the impact of AI application on employees in the workplace [J]. Advances in Psychological Science, 2024, 32(10): 1621-1639. |
[3] | Liying Zou, Chenyan Zhou, Jiawei Zhou, Seung Hyun Min. Ocular Dominance Plasticity does not Exhibit Perceptual Deterioration [J]. Advances in Psychological Science, 2023, 31(suppl.): 116-116. |
[4] | Xunbing Shen, Xiaoqing Mei, Min Gao, Zhencai Chen, Yafang Li, Mingliang Gong. Eyes are the Windows of Lies [J]. Advances in Psychological Science, 2023, 31(suppl.): 172-172. |
[5] | Yuxi Zhou, Xunbing Shen. Emotion Elicitation Promote the Disclosure of Facial Deception Cues [J]. Advances in Psychological Science, 2023, 31(suppl.): 179-179. |
[6] | CHEN Xinwen, LI Hongjie, DING Yulong. Exploring the neural representation patterns in event-related EEG/MEG signals: The methods based on classification decoding and representation similarity analysis [J]. Advances in Psychological Science, 2023, 31(2): 173-195. |
[7] | BU Xiaoou, WANG Yao, DU Yawen, WANG Pei. Application of machine learning in early screening of children with dyslexia [J]. Advances in Psychological Science, 2023, 31(11): 2092-2105. |
[8] | JIANG Jiali, LI Liyan, LI Ziying, LEI Xiuya, MENG Zelong. Predictors of continuation and cessation of non-suicidal self-injury in adolescents [J]. Advances in Psychological Science, 2022, 30(7): 1536-1545. |
[9] | JIN Yuchang, DENG Chenglong, WU Ping, LIN Xi, ZHENG Peixuan, AN Junxiu. Emoji image symbol’s social function and application [J]. Advances in Psychological Science, 2022, 30(5): 1062-1077. |
[10] | LIU Xiaohan, CHEN Minglong, GUO Jing. Application of machine learning in prognosis and trajectory of post-traumatic stress disorder in children [J]. Advances in Psychological Science, 2022, 30(4): 851-862. |
[11] | HOU Tingting, CHEN Xiao, KONG Depeng, SHAO Xiujun, LIN Fengxun, LI Kaiyun. Application of machine learning in early identification and diagnosis of autistic children [J]. Advances in Psychological Science, 2022, 30(10): 2321-2337. |
[12] | SU Yue, LIU Mingming, ZHAO Nan, LIU Xiaoqian, ZHU Tingshao. Identifying psychological indexes based on social media data: A machine learning method [J]. Advances in Psychological Science, 2021, 29(4): 571-585. |
[13] | DONG Jianyu, WEI Wenqi, WU Ke, NI Na, WANG Canfei, FU Ying, PENG Xin. The application of machine learning in depression [J]. Advances in Psychological Science, 2020, 28(2): 266-274. |
[14] | ZHENG Hong, PU Cheng-cheng, WANG Yi, Raymond C. K. CHAN. The classification of schizophrenia based on brain structural features: A machine learning approach [J]. Advances in Psychological Science, 2020, 28(2): 252-265. |
[15] | LIANG Jing, RUAN Qiannan, LI He, MA Mengqing, YAN Wenjing. Deception detection based on memory-response conflict: A cognitive load approach [J]. Advances in Psychological Science, 2020, 28(10): 1619-1630. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||