Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (4): 597-607.doi: 10.3724/SP.J.1042.2023.00597
• Regular Articles • Previous Articles Next Articles
Received:
2022-05-16
Online:
2023-04-15
Published:
2022-12-30
Contact:
CHEN Youguo
E-mail:cyg1001@swu.edu.cn
CLC Number:
YU Jie, CHEN Youguo. Spatiotemporal interference effect: An explanation based on Bayesian models[J]. Advances in Psychological Science, 2023, 31(4): 597-607.
研究 | 贝叶斯模型及 解释范围 | 时空信息及 感觉通道 | 先验 | 似然性 | 后验 | 解释时空干扰效应 |
---|---|---|---|---|---|---|
Goldreich, Goldreich & Tong, | 慢速度贝叶斯模型; 用于解释时空干扰效应中的触觉Tau效应和Kappa效应 | 空间:触觉; 皮肤上两次刺激间的距离 时间:触觉; 皮肤上两次刺激间的时距 | 慢速度先验:均值为0, 标准差为σv的高斯分布 | 通过触觉登入的两次刺激位置间距离的神经信号, 以及两次触击时间点的神经信号整合在一起形成的时空联合似然性分布 | 慢速度先验与触觉神经信号的整合 | 在慢速度先验概率分布不变的前提下, 刺激皮肤位置的空间知觉精确度越低(如前臂), 神经信号的变异性越大, 知觉到的距离(时距)越依赖于慢速度先验, 表现出Tau效应(Kappa效应)越强。 |
Chen et al., | 恒定速度贝叶斯模型; 用于解释时空干扰效应中的视觉Kappa效应 | 空间:视觉; 相继呈现的小圆构成的距离 时间:视觉; 相继呈现的小圆构成的时距 | 期望时距的概率分布, 小圆以恒定速度从第一个位置移向第二个位置, 期望时距的均值为两个小圆的距离与恒定速度之商 | 物理时距通过感觉加工后线性转化为心理时距的概率分布 | 期望时距的概率分布与时距似然性的整合 | 知觉到的时距受先验中期望时距(距离与速度之商)的影响, 随着两个小圆间距离的增大而增大; 对数版恒定速度贝叶斯模型拟合被试数据的能力比恒定速度贝叶斯模型好, 且能预测Kappa效应随间隔距离逐渐增大而出现增速减缓的现象。 |
Chen et al., | 对数版恒定速度贝叶斯模型; 用于解释时空干扰效应中的视觉Kappa效应 | 物理时距通过韦伯−费希纳定律按照对数尺度转化为心理时距的概率分布 | ||||
Lambrechts et al., Martin et al., | 基于量值理论的贝叶斯模型; 理论上能用于解释普遍范围的时空干扰效应 | 空间:视觉; 平面上逐步呈现大小不一的圆累计构成的面积 时间:视觉; 呈现第一个圆到最后一个圆构成的时距 | 假设对时间、空间等量值的估计会受其他维度量值的影响(如:对时间量值的估计会随空间量值的增加而增加) | 时间、空间等量值信息输入大脑后储存在顶叶的神经表征 | 先验分布和时间、空间的量值的神经表征的整合 | 时间或空间的量值信息输入大脑后的表征噪声越大(似然性分布变异性越大), 知觉到的量值将越依赖于先验分布, 出现越大的估计偏差。 |
Cai et al., | 维度共变贝叶斯模型; 理论上能用于解释普遍范围的时空干扰效应 | 空间:视觉; 直线的长度或两根竖线构成的距离 时间:视觉; 直线或竖线呈现的时长 | 假设时空之间存在正向共变的先验关系(如:更长的距离通常需要更长的时间到达) | 时间和空间信息的工作记忆表征 | 共变先验分布与时间、空间信息的工作记忆表征的整合 | 跨维度干扰的程度和方向取决于各个维度在工作记忆中的相对噪声大小, 记忆噪声小的维度能对另一维度产生更强的干扰。 |
研究 | 贝叶斯模型及 解释范围 | 时空信息及 感觉通道 | 先验 | 似然性 | 后验 | 解释时空干扰效应 |
---|---|---|---|---|---|---|
Goldreich, Goldreich & Tong, | 慢速度贝叶斯模型; 用于解释时空干扰效应中的触觉Tau效应和Kappa效应 | 空间:触觉; 皮肤上两次刺激间的距离 时间:触觉; 皮肤上两次刺激间的时距 | 慢速度先验:均值为0, 标准差为σv的高斯分布 | 通过触觉登入的两次刺激位置间距离的神经信号, 以及两次触击时间点的神经信号整合在一起形成的时空联合似然性分布 | 慢速度先验与触觉神经信号的整合 | 在慢速度先验概率分布不变的前提下, 刺激皮肤位置的空间知觉精确度越低(如前臂), 神经信号的变异性越大, 知觉到的距离(时距)越依赖于慢速度先验, 表现出Tau效应(Kappa效应)越强。 |
Chen et al., | 恒定速度贝叶斯模型; 用于解释时空干扰效应中的视觉Kappa效应 | 空间:视觉; 相继呈现的小圆构成的距离 时间:视觉; 相继呈现的小圆构成的时距 | 期望时距的概率分布, 小圆以恒定速度从第一个位置移向第二个位置, 期望时距的均值为两个小圆的距离与恒定速度之商 | 物理时距通过感觉加工后线性转化为心理时距的概率分布 | 期望时距的概率分布与时距似然性的整合 | 知觉到的时距受先验中期望时距(距离与速度之商)的影响, 随着两个小圆间距离的增大而增大; 对数版恒定速度贝叶斯模型拟合被试数据的能力比恒定速度贝叶斯模型好, 且能预测Kappa效应随间隔距离逐渐增大而出现增速减缓的现象。 |
Chen et al., | 对数版恒定速度贝叶斯模型; 用于解释时空干扰效应中的视觉Kappa效应 | 物理时距通过韦伯−费希纳定律按照对数尺度转化为心理时距的概率分布 | ||||
Lambrechts et al., Martin et al., | 基于量值理论的贝叶斯模型; 理论上能用于解释普遍范围的时空干扰效应 | 空间:视觉; 平面上逐步呈现大小不一的圆累计构成的面积 时间:视觉; 呈现第一个圆到最后一个圆构成的时距 | 假设对时间、空间等量值的估计会受其他维度量值的影响(如:对时间量值的估计会随空间量值的增加而增加) | 时间、空间等量值信息输入大脑后储存在顶叶的神经表征 | 先验分布和时间、空间的量值的神经表征的整合 | 时间或空间的量值信息输入大脑后的表征噪声越大(似然性分布变异性越大), 知觉到的量值将越依赖于先验分布, 出现越大的估计偏差。 |
Cai et al., | 维度共变贝叶斯模型; 理论上能用于解释普遍范围的时空干扰效应 | 空间:视觉; 直线的长度或两根竖线构成的距离 时间:视觉; 直线或竖线呈现的时长 | 假设时空之间存在正向共变的先验关系(如:更长的距离通常需要更长的时间到达) | 时间和空间信息的工作记忆表征 | 共变先验分布与时间、空间信息的工作记忆表征的整合 | 跨维度干扰的程度和方向取决于各个维度在工作记忆中的相对噪声大小, 记忆噪声小的维度能对另一维度产生更强的干扰。 |
[1] | 毕翠华, 黄希庭. (2011). 非语言情境中时间加工与空间距离加工的关系. 心理科学进展, 19(3), 346-354. |
[2] | 陈亚林, 刘昌. (2013). 人类数字、时间和空间加工的关联性与独立性. 科学通报, 58(25), 2622-2630. |
[3] |
Akaike H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723.
doi: 10.1109/TAC.1974.1100705 URL |
[4] |
Amadeo M. B., Campus C., & Gori M. (2019). Time attracts auditory space representation during development. Behavioural Brain Research, 376, 112185.
doi: 10.1016/j.bbr.2019.112185 |
[5] |
Boroditsky L. (2000). Metaphoric structuring: Understanding time through spatial metaphors. Cognition, 75(1), 1-28.
pmid: 10815775 |
[6] | Bottini R., & Casasanto D. (2013). Space and time in the child's mind: Metaphoric or ATOMic? Frontiers in Psychology, 4, 803. |
[7] |
Bueti D., & Walsh V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B-Biological Sciences, 364(1525), 1831-1840.
doi: 10.1098/rstb.2009.0028 pmid: 19487186 |
[8] |
Cai Z. G., & Connell L. (2015). Space-time interdependence: Evidence against asymmetric mapping between time and space. Cognition, 136, 268-281.
doi: 10.1016/j.cognition.2014.11.039 pmid: 25506776 |
[9] |
Cai Z. G., & Wang R. (2022). Cross-dimensional magnitude interaction is modulated by representational noise: Evidence from space-time interaction. Psychological Research, 86(1), 196-208.
doi: 10.1007/s00426-020-01472-4 |
[10] |
Cai Z. G., Wang R., Shen M., & Speekenbrink M. (2018). Cross-dimensional magnitude interactions arise from memory interference. Cognitive Psychology, 106, 21-42.
doi: S0010-0285(18)30010-0 pmid: 30165241 |
[11] |
Casasanto D., & Boroditsky L. (2008). Time in the mind: Using space to think about time. Cognition, 106(2), 579-593.
pmid: 17509553 |
[12] |
Casasanto D., Fotakopoulou O., & Boroditsky L. (2010). Space and time in the child’s mind: Evidence for a cross-dimensional asymmetry. Cognitive Science, 34(3), 387-405.
doi: 10.1111/j.1551-6709.2010.01094.x pmid: 21564218 |
[13] |
Chen Y., Peng C., & Avitt A. (2021). A unifying Bayesian framework accounting for spatiotemporal interferences with a deceleration tendency. Vision Research, 187, 66-74.
doi: 10.1016/j.visres.2021.06.005 pmid: 34217984 |
[14] | Chen Y., Zhang B., & Kording K. P. (2016). Speed constancy or only slowness: What drives the kappa effect. PloS One, 11(4), e0154013. |
[15] |
Choy E. E. H., & Cheung H. (2017). Linguistic asymmetry, egocentric anchoring, and sensory modality as factors for the observed association between time and space perception. Cognitive Processing, 18(4), 479-490.
doi: 10.1007/s10339-017-0817-6 pmid: 28516394 |
[16] |
Cohen J., Hansel C. E. M., & Sylvester J. D. (1953). A new phenomenon in time judgment. Nature, 172(4385), 901-901.
doi: 10.1038/172901a0 |
[17] |
Collyer C. (1976). The induced asynchrony effect: Its role in visual judgments of temporal order and its relation to other dynamic perceptual phenomena. Perception & Psychophysics, 19(1), 47-54.
doi: 10.3758/BF03199384 URL |
[18] |
Cona G., Wiener M., & Scarpazza C. (2021). From ATOM to GradiATOM: Cortical gradients support time and space processing as revealed by a meta-analysis of neuroimaging studies. Neuroimage, 224, 117407.
doi: 10.1016/j.neuroimage.2020.117407 URL |
[19] |
Cui M., Peng C., Huang M., & Chen Y. (2022). Electrophysiological evidence for a common magnitude representation of spatiotemporal information in working memory. Cerebral Cortex, 32(18), 4068-4079.
doi: 10.1093/cercor/bhab466 URL |
[20] |
de Jong J., Akyurek E. G., & van Rijn H. (2021). A common dynamic prior for time in duration discrimination. Psychonomic Bulletin & Review, 28(4), 1183-1190.
doi: 10.3758/s13423-021-01887-z |
[21] |
Dehaene S., Izard V., Spelke E., & Pica P. (2008). Log or linear? Distinct intuitions of the number scale in Western and Amazonian indigene cultures. Science, 320(5880), 1217-1220.
doi: 10.1126/science.1156540 pmid: 18511690 |
[22] |
Freeman T. C. A., Champion R. A., & Warren P. A. (2010). A Bayesian model of perceived head-centered velocity during smooth pursuit eye movement. Current Biology, 20(8), 757-762.
doi: 10.1016/j.cub.2010.02.059 pmid: 20399096 |
[23] | Goldreich D. (2007). A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions. PloS One, 2(3), e333. |
[24] |
Goldreich D., & Tong J. (2013). Prediction, postdiction, and perceptual length contraction: A Bayesian low-speed prior captures the cutaneous rabbit and related illusions. Frontiers in Psychology, 4, 221.
doi: 10.3389/fpsyg.2013.00221 pmid: 23675360 |
[25] |
Healy A. F., Tack L. A., Schneider V. I., & Barshi I. (2015). Training specificity and transfer in time and distance estimation. Memory & Cognition, 43(5), 736-747.
doi: 10.3758/s13421-015-0503-9 URL |
[26] |
Helson H. (1930). The tau effect—an example of psychological relativity. Science, 71(1847), 536-537.
pmid: 17799065 |
[27] | Henry M. J., & McAuley J. D. (2013). Perceptual distortions in pitch and time reveal active prediction and support for an auditory pitch-motion hypothesis. PloS One, 8(8), e70646. |
[28] |
Homma C. T., & Ashida H. (2015). What makes space-time interactions in human vision asymmetrical? Frontiers in Psychology, 6, 756.
doi: 10.3389/fpsyg.2015.00756 pmid: 26106344 |
[29] |
Homma C. T., & Ashida H. (2019). Temporal cognition can affect spatial cognition more than vice versa: The effect of task-related stimulus saliency. Multisensory Research, 32(1), 25-44.
doi: 10.1163/22134808-20181287 URL |
[30] |
Huang Y. L., & Jones B. (1982). On the interdependence of temporal and spatial judgments. Perception & Psychophysics, 32(1), 7-14.
doi: 10.3758/BF03204862 URL |
[31] |
Jones B., & Huang Y. L. (1982). Space-time dependencies in psychophysical judgment of extent and duration: Algebraic models of the tau and kappa effects. Psychological Bulletin, 91(1), 128-142.
doi: 10.1037/0033-2909.91.1.128 URL |
[32] |
Kolossa A., Kopp B., & Fingscheidt T. (2015). A computational analysis of the neural bases of Bayesian inference. Neuroimage, 106, 222-237.
doi: 10.1016/j.neuroimage.2014.11.007 pmid: 25462794 |
[33] | Kopp B., Seer C., Lange F., Kluytmans A., Kolossa A., Fingscheidt T., & Hoijtink H. (2016). P300 amplitude variations, prior probabilities, and likelihoods: A Bayesian ERP study. Cognitive Affective & Behavioral Neuroscience, 16(5), 911-928. |
[34] |
Körding K. P., & Wolpert D. M. (2006). Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences, 10(7), 319-326.
doi: 10.1016/j.tics.2006.05.003 pmid: 16807063 |
[35] |
Kranjec A., Lehet M., Woods A. J., & Chatterjee A. (2019). Time is not more abstract than space in sound. Frontiers in Psychology, 10, 48.
doi: 10.3389/fpsyg.2019.00048 pmid: 30774606 |
[36] |
Lakshminarasimhan K. J., Petsalis M., Park H., DeAngelis G. C., Pitkow X., & Angelaki D. E. (2018). A dynamic Bayesian observer model reveals origins of bias in visual path integration. Neuron, 99(1), 194-206.e195.
doi: S0896-6273(18)30467-7 pmid: 29937278 |
[37] | Lambrechts A., Walsh V., & van Wassenhove V. (2013). Evidence accumulation in the magnitude system. PloS One, 8(12), e82122. |
[38] |
Loeffler J., Cañal-Bruland R., Schroeger A., Tolentino-Castro J. W., & Raab M. (2018). Interrelations between temporal and spatial cognition: The role of modality-specific processing. Frontiers in Psychology, 9, 2609.
doi: 10.3389/fpsyg.2018.02609 pmid: 30622495 |
[39] |
Magnani B., Oliveri M., & Frassinetti F. (2014). Exploring the reciprocal modulation of time and space in dancers and non-dancers. Experimental Brain Research, 232(10), 3191-3199.
doi: 10.1007/s00221-014-4005-y pmid: 24935476 |
[40] |
Martin B., Wiener M., & van Wassenhove V. (2017). A Bayesian perspective on accumulation in the magnitude system. Scientific Reports, 7(1), 630-630.
doi: 10.1038/s41598-017-00680-0 pmid: 28377631 |
[41] |
Merritt D. J., Casasanto D., & Brannon E. M. (2010). Do monkeys think in metaphors? Representations of space and time in monkeys and humans. Cognition, 117(2), 191-202.
doi: 10.1016/j.cognition.2010.08.011 pmid: 20846645 |
[42] |
Petzschner F. H., Glasauer S., & Stephan K. E. (2015). A Bayesian perspective on magnitude estimation. Trends in Cognitive Sciences, 19(5), 285-293.
doi: 10.1016/j.tics.2015.03.002 pmid: 25843543 |
[43] |
Rammsayer T. H., & Verner M. (2014). The effect of nontemporal stimulus size on perceived duration as assessed by the method of reproduction. Journal of Vision, 14(5), 17-17.
doi: 10.1167/14.5.17 pmid: 24879864 |
[44] | Rammsayer T. H., & Verner M. (2015). Larger visual stimuli are perceived to last longer from time to time: The internal clock is not affected by nontemporal visual stimulus size. Journal of Vision, 15(3), 1-11. |
[45] | Reali F., Lleras M., & Alviar C. (2019). Asymmetrical time and space interference in Tau and Kappa effects. Cogent Psychology, 6(1), 1568069. |
[46] |
Riemer M., Diersch N., Bublatzky F., & Wolbers T. (2016). Space, time, and numbers in the right posterior parietal cortex: Differences between response code associations and congruency effects. Neuroimage, 129, 72-79.
doi: S1053-8119(16)00036-7 pmid: 26808331 |
[47] |
Riemer M., Shine J. P., & Wolbers T. (2018). On the (a)symmetry between the perception of time and space in large-scale environments. Hippocampus, 28(8), 539-548.
doi: 10.1002/hipo.22954 pmid: 29684246 |
[48] |
Schroeger A., Tolentino-Castro J. W., Raab M., & Cañal-Bruland R. (2021). Effects of visual blur and contrast on spatial and temporal precision in manual interception. Experimental Brain Research, 239(11), 3343-3358.
doi: 10.1007/s00221-021-06184-8 pmid: 34480594 |
[49] |
Skagerlund K., Karlsson T., & Traff U. (2016). Magnitude processing in the brain: An fMRI study of time, space, and numerosity as a shared cortical system. Frontiers in Human Neuroscience, 10, 500.
pmid: 27761110 |
[50] |
Snowden R. J., & Kavanagh E. (2006). Motion perception in the ageing visual system: Minimum motion, motion coherence, and speed discrimination thresholds. Perception, 35(1), 9-24.
pmid: 16491704 |
[51] |
Starr A., & Brannon E. M. (2016). Visuospatial working memory influences the interaction between space and time. Psychonomic Bulletin & Review, 23(6), 1839-1845.
doi: 10.3758/s13423-016-1043-4 URL |
[52] |
Stocker A. A., & Simoncelli E. P. (2006). Noise characteristics and prior expectations in human visual speed perception. Nature Neuroscience, 9(4), 578-585.
doi: 10.1038/nn1669 pmid: 16547513 |
[53] |
Vilares I., Howard J. D., Fernandes H. L., Gottfried J. A., & Kording K. P. (2012). Differential representations of prior and likelihood uncertainty in the human brain. Current Biology, 22(18), 1641-1648.
doi: 10.1016/j.cub.2012.07.010 pmid: 22840519 |
[54] |
Walsh V. (2003). A theory of magnitude: Common cortical metrics of time space and quantity. Trends in Cognitive Sciences, 7(11), 483-488.
doi: 10.1016/j.tics.2003.09.002 URL |
[55] |
Weiss Y., Simoncelli E. P., & Adelson E. H. (2002). Motion illusions as optimal percepts. Nature Neuroscience, 5(6), 598-604.
doi: 10.1038/nn0602-858 pmid: 12021763 |
[56] |
Winter B., Marghetis T., & Matlock T. (2015). Of magnitudes and metaphors: Explaining cognitive interactions between space, time, and number. Cortex, 64, 209-224.
doi: 10.1016/j.cortex.2014.10.015 pmid: 25437376 |
[1] | LI Suiqing, CHEN Xinling, ZHAI Yuzhu, ZHANG Yijie, ZHANG Zhixing, FENG Chunliang. The computational and neural substrates underlying social learning [J]. Advances in Psychological Science, 2021, 29(4): 677-696. |
[2] | DING Yi;JI Tingting;ZOU Wenqian;LIU Yan;RAN Guangming;CHEN Xu. The Metaphorical Mapping of Social Affection on Temperature: Action Mechanisms and Its Explanation [J]. Advances in Psychological Science, 2013, 21(6): 1133-1140. |
[3] | YIN Rong;SU Dequan;YE Haosheng. Conceptual Metaphor Theory: Basing on Theories of Embodied Cognition [J]. Advances in Psychological Science, 2013, 21(2): 220-234. |
[4] | Bi Cui-Hua;HUANG Xi-Ting. Processing of Temporal and Spatial Distance Information Under Non-Verbal Context [J]. , 2011, 19(3): 346-354. |
[5] | Bi Cui-Hua; HUANG Xi-Ting; Chen You-Guo; Liu Xia. The Similarities and Differences Between Timing and Counting [J]. , 2010, 18(3): 403-411. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||