Advances in Psychological Science ›› 2020, Vol. 28 ›› Issue (2): 266-274.doi: 10.3724/SP.J.1042.2020.00266
• Regular Articles • Previous Articles Next Articles
DONG Jianyu, WEI Wenqi, WU Ke, NI Na, WANG Canfei, FU Ying, PENG Xin()
Received:
2019-04-16
Online:
2020-02-15
Published:
2019-12-25
Contact:
PENG Xin
E-mail:pengxin2016@163.com
CLC Number:
DONG Jianyu, WEI Wenqi, WU Ke, NI Na, WANG Canfei, FU Ying, PENG Xin. The application of machine learning in depression[J]. Advances in Psychological Science, 2020, 28(2): 266-274.
比较内容 | 传统机器学习 | 深度学习 |
---|---|---|
主要算法 | 支持向量机、支持向量机、随机森林、K-近邻算法、浅层人工神经网络… | 卷积神经网络、自动编码器、循环神经网络、置信神经网络… |
人工提取特征 | 需要 | 不需要, 自动抽取特征 |
数据集 | 较小 | 大 |
硬件需求 | 一般 | 高 |
训练时间 | 较短 | 长 |
解释性 | 良好 | 差 |
拟合能力 | 一般 | 很强 |
比较内容 | 传统机器学习 | 深度学习 |
---|---|---|
主要算法 | 支持向量机、支持向量机、随机森林、K-近邻算法、浅层人工神经网络… | 卷积神经网络、自动编码器、循环神经网络、置信神经网络… |
人工提取特征 | 需要 | 不需要, 自动抽取特征 |
数据集 | 较小 | 大 |
硬件需求 | 一般 | 高 |
训练时间 | 较短 | 长 |
解释性 | 良好 | 差 |
拟合能力 | 一般 | 很强 |
[1] | 靳宇倡, 丁美月 . ( 2017). 产后抑郁的预测因素及神经生理机制. 心理科学进展, 25( 7), 1145-1161. |
[2] | 康环宇 . ( 2018). 抑郁人群语音信号时间特征研究(硕士学位论文). 兰州大学, 兰州. |
[3] | 李建秀 . ( 2018). 基于抑郁症患者ERP数据的源定位及分类算法研究(硕士学位论文). 兰州大学, 兰州. |
[4] | 刘岩, 李幼军, 陈萌 . ( 2017). 基于固有模态分解和深度学习的抑郁症脑电信号分类分析. 中国医学物理学杂志, 34( 09), 963-967. |
[5] | 罗晓舟, 温小鹏, 何家扬, 黄健婷, 唐纯志 . ( 2017). 基于机器学习的卒中后抑郁影响因素分析. 中医杂志, 58( 17), 1478-1481. |
[6] | 吕瑞雪 . ( 2014). 围产期抑郁症量化诊断系统的研发(硕士学位论文). 华南理工大学, 广州. |
[7] | 马丽明, 黄昊 . ( 2016). 医疗信息人才的培养模式研究. 中国数字医学, 11(10), 74-75+97. |
[8] | 任志洪, 李献云, 赵陵波, 余香莲, 李政汉, 赖丽足, … 江光荣 . ( 2016). 抑郁症网络化自助干预的效果及作用机制——以汉化MoodGYM为例. 心理学报, 48( 07), 818-832. |
[9] | 沈骥 . ( 2015). 基于眼动、脑电特征的抑郁识别研究(硕士学位论文). 兰州大学, 兰州. |
[10] | 于斌, 牛凯军 . ( 2015). 膳食营养与抑郁症的关系. 心理科学进展, 23( 12), 2107-2117. |
[11] | 周爱保, 鲁小勇, 吴文意, 徐世鹏 . ( 2017). 采用语音的抑郁症诊断研究述评. 小型微型计算机系统, 38( 11), 2619-2624. |
[12] | Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adeli, H., & Subha, D. P . ( 2018). Automated EEG-based screening of depression using deep convolutional neural network. Computer Methods and Programs in Biomedicine, 161, 103-113. |
[13] | American Psychiatric Association. ( 2013). Diagnostic and statistical manual of mental disorders (DSM-5®). New York: American Psychiatric Pub. |
[14] | Bailey, N. W., Hoy, K. E., Rogasch, N. C., Thomson, R. H., McQueen, S., Elliot, D., … Fitzgerald, P. B . ( 2019). Differentiating responders and non-responders to rTMS treatment for depression after one week using resting EEG connectivity measures. Journal of Affective Disorders, 242, 68-79. |
[15] | Brundtland, G. H . ( 2001). Mental health: New understanding, new hope. JAMA - Journal of the American Medical Association, 286( 19), 2391-2391. |
[16] | Cabitza, F., & Banfi, G . ( 2018). Machine learning in laboratory medicine: Waiting for the flood? Clinical Chemistry and Laboratory Medicine, 56( 4), 516-524. |
[17] | Chekroud, A. M., Zotti, R. J., Shehzad, Z., Gueorguieva, R., Johnson, M. K., Trivedi, M. H., … Corlett, P. R . ( 2016). Cross-trial prediction of treatment outcome in depression: A machine learning approach. Lancet Psychiatry, 3( 3), 243-250. |
[18] | Dipnall, J. F., Pasco, J. A., Berk, M., Williams, L. J., Dodd, S., Jacka, F. N., & Meyer, D . ( 2016). Into the bowels of depression: Unravelling medical symptoms associated with depression by applying machine-learning techniques to a community based population sample. Plos One, 11( 12), e0167055. |
[19] | Enshaeifar, S., Zoha, A., Markides, A., Skillman, S., Acton, S. T., Elsaleh, T., … Barnaghi, P . ( 2018). Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques. Plos One, 13( 5), e0195605. |
[20] | Fatima, I., Mukhtar, H., Ahmad, H. F., & Rajpoot, K . ( 2018). Analysis of user-generated content from online social communities to characterise and predict depression degree. Journal of Information Science, 44( 5), 683-695. |
[21] | Foster, S., Mohler-Kuo, M., Tay, L., Hothorn, T., & Seibold, H . ( 2019). Estimating patient-specific treatment advantages in the “Treatment for adolescents with depression study”. Journal of Psychiatric Research, 112, 61-70. |
[22] | Fu, M. R., Wang, Y., Li, C., Qiu, Z., Axelrod, D., Guth, A. A., … Cheung, Y. K . ( 2018). Machine learning for detection of lymphedema among breast cancer survivors. mHealth, 4, 17-17. |
[23] | Gao, S., Calhoun, V. D., & Sui, J . ( 2018). Machine learning in major depression: From classification to treatment outcome prediction. CNS Neuroscience & Therapeutics, 24( 11), 1037-1052. |
[24] | Garcia-Ceja, E., Riegler, M., Nordgreen, T., Jakobsen, P., Oedegaard, K. J., & Torresen, J . ( 2018). Mental health monitoring with multimodal sensing and machine learning: A survey. Pervasive and Mobile Computing, 51, 1-26. |
[25] | Gold, P. W., Machado-Vieira, R., & Pavlatou, M. G . ( 2015). Clinical and biochemical manifestations of depression: Relation to the neurobiology of stress. Neural Plasticity, 2015, 581976. |
[26] | Hasanzadeh, F., Mohebbi, M., & Rostami, R . ( 2019). Prediction of rTMS treatment response in major depressive disorder using machine learning techniques and nonlinear features of EEG signal. Journal of Affective Disorders, 256, 132-142. |
[27] | He, L., & Cao, C . ( 2018). Automated depression analysis using convolutional neural networks from speech. Journal of Biomedical Informatics, 83, 103-111. |
[28] | Helbich, M., Yao, Y., Liu, Y., Zhang, J., Liu, P., & Wang, R . ( 2019). Using deep learning to examine street view green and blue spaces and their associations with geriatric depression in Beijing, China. Environment International, 126, 107-117. |
[29] | Hilbert, K., Lueken, U., Muehlhan, M., & Beesdo-Baum, K . ( 2017). Separating generalized anxiety disorder from major depression using clinical, hormonal, and structural MRI data: A multimodal machine learning study. Brain and Behavior, 7( 3), e00633. |
[30] | Hollon, S. D., Cohen, Z. D., Singla, D. R., & Andrews, P. W . ( 2019). Recent developments in the treatment of depression. Behavior Therapy, 50( 2), 257-269. |
[31] | Islam, M. R., Kabir, M. A., Ahmed, A., Kamal, A. M., Wang, H., & Ulhaq, A . ( 2018). Depression detection from social network data using machine learning techniques. Health Information Science and Systems, 6, 8. |
[32] | Jimenez-Serrano, S., Tortajada, S., & Miguel Garcia-Gomez, J . ( 2015). A mobile health application to predict postpartum depression based on machine learning. Telemedicine and e-Health, 21( 7), 567-574. |
[33] | Kantoch, E . ( 2018). Recognition of sedentary behavior by machine learning analysis of wearable sensors during activities of daily living for telemedical assessment of cardiovascular risk. Sensors, 18( 10), 3219. |
[34] | Karhade, A.V., Ogink, P. T., Thio, Q. C. B. S., Cha, T. D., Gormley, W. B., Hershman, S. H., … Schwab, J. H . ( 2019). Development of machine learning algorithms for prediction of prolonged opioid prescription after surgery for lumbar disc herniation. The Spine Journal. doi: 10.1016/j.spinee.2019.06.002. |
[35] | Kolossvary, M., de Cecco, C. N., Feuchtner, G., & Maurovich-Horvat, P . ( 2019). Advanced atherosclerosis imaging by CT: Radiomics, machine learning and deep learning. Journal of Cardiovascular Computed Tomography. doi: 10.1016/j. jcct.2019.04.007. |
[36] | Lee, Y., Ragguett, R. M., Mansur, R. B., Boutilier, J. J., Rosenblat, J. D., Trevizol, A., … McIntyre, R. S . ( 2018). Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review. Journal of Affective Disorders, 241, 519-532. |
[37] | Li, X., La, R., Wang, Y., Niu, J., Zeng, S., Sun, S., & Zhu, J . ( 2019). EEG-based mild depression recognition using convolutional neural network. Medical & Biological Engineering & Computing, 57( 6), 1341-1352. |
[38] | Lin, E., Kuo, P.-H., Liu, Y.-L., Yu, Y. W.-Y., Yang, A. C., & Tsai, S.-J . ( 2018). A deep learning approach for predicting antidepressant response in major depression using clinical and genetic biomarkers. Frontiers in Psychiatry, 9, 290. |
[39] | Lundervold, A.S. & Lundervold, A . ( 2019). An overview of deep learning in medical imaging focusing on MRI. Zeitschrift fur Medizinische Physik, 29( 2), 102-127. |
[40] | Marinelarena-Dondena, L., Ferretti, E., Maragoudakis, M., Sapino, M., & Errecalde, M. L . ( 2017). Predicting depression: A comparative study of machine learning approaches based on language usage. Cuadernos De Neuropsicologia-Panamerican Journal of Neuropsychology, 11( 3), 42-54. |
[41] | McGinnis, R. S., McGinnis, E. W., Hruschak, J., Lopez- Duran, N. L., Fitzgerald, K., Rosenblum, K. L., & Muzik, Maria . ( 2018). Rapid anxiety and depression diagnosis in young children enabled by wearable sensors and machine learning. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 3983-3986. |
[42] | Moreira, M. W. L., Rodrigues, J. J. P. C., Kumar, N., Saleem, K., & Illin, I. V . ( 2019). Postpartum depression prediction through pregnancy data analysis for emotion-aware smart systems updates. Information Fusion, 47, 23-31. |
[43] | Mukherjee, H., Obaidullah, S. M., Santosh, K. C., Phadikar, S. & Roy, K . ( 2018). Line spectral frequency-based features and extreme learning machine for voice activity detection from audio signal. International Journal of Speech Technology, 21( 4), 753-760. |
[44] | Mumtaz, W., & Malik, A. S . ( 2018). A comparative study of different EEG reference choices for diagnosing unipolar depression. Brain Topography, 31( 5), 875-885. |
[45] | Patel, M.J., Khalaf, A., & Aizenstein, H.J . ( 2016). Studying depression using imaging and machine learning methods. Neuroimage-Clinical, 10, 115-123. |
[46] | Pearson, R., Pisner, D., Meyer, B., Shumake, J., & Beevers, C. G . ( 2018). A machine learning ensemble to predict treatment outcomes following an Internet intervention for depression. Psychological Medicine. doi: 10.1017/ S003329171800315X. |
[47] | Ricard, B. J., Marsch, L. A., Crosier, B., & Hassanpour, S . ( 2018). Exploring the utility of community-generated social media content for detecting depression: An analytical study on Instagram. Journal of Medical Internet Research, 20( 12), e11817. |
[48] | Sarda, A., Munuswamy, S., Sarda, S., & Subramanian, V . ( 2019). Using passive smartphone sensing for improved risk stratification of patients with depression and diabetes: Cross-sectional observational study. JMIR Mhealth and Uhealth, 7( 1), e11041. |
[49] | Sau, A., & Bhakta, I ., ( 2017a). Artificial neural network (ANN) model to predict depression among geriatric population at a slum in Kolkata, India. Journal of Clinical and Diagnostic Research, 11(5), VC01-VC04. |
[50] | Sau, A, & Bhakta, I . ( 2017b). Predicting anxiety and depression in elderly patients using machine learning technology. Healthcare Technology Letters, 4( 6), 238-243. |
[51] | Senders, J. T., Staples, P. C., Karhade, A. V., Zaki, M. M., Gormley, W. B., Broekman, M. L. D., … Arnaout, O . ( 2018). Machine learning and neurosurgical outcome prediction: A systematic review. World Neurosurgery, 109, 476-486. |
[52] | Wallert, J., Gustafson, E., Held, C., Madison, G., Norlund, F., von Essen, L., & Olsson, E. M. G . ( 2018). Predicting adherence to internet-delivered psychotherapy for symptoms of depression and anxiety after myocardial infarction: Machine learning insights from the U-CARE Heart randomized controlled trial. Journal of Medical Internet Research, 20( 10), e10754. |
[53] | Wu, C., Dillon, D. G., Hsu, H., Huang, S. A., Barrick, E., & Liu, Y. H . ( 2018). Depression detection using relative EEG power induced by emotionally positive images and a conformal kernel support vector machine. Applied Sciences-Basel, 8( 8), 1244. |
[54] | Zhao, K. & So, H . ( 2019). Drug repositioning for schizophrenia and depression/anxiety disorders: A machine learning approach leveraging expression data. IEEE Journal of Biomedical and Health Informatics, 23( 3), 1304-1315. |
[55] | Zheng, H., Zheng, P., Zhao, L., Jia, J., Tang, S., Xu, P., … Gao, H . ( 2017). Predictive diagnosis of major depression using NMR-based metabolomics and least-squares support vector machine. Clinica Chimica Acta, 464, 223-227. |
[56] | Zilcha-Mano, S., Roose, S. P., Brown, P. J., & Rutherford, B. R . ( 2018). A machine learning approach to identifying placebo responders in late-life depression trials. American Journal of Geriatric Psychiatry, 26( 6), 669-677. |
[1] | ZHANG Kaili, ZHENG Hong, WANG Fengyan. “One prelude” and “two movements”: A portrayal of the research process of wisdom psychology in the past 50 years [J]. Advances in Psychological Science, 2023, 31(5): 721-735. |
[2] | LIU Wenhua, WEN Xiujuan, CHEN Ling, YANG Rui, HU Yiru. Reward-anticipation and outcome-evaluation ERPs and its application in psychiatric disorders [J]. Advances in Psychological Science, 2023, 31(5): 783-799. |
[3] | FANG Junyan, WEN Zhonglin. The endogeneity issue in longitudinal research: Sources and solutions [J]. Advances in Psychological Science, 2023, 31(4): 507-518. |
[4] | GUO Li, JIA Suosuo, LI Guiquan, LI Manlin. Lonely at the top? Exploring the multi-level double-edged sword effect of leader workplace loneliness [J]. Advances in Psychological Science, 2023, 31(4): 582-596. |
[5] | YU Jie, CHEN Youguo. Spatiotemporal interference effect: An explanation based on Bayesian models [J]. Advances in Psychological Science, 2023, 31(4): 597-607. |
[6] | LIU Wenbin, QI Zhengtang, LIU Weina. The effects of different sensory functions on depression and its neuromechanism [J]. Advances in Psychological Science, 2023, 31(4): 641-656. |
[7] | YAN Lei, YUAN Yiren, WANG Juan, ZHANG Yanhong, YANG Linchuan. The influence of social identity on depression and its theoretical explanation [J]. Advances in Psychological Science, 2023, 31(4): 657-668. |
[8] | FENG Tingyong, ZHANG Biying. The cognitive neural model of procrastination and related interventions [J]. Advances in Psychological Science, 2023, 31(3): 350-360. |
[9] | SUN Hui, XU Jie. Prompt reply: Workplace telepressure in the information and communications technology (ICT) era [J]. Advances in Psychological Science, 2023, 31(3): 467-479. |
[10] | CHEN Xinwen, LI Hongjie, DING Yulong. Exploring the neural representation patterns in event-related EEG/MEG signals: The methods based on classification decoding and representation similarity analysis [J]. Advances in Psychological Science, 2023, 31(2): 173-195. |
[11] | WAN Jin, ZHOU Wenjun, ZHOU Haiming, LI Pingping, SHI Kan. The impact of psychological detachment on work engagement: Promotion or inhibition? [J]. Advances in Psychological Science, 2023, 31(2): 209-222. |
[12] | XIE Caifeng, WU Jiahua, XU Liying, YU Feng, ZHAND Yuyan, XIE Yingying. The process motivation model of algorithmic decision-making approach and avoidance [J]. Advances in Psychological Science, 2023, 31(1): 60-77. |
[13] | XIAO Tingwei, DONG Jie, LIANG Fei, WANG Fushun, LI Yang. The relationship between disgust and suicidal behavior [J]. Advances in Psychological Science, 2023, 31(1): 87-98. |
[14] | DU Yufei, OUYANG Huiyue, YU Lin. The relationship between grandparenting and depression in Eastern and Western cultures: A meta-analysis [J]. Advances in Psychological Science, 2022, 30(9): 1981-1992. |
[15] | ZHAI Hongkun, LI Qiang, WEI Xiaowei. Power analysis in structural equation modeling: Principles and methods [J]. Advances in Psychological Science, 2022, 30(9): 2117-2130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||