Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (2): 173-195.doi: 10.3724/SP.J.1042.2023.00173
• Research Method • Previous Articles Next Articles
CHEN Xinwen, LI Hongjie, DING Yulong()
Received:
2021-12-16
Online:
2023-02-15
Published:
2022-11-10
Contact:
DING Yulong
E-mail:dingyulong@m.scnu.edu.cn
CLC Number:
CHEN Xinwen, LI Hongjie, DING Yulong. Exploring the neural representation patterns in event-related EEG/MEG signals: The methods based on classification decoding and representation similarity analysis[J]. Advances in Psychological Science, 2023, 31(2): 173-195.
[1] |
Alilović J., Timmermans B., Reteig L. C., van Gaal S., & Slagter H. A. (2019). No evidence that predictions and attention modulate the first feedforward sweep of cortical information processing. Cerebral Cortex, 29(5), 2261-2278.
doi: 10.1093/cercor/bhz038 URL |
[2] |
Allefeld C., Görgen K., & Haynes J. D. (2016). Valid population inference for information-based imaging: From the second-level t-test to prevalence inference. Neuroimage, 141, 378-392.
doi: S1053-8119(16)30347-0 pmid: 27450073 |
[3] |
Bae G. Y., & Luck S. J. (2018). Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained potentials. Journal of Neuroscience, 38(2), 409-422.
doi: 10.1523/JNEUROSCI.2860-17.2017 URL |
[4] |
Bae G. Y., & Luck S. J. (2019b). Decoding motion direction using the topography of sustained ERPs and alpha oscillations. NeuroImage, 184, 242-255.
doi: 10.1016/j.neuroimage.2018.09.029 URL |
[5] |
Bae G. Y., & Luck S. J. (2019a). Reactivation of previous experiences in a working memory task. Psychological Science, 30(4), 587-595.
doi: 10.1177/0956797619830398 URL |
[6] | Barchiesi G., Demarchi G., Wilhelm F. H., Hauswald A., Sanchez G., & Weisz N. (2020). Head magnetomyography (hMMG): A novel approach to monitor face and whole head muscular activity. Psychophysiology, 57(3), e13507. |
[7] | Benjamini Y., & Yekutieli D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29(4), 1165-1188. |
[8] |
Blom T., Feuerriegel D., Johnson P., Bode S., & Hogendoorn H. (2020). Predictions drive neural representations of visual events ahead of incoming sensory information. Proceedings of the National Academy of Sciences, 117(13), 7510-7515.
doi: 10.1073/pnas.1917777117 URL |
[9] |
Bode S., Feuerriegel D., Bennett D., & Alday P. M. (2019). The Decision Decoding ToolBOX (DDTBOX)-A multivariate pattern analysis toolbox for event-related potentials. Neuroinformatics, 17(1), 27-42.
doi: 10.1007/s12021-018-9375-z URL |
[10] | Carlson T. A., Grootswagers T., & Robinson A. K. (2019). An introduction to time-resolved decoding analysis for M/EEG. arXiv preprint arXiv:1905.04820. |
[11] | Carlson T. A., Hogendoorn H., Kanai R., Mesik J., & Turret J. (2011). High temporal resolution decoding of object position and category. Journal of Vision, 11(10), 9. |
[12] | Carlson T. A., Tovar D. A., Alink A., & Kriegeskorte N. (2013). Representational dynamics of object vision: The first 1000 ms. Journal of Vision, 13(10), 1. |
[13] |
Charles L., King J. R., & Dehaene S. (2014). Decoding the dynamics of action, intention, and error detection for conscious and subliminal stimuli. Journal of Neuroscience, 34(4), 1158-1170.
doi: 10.1523/JNEUROSCI.2465-13.2014 pmid: 24453309 |
[14] |
Cichy R. M., Khosla A., Pantazis D., & Oliva A. (2017). Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks. NeuroImage, 153, 346-358.
doi: S1053-8119(16)30007-6 pmid: 27039703 |
[15] |
Cichy R. M., Khosla A., Pantazis D., Torralba A., & Oliva A. (2016). Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Scientific Reports, 6(1), 1-13.
doi: 10.1038/s41598-016-0001-8 URL |
[16] | Cichy R. M., Kriegeskorte N., Jozwik K. M., van den Bosch J. J., & Charest I. (2017). Neural dynamics of real-world object vision that guide behaviour. bioRxiv, 147298. |
[17] |
Cichy R. M., & Pantazis D. (2017). Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space. NeuroImage, 158, 441-454.
doi: S1053-8119(17)30591-8 pmid: 28716718 |
[18] |
Cichy R. M., Pantazis D., & Oliva A. (2014). Resolving human object recognition in space and time. Nature Neuroscience, 17(3), 455-462.
doi: 10.1038/nn.3635 pmid: 24464044 |
[19] |
Cichy R. M., Pantazis D., & Oliva A. (2016). Similarity- based fusion of MEG and fMRI reveals spatio-temporal dynamics in human cortex during visual object recognition. Cerebral Cortex, 26(8), 3563-3579.
doi: 10.1093/cercor/bhw135 URL |
[20] |
Collins E., Robinson A. K., & Behrmann M. (2018). Distinct neural processes for the perception of familiar versus unfamiliar faces along the visual hierarchy revealed by EEG. NeuroImage, 181, 120-131.
doi: S1053-8119(18)30587-1 pmid: 29966716 |
[21] |
Contini E. W., Wardle S. G., & Carlson T. A. (2017). Decoding the time-course of object recognition in the human brain: From visual features to categorical decisions. Neuropsychologia, 105, 165-176.
doi: S0028-3932(17)30059-3 pmid: 28215698 |
[22] |
Correia J. M., Jansma B., Hausfeld L., Kikkert S., & Bonte M. (2015). EEG decoding of spoken words in bilingual listeners: From words to language invariant semantic- conceptual representations. Frontiers in Psychology, 6, 71.
doi: 10.3389/fpsyg.2015.00071 pmid: 25705197 |
[23] |
Cox D. D., & Savoy R. L. (2003). Functional magnetic resonance imaging (fMRI)“brain reading”: Detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage, 19(2), 261-270.
doi: 10.1016/S1053-8119(03)00049-1 URL |
[24] |
Croce P., Zappasodi F., Marzetti L., Merla A., Pizzella V., & Chiarelli A. M. (2018). Deep Convolutional Neural Networks for feature-less automatic classification of Independent Components in multi-channel electrophysiological brain recordings. IEEE Transactions on Biomedical Engineering, 66(8), 2372-2380.
doi: 10.1109/TBME.2018.2889512 URL |
[25] |
Crosse M. J., di Liberto G. M., Bednar A., & Lalor E. C. (2016). The multivariate temporal response function (mTRF) toolbox: A MATLAB toolbox for relating neural signals to continuous stimuli. Frontiers in Human Neuroscience, 10, 604.
pmid: 27965557 |
[26] |
de Martino F., Valente G., Staeren N., Ashburner J., Goebel R., & Formisano E. (2008). Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. Neuroimage, 43(1), 44-58.
doi: 10.1016/j.neuroimage.2008.06.037 pmid: 18672070 |
[27] |
Dienes Z. (2016). How Bayes factors change scientific practice. Journal of Mathematical Psychology, 72, 78-89.
doi: 10.1016/j.jmp.2015.10.003 URL |
[28] | Dijkstra N., Mostert P., de Lange F. P., Bosch S., & van Gerven M. A. (2018). Differential temporal dynamics during visual imagery and perception. Elife, 7, e33904. |
[29] |
Ding Y., Martinez A., Qu Z., & Hillyard S. A. (2014). Earliest stages of visual cortical processing are not modified by attentional load. Human Brain Mapping, 35(7), 3008-3024.
pmid: 25050422 |
[30] |
Dobs K., Isik L., Pantazis D., & Kanwisher N. (2019). How face perception unfolds over time. Nature Communications, 10(1), 1-10.
doi: 10.1038/s41467-018-07882-8 URL |
[31] |
Dumoulin S. O., & Wandell B. A. (2008). Population receptive field estimates in human visual cortex. Neuroimage, 39(2), 647-660.
doi: 10.1016/j.neuroimage.2007.09.034 pmid: 17977024 |
[32] |
Fahrenfort J. J., Grubert A., Olivers C. N., & Eimer M. (2017). Multivariate EEG analyses support high-resolution tracking of feature-based attentional selection. Scientific Reports, 7(1), 1-15.
doi: 10.1038/s41598-016-0028-x URL |
[33] |
Fahrenfort J. J., van Driel J., van Gaal S., & Olivers C. N. (2018). From ERPs to MVPA using the Amsterdam decoding and modeling toolbox (ADAM). Frontiers in Neuroscience, 12, 368.
doi: 10.3389/fnins.2018.00368 pmid: 30018529 |
[34] |
Fahrenfort J. J., van Leeuwen J., Olivers C. N., & Hogendoorn H. (2017). Perceptual integration without conscious access. Proceedings of the National Academy of Sciences, 114(14), 3744-3749.
doi: 10.1073/pnas.1617268114 URL |
[35] |
Freund M. C., Etzel J. A., & Braver T. S. (2021). Neural coding of cognitive control: The representational similarity analysis approach. Trends in Cognitive Sciences, 25(7), 622-638.
doi: 10.1016/j.tics.2021.03.011 pmid: 33895065 |
[36] |
Furl N., Lohse M., & Pizzorni-Ferrarese F. (2017). Low-frequency oscillations employ a general coding of the spatio-temporal similarity of dynamic faces. Neuroimage, 157, 486-499.
doi: S1053-8119(17)30492-5 pmid: 28619657 |
[37] |
Giari G., Leonardelli E., Tao Y., Machado M., & Fairhall S. L. (2020). Spatiotemporal properties of the neural representation of conceptual content for words and pictures-An MEG study. Neuroimage, 219, 116913.
doi: 10.1016/j.neuroimage.2020.116913 URL |
[38] |
Gramfort A., Luessi M., Larson E., Engemann D. A., Strohmeier D., Brodbeck C.,... Hämäläinen M. (2013). MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7, 267.
doi: 10.3389/fnins.2013.00267 pmid: 24431986 |
[39] | Greene M. R., & Hansen B. C. (2018). Shared spatiotemporal category representations in biological and artificial deep neural networks. PLoS Computational Biology, 14(7), e1006327. |
[40] |
Grootswagers T., Robinson A. K., & Carlson T. A. (2019). The representational dynamics of visual objects in rapid serial visual processing streams. NeuroImage, 188, 668-679.
doi: S1053-8119(18)32190-6 pmid: 30593903 |
[41] |
Grootswagers T., Wardle S. G., & Carlson T. A. (2017). Decoding dynamic brain patterns from evoked responses: A tutorial on multivariate pattern analysis applied to time series neuroimaging data. Journal of Cognitive Neuroscience, 29(4), 677-697.
doi: 10.1162/jocn_a_01068 pmid: 27779910 |
[42] |
Guggenmos M., Sterzer P., & Cichy R. M. (2018). Multivariate pattern analysis for MEG: A comparison of dissimilarity measures. NeuroImage, 173, 434-447.
doi: S1053-8119(18)30141-1 pmid: 29499313 |
[43] |
Güven A., Altınkaynak M., Dolu N., İzzetoğlu M., Pektaş F., Özmen S.,... Batbat T. (2020). Combining functional near-infrared spectroscopy and EEG measurements for the diagnosis of attention-deficit hyperactivity disorder. Neural Computing and Applications, 32(12), 8367-8380.
doi: 10.1007/s00521-019-04294-7 URL |
[44] |
Hanke M., Halchenko Y. O., Sederberg P. B., Olivetti E., Fründ I., Rieger J. W.,... Pollmann S. (2009). PyMVPA: A unifying approach to the analysis of neuroscientific data. Frontiers in Neuroinformatics, 3, 3.
doi: 10.3389/neuro.11.003.2009 pmid: 19212459 |
[45] |
Haufe S., Meinecke F., Görgen K., Dähne S., Haynes J. D., Blankertz B., & Bießmann F. (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage, 87, 96-110.
doi: 10.1016/j.neuroimage.2013.10.067 pmid: 24239590 |
[46] |
Haxby J. V., Connolly A. C., & Guntupalli J. S. (2014). Decoding neural representational spaces using multivariate pattern analysis. Annual Review of Neuroscience, 37(1), 435-456.
doi: 10.1146/annurev-neuro-062012-170325 URL |
[47] |
Haynes J. D. (2015). A primer on pattern-based approaches to fMRI: Principles, pitfalls, and perspectives. Neuron, 87(2), 257-270.
doi: 10.1016/j.neuron.2015.05.025 URL |
[48] |
Hebart M. N., & Baker C. I. (2018). Deconstructing multivariate decoding for the study of brain function. Neuroimage, 180, 4-18.
doi: S1053-8119(17)30652-3 pmid: 28782682 |
[49] |
Heikel E., Sassenhagen J., & Fiebach C. J. (2018). Time-generalized multivariate analysis of EEG responses reveals a cascading architecture of semantic mismatch processing. Brain and Language, 184, 43-53.
doi: S0093-934X(17)30220-1 pmid: 29980071 |
[50] |
Hubbard J., Kikumoto A., & Mayr U. (2019). EEG decoding reveals the strength and temporal dynamics of goal-relevant representations. Scientific Reports, 9(1), 1-11.
doi: 10.1038/s41598-018-37186-2 URL |
[51] |
Huster R. J., Debener S., Eichele T., & Herrmann C. S. (2012). Methods for simultaneous EEG-fMRI: An introductory review. Journal of Neuroscience, 32(18), 6053-6060.
doi: 10.1523/JNEUROSCI.0447-12.2012 pmid: 22553012 |
[52] |
Isik L., Meyers E. M., Leibo J. Z., & Poggio T. (2014). The dynamics of invariant object recognition in the human visual system. Journal of Neurophysiology, 111(1), 91-102.
doi: 10.1152/jn.00394.2013 pmid: 24089402 |
[53] | Ivanova A. A., Schrimpf M., Anzellotti S., Zaslavsky N., Fedorenko E., & Isik L. (2021). Is it that simple? Linear mapping models in cognitive neuroscience. bioRxiv. |
[54] |
Johnson S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254.
doi: 10.1007/BF02289588 pmid: 5234703 |
[55] |
Kaiser D., Azzalini D. C., & Peelen M. V. (2016). Shape-independent object category responses revealed by MEG and fMRI decoding. Journal of Neurophysiology, 115(4), 2246-2250.
doi: 10.1152/jn.01074.2015 pmid: 26740535 |
[56] |
Kaiser D., Oosterhof N. N., & Peelen M. V. (2016). The neural dynamics of attentional selection in natural scenes. Journal of Neuroscience, 36(41), 10522-10528.
pmid: 27733605 |
[57] |
Kamitani Y., & Tong F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8(5), 679-685.
doi: 10.1038/nn1444 pmid: 15852014 |
[58] | Kia S. M., Vega Pons S., Weisz N., & Passerini A. (2017). Interpretability of multivariate brain maps in linear brain decoding: Definition, and heuristic quantification in multivariate analysis of MEG time-locked effects. Frontiers in Neuroscience, 10, 619. |
[59] |
Kietzmann T. C., Gert A. L., Tong F., & König P. (2017). Representational dynamics of facial viewpoint encoding. Journal of Cognitive Neuroscience, 29(4), 637-651.
doi: 10.1162/jocn_a_01070 pmid: 27791433 |
[60] |
King J. R., & Dehaene S. (2014). Characterizing the dynamics of mental representations: The temporal generalization method. Trends in Cognitive Sciences, 18(4), 203-210.
doi: 10.1016/j.tics.2014.01.002 pmid: 24593982 |
[61] |
Kong N. C., Kaneshiro B., Yamins D. L., & Norcia A. M. (2020). Time-resolved correspondences between deep neural network layers and EEG measurements in object processing. Vision Research, 172, 27-45.
doi: S0042-6989(20)30065-1 pmid: 32388211 |
[62] |
Kriegeskorte N. (2011). Pattern-information analysis: From stimulus decoding to computational-model testing. Neuroimage, 56(2), 411-421.
doi: 10.1016/j.neuroimage.2011.01.061 pmid: 21281719 |
[63] |
Kriegeskorte N., & Diedrichsen J. (2019). Peeling the onion of brain representations. Annual Review of Neuroscience, 42, 407-432.
doi: 10.1146/annurev-neuro-080317-061906 pmid: 31283895 |
[64] |
Kriegeskorte N., & Kievit R. A. (2013). Representational geometry: Integrating cognition, computation, and the brain. Trends in Cognitive Sciences, 17(8), 401-412.
doi: 10.1016/j.tics.2013.06.007 pmid: 23876494 |
[65] |
Kriegeskorte N., Mur M., & Bandettini P. A. (2008). Representational similarity analysis-connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 4.
doi: 10.3389/neuro.06.004.2008 pmid: 19104670 |
[66] |
Kriegeskorte N., Mur M., Ruff D. A., Kiani R., Bodurka J., Esteky H.,... Bandettini P. A. (2008). Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron, 60(6), 1126-1141.
doi: 10.1016/j.neuron.2008.10.043 pmid: 19109916 |
[67] |
Kriegeskorte N., & Wei X. X. (2021). Neural tuning and representational geometry. Nature Reviews Neuroscience, 22(11), 703-718.
doi: 10.1038/s41583-021-00502-3 pmid: 34522043 |
[68] |
Lemm S., Blankertz B., Dickhaus T., & Müller K. R. (2011). Introduction to machine learning for brain imaging. Neuroimage, 56(2), 387-399.
doi: 10.1016/j.neuroimage.2010.11.004 pmid: 21172442 |
[69] |
Linde-Domingo J., Treder M. S., Kerrén C., & Wimber M. (2019). Evidence that neural information flow is reversed between object perception and object reconstruction from memory. Nature Communications, 10(1), 1-13.
doi: 10.1038/s41467-018-07882-8 URL |
[70] | Lu Z. (2020). PyCTRSA: A Python package for cross-temporal representational similarity analysis-based E/MEG decoding. Retrieved April 23, 2022, from http://doi.org/10.5281/zenodo.4273674 |
[71] |
Lu Z., & Ku Y. (2020). Neurora: A python toolbox of representational analysis from multi-modal neural data. Frontiers in Neuroinformatics, 14, 563669.
doi: 10.3389/fninf.2020.563669 URL |
[72] | Luck S. J. (2014). An introduction to the event-related potential technique. Cambridge: MIT press. |
[73] |
Maris E., & Oostenveld R. (2007). Nonparametric statistical testing of EEG-and MEG-data. Journal of Neuroscience Methods, 164(1), 177-190.
doi: 10.1016/j.jneumeth.2007.03.024 pmid: 17517438 |
[74] |
Michel C. M., Murray M. M., Lantz G., Gonzalez S., Spinelli L., & de Peralta R. G. (2004). EEG source imaging. Clinical Neurophysiology, 115(10), 2195-2222.
doi: 10.1016/j.clinph.2004.06.001 pmid: 15351361 |
[75] |
Misaki M., Kim Y., Bandettini P. A., & Kriegeskorte N. (2010). Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. Neuroimage, 53(1), 103-118.
doi: 10.1016/j.neuroimage.2010.05.051 pmid: 20580933 |
[76] |
Mur M., Meys M., Bodurka J., Goebel R., Bandettini P. A., & Kriegeskorte N. (2013). Human object-similarity judgments reflect and transcend the primate-IT object representation. Frontiers in Psychology, 4, 128.
doi: 10.3389/fpsyg.2013.00128 pmid: 23525516 |
[77] | Nili H., Wingfield C., Walther A., Su L., Marslen-Wilson W., & Kriegeskorte N. (2014). A toolbox for representational similarity analysis. PLoS Computational Biology, 10(4), e1003553. |
[78] |
Norman K. A., Polyn S. M., Detre G. J., & Haxby J. V. (2006). Beyond mind-reading: Multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424-430.
doi: 10.1016/j.tics.2006.07.005 pmid: 16899397 |
[79] |
Oosterhof N. N., Connolly A. C., & Haxby J. V. (2016). CoSMoMVPA: Multi-modal multivariate pattern analysis of neuroimaging data in Matlab/GNU Octave. Frontiers in Neuroinformatics, 10, 27.
doi: 10.3389/fninf.2016.00027 pmid: 27499741 |
[80] |
Pantazis D., Fang M., Qin S., Mohsenzadeh Y., Li Q., & Cichy R. M. (2018). Decoding the orientation of contrast edges from MEG evoked and induced responses. NeuroImage, 180, 267-279.
doi: S1053-8119(17)30590-6 pmid: 28712993 |
[81] | Pereira F., Mitchell T., & Botvinick M. (2009). Machine learning classifiers and fMRI: A tutorial overview. Neuroimage, 45(1), S199-S209. |
[82] |
Popal H., Wang Y., & Olson I. R. (2019). A guide to representational similarity analysis for social neuroscience. Social Cognitive and Affective Neuroscience, 14(11), 1243-1253.
doi: 10.1093/scan/nsz099 pmid: 31989169 |
[83] | Qu Z., Hillyard S. A., & Ding Y. (2017). Perceptual learning induces persistent attentional capture by nonsalient shapes. Cerebral Cortex, 27(2), 1512-1523. |
[84] |
Qu Z., Wang Y., Zhen Y., Hu L., Song Y., & Ding Y. (2014). Brain mechanisms underlying behavioral specificity and generalization of short-term texture discrimination learning. Vision Research, 105, 166-176.
pmid: 25449163 |
[85] |
Redcay E., & Carlson T. A. (2015). Rapid neural discrimination of communicative gestures. Social Cognitive and Affective Neuroscience, 10(4), 545-551.
doi: 10.1093/scan/nsu089 pmid: 24958087 |
[86] |
Ritchie J. B., Bracci S., & de Beeck H. O. (2017). Avoiding illusory effects in representational similarity analysis: What (not) to do with the diagonal. NeuroImage, 148, 197-200.
doi: S1053-8119(16)30805-9 pmid: 28069538 |
[87] |
Robinson A. K., Grootswagers T., & Carlson T. A. (2019). The influence of image masking on object representations during rapid serial visual presentation. NeuroImage, 197, 224-231.
doi: S1053-8119(19)30336-2 pmid: 31009746 |
[88] |
Ronconi L., Oosterhof N. N., Bonmassar C., & Melcher D. (2017). Multiple oscillatory rhythms determine the temporal organization of perception. Proceedings of the National Academy of Sciences, 114(51), 13435-13440.
doi: 10.1073/pnas.1714522114 URL |
[89] |
Rouder J. N., Speckman P. L., Sun D., Morey R. D., & Iverson G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225-237.
doi: 10.3758/PBR.16.2.225 URL |
[90] | Sandhaeger F., von Nicolai C., Miller E. K., & Siegel M. (2019). Monkey EEG links neuronal color and motion information across species and scales. Elife, 8, e45645. |
[91] | Sankaran N., Thompson W. F., Carlile S., & Carlson T. A. (2018). Decoding the dynamic representation of musical pitch from human brain activity. Scientific Reports, 8(1), 1-9. |
[92] |
Sato M. A., Yoshioka T., Kajihara S., Toyama K., Goda N., Doya K., & Kawato M. (2004). Hierarchical Bayesian estimation for MEG inverse problem. NeuroImage, 23(3), 806-826.
doi: 10.1016/j.neuroimage.2004.06.037 URL |
[93] | Sato M., Yamashita O., Sato M. A., & Miyawaki Y. (2018). Information spreading by a combination of MEG source estimation and multivariate pattern classification. PloS ONE, 13(6), e0198806. |
[94] | Scrivener C. L. (2021). When is simultaneous recording necessary? A guide for researchers considering combined EEG-fMRI. Frontiers in Neuroscience, 15, 774. |
[95] |
Sprague T. C., Saproo S., & Serences J. T. (2015). Visual attention mitigates information loss in small-and large-scale neural codes. Trends in Cognitive Sciences, 19(4), 215-226.
doi: 10.1016/j.tics.2015.02.005 pmid: 25769502 |
[96] |
Teichmann L., Grootswagers T., Carlson T., & Rich A. N. (2018). Decoding digits and dice with magnetoencephalography: Evidence for a shared representation of magnitude. Journal of Cognitive Neuroscience, 30(7), 999-1010.
doi: 10.1162/jocn_a_01257 pmid: 29561240 |
[97] |
Teichmann L., Quek G. L., Robinson A. K., Grootswagers T., Carlson T. A., & Rich A. N. (2020). The influence of object-color knowledge on emerging object representations in the brain. Journal of Neuroscience, 40(35), 6779-6789.
doi: 10.1523/JNEUROSCI.0158-20.2020 pmid: 32703903 |
[98] | Torgerson W. S. (1958). Theory and methods of scaling. New York: Wiley. |
[99] |
Treder M. S. (2020). MVPA-Light: A classification and regression toolbox for multi-dimensional data. Frontiers in Neuroscience, 14, 289.
doi: 10.3389/fnins.2020.00289 pmid: 32581662 |
[100] |
Tucciarelli R., Turella L., Oosterhof N. N., Weisz N., & Lingnau A. (2015). MEG multivariate analysis reveals early abstract action representations in the lateral occipitotemporal cortex. Journal of Neuroscience, 35(49), 16034-16045.
doi: 10.1523/JNEUROSCI.1422-15.2015 pmid: 26658857 |
[101] | Tuckute G., Hansen S. T., Pedersen N., Steenstrup D., & Hansen L. K. (2019). Single-trial decoding of scalp EEG under natural conditions. Computational Intelligence and Neuroscience, 2019, 9210785. |
[102] | van der Maaten L., & Hinton G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(11), 2579-2605. |
[103] |
Wagenmakers E. J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14(5), 779-804.
doi: 10.3758/BF03194105 URL |
[104] |
Walther A., Nili H., Ejaz N., Alink A., Kriegeskorte N., & Diedrichsen J. (2016). Reliability of dissimilarity measures for multi-voxel pattern analysis. Neuroimage, 137, 188-200.
doi: S1053-8119(15)01125-8 pmid: 26707889 |
[105] |
Wandell B. A., & Winawer J. (2015). Computational neuroimaging and population receptive fields. Trends in Cognitive Sciences, 19(6), 349-357.
doi: 10.1016/j.tics.2015.03.009 pmid: 25850730 |
[106] | Wang X., Xu Y., Wang Y., Zeng Y., Zhang J., Ling Z., & Bi Y. (2018). Representational similarity analysis reveals task-dependent semantic influence of the visual word form area. Scientific Reports, 8(1), 1-10. |
[107] |
Wardle S. G., Kriegeskorte N., Grootswagers T., Khaligh- Razavi S. M., & Carlson T. A. (2016). Perceptual similarity of visual patterns predicts dynamic neural activation patterns measured with MEG. Neuroimage, 132, 59-70.
doi: S1053-8119(16)00126-9 pmid: 26899210 |
[108] |
Weaverdyck M. E., Lieberman M. D., & Parkinson C. (2020). Tools of the Trade Multivoxel pattern analysis in fMRI: A practical introduction for social and affective neuroscientists. Social Cognitive and Affective Neuroscience, 15(4), 487-509.
doi: 10.1093/scan/nsaa057 pmid: 32364607 |
[109] |
Xie S., Kaiser D., & Cichy R. M. (2020). Visual imagery and perception share neural representations in the alpha frequency band. Current Biology, 30(13), 2621-2627.
doi: S0960-9822(20)30590-X pmid: 32531274 |
[1] | FANG Junyan, WEN Zhonglin. The endogeneity issue in longitudinal research: Sources and solutions [J]. Advances in Psychological Science, 2023, 31(4): 507-518. |
[2] | HUANG Shunsen, CHEN Haojie, LAI Xiaoxiong, DAI Xinran, WANG Yun. Multiverse-style analysis: Introduction and application [J]. Advances in Psychological Science, 2023, 31(2): 196-208. |
[3] | BAO Han-Wu-Shuang, WANG Zi-Xi, CHENG Xi, SU Zhan, YANG Ying, ZHANG Guang-Yao, WANG Bo, CAI Hua-Jian. Using word embeddings to investigate human psychology: Methods and applications [J]. Advances in Psychological Science, 0, (): 0-0. |
[4] | ZHU Xun, GU Xin. Evaluation of predictors’ relative importance: Methods and applications [J]. Advances in Psychological Science, 2023, 31(1): 145-158. |
[5] | FANG Jie, WEN Zhonglin. Moderation analysis for longitudinal data [J]. Advances in Psychological Science, 2022, 30(11): 2461-2472. |
[6] | ZHAI Hongkun, LI Qiang, WEI Xiaowei. Power analysis in structural equation modeling: Principles and methods [J]. Advances in Psychological Science, 2022, 30(9): 2117-2130. |
[7] | WANG Yang, WEN Zhonglin, WANG Huihui, GUAN Fang. The second type of mediated moderation [J]. Advances in Psychological Science, 2022, 30(9): 2131-2142. |
[8] | WEN Zhonglin, XIE Jinyan, FANG Jie, WANG Yifan. Methodological research on hypothesis test and related issues in China’s mainland from 2001 to 2020 [J]. Advances in Psychological Science, 2022, 30(8): 1667-1681. |
[9] | WEN Zhonglin, CHEN Hongxi, FANG Jie, YE Baojuan, CAI Baozhen. Research on test reliability in China’s mainland from 2001 to 2020 [J]. Advances in Psychological Science, 2022, 30(8): 1682-1691. |
[10] | WEN Zhonglin, FANG Jie, XIE Jinyan, OUYANG Jinying. Methodological research on mediation effects in China’s mainland [J]. Advances in Psychological Science, 2022, 30(8): 1692-1702. |
[11] | FANG Jie, WEN Zhonglin, OUYANG Jinying, CAI Baozhen. Methodological research on moderation effects in China’s mainland [J]. Advances in Psychological Science, 2022, 30(8): 1703-1714. |
[12] | WANG Yang, WEN Zhonglin, LI Wei, FANG Jie. Methodological research and model development on structural equation models in China’s mainland from 2001 to 2020 [J]. Advances in Psychological Science, 2022, 30(8): 1715-1733. |
[13] | LIU Yuan, DU Hongyan, FANG Jie, WEN Zhonglin. Methodology study and model development for analyzing longitudinal data in China’s mainland [J]. Advances in Psychological Science, 2022, 30(8): 1734-1746. |
[14] | LIN Jiao-Min, LI Ai-Mei, ZHOU Ya-Ran, HE Jun-Hong, ZHOU Lei. The prospect of gaze manipulation technology in decision-making research: Altering decision-making [J]. Advances in Psychological Science, 2022, 30(8): 1794-1803. |
[15] | WEI Xuhua, WANG Guangwei, CHEN Yi. Manipulation checks in the managerial psychology experiment in China: Current status, problems, and suggestions [J]. Advances in Psychological Science, 2022, 30(6): 1367-1376. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||