Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (11): 2092-2015.doi: 10.3724/SP.J.1042.2023.02092
• Regular Articles • Previous Articles Next Articles
BU Xiaoou, WANG Yao, DU Yawen, WANG Pei()
Received:
2022-11-08
Online:
2023-11-15
Published:
2023-08-28
CLC Number:
BU Xiaoou, WANG Yao, DU Yawen, WANG Pei. Application of machine learning in early screening of children with dyslexia[J]. Advances in Psychological Science, 2023, 31(11): 2092-2015.
序号 | 国家 | 作者 | 被试 | 主要数据指标 | 算法/方法 | 评价指标(%) Accuracy/Specificity/ Precision/F1 | ||
---|---|---|---|---|---|---|---|---|
样本量 | 年龄 | 性别(男%) | ||||||
1 | 沙特阿拉伯 | Ahmad et al. ( | 3644 (392DD+non) | 7~17岁 | 50.8 | 语音能力, 认知能力 | SVM, ANN | Accuracy = 95 |
2 | 沙特阿拉伯 | AlGhamdi ( | 3644 (392DD+non) | 7~17岁 | 50.8 | 语音能力, 认知能力 | KNN, BT | Accuracy = 99.9 |
3 | 希腊 | Asvestopoulou et al. ( | 32DD, 37TD | 8.5~12.5岁 | / | 眼动特征 | LSVM | Accuracy = 84.21 |
4 | 印度 | Bhargavi & Prabha ( | 97DD, 88non | 9~10岁 | / | 眼动特征 | Hybrid SVM-PSO, LR, RF, KNN | 96.6/95/95/96.6 |
5 | 荷兰 | Chen et al. ( | 495FR, 498TD | 17~35个月 | 54.6 | 词汇发展(N-CDI量表) | SVM | 68/70/67/-/- |
6 | 中国 | Cui et al. ( | 28DD, 33TD | av11.6岁;av11.8岁 | 52.5 | MRI (白质形态学特征) | LSVM | 83.61/75/90.91/-/- |
7 | 巴西 | Da Silva et al. ( | 16DYS, 16TYP | 8~12岁 | 62.5 | fMRI (大脑激活差异) | 2D CNN, 3D CNN, SVM | Accuracy = 94.83 |
8 | 西班牙 | Formoso et al. ( | 16DG, 32CG | 88~100个月 | 50 | EEG (脑功能网络) | NB | 90/93/86/-/-, AUC = 0.95 |
9 | 法国 | Hmimdi et al. ( | 46DA, 41non | av15.52岁; av14.78岁 | 56.3 | 眼动特征 | LR, SVM | 81.25/85/82.5/-/- |
10 | 土耳其 | Iler et al. (2022) | 20DD, 13HC | 8~11岁 | 48.5 | EOG (垂直/水平眼电信号) | 1D-CNN | 98.70/97.52/99.90/-/98.69 |
11 | 土耳其 | Latifoglu et al. ( | 20DD, 10HC | 8~12岁 | 50 | EOG (眼电信号频谱图) | 2D-CNN | 99/100/98.2/-/98.9 |
12 | 中国香港 | Lee et al. ( | 454DD, 561TD | 7~12岁 | / | 汉字字符, 个人特征 | NB, SVM, KNN, DT, ANN, LR | Accuracy = 78 |
13 | 波兰 | Plonski et al. ( | 130DG, 106CG | 8.5~13.7岁 | 53.0 | MRI (灰质形态学特征) | LR | Accuracy = 65, AUC = 0.66 |
14 | 印度 | Prabha & Bhargavi ( | 97DD, 88non | 9~10岁 | / | 眼动特征 | SVM-PSO, L SVM | 95/100/89/-/- |
15 | 澳大利亚 | Radford et al. ( | 43DD, 50non | 7~14岁 | / | 单词音频信号 | LSTM, LR, SVM, KNN, RF, DT | Accuracy = 80 |
16 | 德国 | Rauschenberger et al. ( | 116DG, 197CG | 7~12岁 | 51.1 | 听觉特征, 视觉特征 | RF, ET, GB | 74/-/78/75 |
17 | 马来西亚 | Rello et al. ( | 3644 (392DD+non) | 7~17岁 | 50.8 | 语音能力, 认知能力 | RF | Accuracy = 89.2 |
18 | 以色列 | Shamir et al. ( | 81RD, 44TR | 6~14岁 | 40 | 语音能力, 认知能力 | SVM | -/75/75/-/- |
19 | 德国 | Skeide et al. ( | 141 (37DD+non) | 3~12岁 | 59.6 | MRI (白/灰质形态学特征), 基因 | SVM | Accuracy = 75.53 |
20 | 伊朗 | Tolami et al. ( | 29DD, 25non | 8~11岁 | / | 语言特征 | NB, MLP, KNN, SVM, LR, DT | 93.33/-/-/94.44/93.21 |
21 | 塞尔维亚 | Vajs et al. ( | 15DD, 15non | 7~13岁 | 36.7 | 眼动特征 | LR, SVM, KNN, RF | Accuracy = 94, AUC = 0.98 |
22 | 中国 | Wang & Bi ( | 187DD, 212TD | 7~13岁 | 64.2 | 与阅读相关的认知能力, 个人特征 | GA-BPNN | Accuracy = 94.1, AUC = 0.95 |
23 | 美国 | Yu et al. ( | 227SAC | 8~14岁 | / | 虚拟迷宫数据, 个人特征, 阅读水平 | RUSBoosted Trees | Accuracy = 70 |
24 | 西班牙 | Zahia et al. ( | 19DXR, 3 8non (TD+ MVR) | 9~12岁 | 58.2 | fMRI (大脑激活区域) | 3D CNN | 72.3/71.43/60/67 |
25 | 马来西亚 | Zainuddin et al. ( | 10PDS, 10CDS, 10CG | 7~12岁 | / | EEG (beta/theta频带信息) | KNN, ELM | Accuracy = 89 |
序号 | 国家 | 作者 | 被试 | 主要数据指标 | 算法/方法 | 评价指标(%) Accuracy/Specificity/ Precision/F1 | ||
---|---|---|---|---|---|---|---|---|
样本量 | 年龄 | 性别(男%) | ||||||
1 | 沙特阿拉伯 | Ahmad et al. ( | 3644 (392DD+non) | 7~17岁 | 50.8 | 语音能力, 认知能力 | SVM, ANN | Accuracy = 95 |
2 | 沙特阿拉伯 | AlGhamdi ( | 3644 (392DD+non) | 7~17岁 | 50.8 | 语音能力, 认知能力 | KNN, BT | Accuracy = 99.9 |
3 | 希腊 | Asvestopoulou et al. ( | 32DD, 37TD | 8.5~12.5岁 | / | 眼动特征 | LSVM | Accuracy = 84.21 |
4 | 印度 | Bhargavi & Prabha ( | 97DD, 88non | 9~10岁 | / | 眼动特征 | Hybrid SVM-PSO, LR, RF, KNN | 96.6/95/95/96.6 |
5 | 荷兰 | Chen et al. ( | 495FR, 498TD | 17~35个月 | 54.6 | 词汇发展(N-CDI量表) | SVM | 68/70/67/-/- |
6 | 中国 | Cui et al. ( | 28DD, 33TD | av11.6岁;av11.8岁 | 52.5 | MRI (白质形态学特征) | LSVM | 83.61/75/90.91/-/- |
7 | 巴西 | Da Silva et al. ( | 16DYS, 16TYP | 8~12岁 | 62.5 | fMRI (大脑激活差异) | 2D CNN, 3D CNN, SVM | Accuracy = 94.83 |
8 | 西班牙 | Formoso et al. ( | 16DG, 32CG | 88~100个月 | 50 | EEG (脑功能网络) | NB | 90/93/86/-/-, AUC = 0.95 |
9 | 法国 | Hmimdi et al. ( | 46DA, 41non | av15.52岁; av14.78岁 | 56.3 | 眼动特征 | LR, SVM | 81.25/85/82.5/-/- |
10 | 土耳其 | Iler et al. (2022) | 20DD, 13HC | 8~11岁 | 48.5 | EOG (垂直/水平眼电信号) | 1D-CNN | 98.70/97.52/99.90/-/98.69 |
11 | 土耳其 | Latifoglu et al. ( | 20DD, 10HC | 8~12岁 | 50 | EOG (眼电信号频谱图) | 2D-CNN | 99/100/98.2/-/98.9 |
12 | 中国香港 | Lee et al. ( | 454DD, 561TD | 7~12岁 | / | 汉字字符, 个人特征 | NB, SVM, KNN, DT, ANN, LR | Accuracy = 78 |
13 | 波兰 | Plonski et al. ( | 130DG, 106CG | 8.5~13.7岁 | 53.0 | MRI (灰质形态学特征) | LR | Accuracy = 65, AUC = 0.66 |
14 | 印度 | Prabha & Bhargavi ( | 97DD, 88non | 9~10岁 | / | 眼动特征 | SVM-PSO, L SVM | 95/100/89/-/- |
15 | 澳大利亚 | Radford et al. ( | 43DD, 50non | 7~14岁 | / | 单词音频信号 | LSTM, LR, SVM, KNN, RF, DT | Accuracy = 80 |
16 | 德国 | Rauschenberger et al. ( | 116DG, 197CG | 7~12岁 | 51.1 | 听觉特征, 视觉特征 | RF, ET, GB | 74/-/78/75 |
17 | 马来西亚 | Rello et al. ( | 3644 (392DD+non) | 7~17岁 | 50.8 | 语音能力, 认知能力 | RF | Accuracy = 89.2 |
18 | 以色列 | Shamir et al. ( | 81RD, 44TR | 6~14岁 | 40 | 语音能力, 认知能力 | SVM | -/75/75/-/- |
19 | 德国 | Skeide et al. ( | 141 (37DD+non) | 3~12岁 | 59.6 | MRI (白/灰质形态学特征), 基因 | SVM | Accuracy = 75.53 |
20 | 伊朗 | Tolami et al. ( | 29DD, 25non | 8~11岁 | / | 语言特征 | NB, MLP, KNN, SVM, LR, DT | 93.33/-/-/94.44/93.21 |
21 | 塞尔维亚 | Vajs et al. ( | 15DD, 15non | 7~13岁 | 36.7 | 眼动特征 | LR, SVM, KNN, RF | Accuracy = 94, AUC = 0.98 |
22 | 中国 | Wang & Bi ( | 187DD, 212TD | 7~13岁 | 64.2 | 与阅读相关的认知能力, 个人特征 | GA-BPNN | Accuracy = 94.1, AUC = 0.95 |
23 | 美国 | Yu et al. ( | 227SAC | 8~14岁 | / | 虚拟迷宫数据, 个人特征, 阅读水平 | RUSBoosted Trees | Accuracy = 70 |
24 | 西班牙 | Zahia et al. ( | 19DXR, 3 8non (TD+ MVR) | 9~12岁 | 58.2 | fMRI (大脑激活区域) | 3D CNN | 72.3/71.43/60/67 |
25 | 马来西亚 | Zainuddin et al. ( | 10PDS, 10CDS, 10CG | 7~12岁 | / | EEG (beta/theta频带信息) | KNN, ELM | Accuracy = 89 |
一级维度 | 具体特征 |
---|---|
标准化心理教育测试 | 语音加工: 正字法意识, 语素意识, 音节意识, 字母意识, 快速自动命名, 语音意识, 语音感知, 语音流畅性, 语言表达与理解, 语法错误, 语法复杂性, 语法可读性, 词汇多样性; 阅读能力: 阅读速度, 阅读时间, 阅读流畅性, 阅读准确性, 阅读理解性; 认知能力: 工作记忆, 视觉/听觉工作记忆, 视觉/听觉辨别和分类, 视觉注意, 加工速度; 字符特征: 字符结构, 书写正确率, 词汇地位, 部首, 正字法, 笔画, 语音, 首音, 韵律, 声调; 个人特征: 年级, 年龄, 性别, 智力; 其他特征: 沟通发展量表(N-CDI)数据, 虚拟迷宫学习数据; |
眼动追踪 | 常见的眼动特征: 注视时间/次数/频率/中位数长度/交叉变异性/分形维数, 眼跳时间/次数/中位数长度/变异性/距离, 眨眼次数/频率, 回视, 落点位置, 双眼位置; 其他眼动特征: 主动阅读时间, 阅读速度/时间/错误率, 垂直/水平EOG信号, EOG信号的频谱图; |
网络/手机游戏 | 语音能力: 语言技能, 语言练习; 认知能力: 工作记忆, 执行功能, 感知过程; 听觉特征: 持续时间, 平均点击时间, 间隔时间, 命中率; 视觉特征: 点击次数, 点击时间 |
脑成像技术 | MRI: 白质的体积/各向异性分数/平均弥散率/轴向扩散系数/径向扩散系数, 灰质的体积/厚度/面积/折叠指数/平均曲率; fMRI: 阅读任务下的大脑激活区域, 大脑激活差异; EEG: 脑功能网络、beta/theta频带信息 |
其他 | 阅读障碍的候选基因 |
一级维度 | 具体特征 |
---|---|
标准化心理教育测试 | 语音加工: 正字法意识, 语素意识, 音节意识, 字母意识, 快速自动命名, 语音意识, 语音感知, 语音流畅性, 语言表达与理解, 语法错误, 语法复杂性, 语法可读性, 词汇多样性; 阅读能力: 阅读速度, 阅读时间, 阅读流畅性, 阅读准确性, 阅读理解性; 认知能力: 工作记忆, 视觉/听觉工作记忆, 视觉/听觉辨别和分类, 视觉注意, 加工速度; 字符特征: 字符结构, 书写正确率, 词汇地位, 部首, 正字法, 笔画, 语音, 首音, 韵律, 声调; 个人特征: 年级, 年龄, 性别, 智力; 其他特征: 沟通发展量表(N-CDI)数据, 虚拟迷宫学习数据; |
眼动追踪 | 常见的眼动特征: 注视时间/次数/频率/中位数长度/交叉变异性/分形维数, 眼跳时间/次数/中位数长度/变异性/距离, 眨眼次数/频率, 回视, 落点位置, 双眼位置; 其他眼动特征: 主动阅读时间, 阅读速度/时间/错误率, 垂直/水平EOG信号, EOG信号的频谱图; |
网络/手机游戏 | 语音能力: 语言技能, 语言练习; 认知能力: 工作记忆, 执行功能, 感知过程; 听觉特征: 持续时间, 平均点击时间, 间隔时间, 命中率; 视觉特征: 点击次数, 点击时间 |
脑成像技术 | MRI: 白质的体积/各向异性分数/平均弥散率/轴向扩散系数/径向扩散系数, 灰质的体积/厚度/面积/折叠指数/平均曲率; fMRI: 阅读任务下的大脑激活区域, 大脑激活差异; EEG: 脑功能网络、beta/theta频带信息 |
其他 | 阅读障碍的候选基因 |
一级维度 | 最具预测性的特征 |
---|---|
标准化心理教育测试 | 阅读准确性, 笔画, 词汇地位, 字符结构, 词汇量, 年级; |
眼动追踪 | 异向眼动, 注视交叉变异性, 注视次数/持续时间, 眼跳次数/持续时间/长度, 短前向移动个数, 多重注视词个数, 水平EOG信号; |
网络/手机游戏 | 视觉/听觉点击总次数, 视觉/听觉第一次点击时间; |
脑成像技术 | MRI: NRSN1相关的“视觉单词形成区”的灰质体积, 假定阅读系统内/边缘系统/运动系统的白质区域, 左半球外侧裂周区有额外褶皱的非典型曲率模式; fMRI: 左侧枕叶, 顶下小叶, 右侧前额叶; EEG: beta频带信息, db2小波, db4小波 |
一级维度 | 最具预测性的特征 |
---|---|
标准化心理教育测试 | 阅读准确性, 笔画, 词汇地位, 字符结构, 词汇量, 年级; |
眼动追踪 | 异向眼动, 注视交叉变异性, 注视次数/持续时间, 眼跳次数/持续时间/长度, 短前向移动个数, 多重注视词个数, 水平EOG信号; |
网络/手机游戏 | 视觉/听觉点击总次数, 视觉/听觉第一次点击时间; |
脑成像技术 | MRI: NRSN1相关的“视觉单词形成区”的灰质体积, 假定阅读系统内/边缘系统/运动系统的白质区域, 左半球外侧裂周区有额外褶皱的非典型曲率模式; fMRI: 左侧枕叶, 顶下小叶, 右侧前额叶; EEG: beta频带信息, db2小波, db4小波 |
*为纳入系统分析的文献 | |
[1] | 苏萌萌, 张玉平, 史冰洁, 舒华. (2012). 发展性阅读障碍的遗传关联分析. 心理科学进展, 20(8), 1259-1267. |
[2] |
Aaron, P. G., Joshi, M., & Williams, K. A. (1999). Not all reading disabilities are alike. Journal of Learning Disabilities, 32(2), 120-137. https://doi.org/10.1177/002221949903200203
URL pmid: 15499713 |
[3] |
Abd Rahman, R., Omar, K., Noah, S. A. M., Danuri, M. S. N. M., & Al-Garadi, M. A. (2020). Application of machine learning methods in mental health detection: A systematic review. IEEE Access, 8, 183952-183964. https://doi.org/10.1109/ACCESS.2020.3029154
doi: 10.1109/Access.6287639 URL |
[4] |
Ahire, N., Awale, R. N., Patnaik, S., & Wagh, A. (2022). A comprehensive review of machine learning approaches for dyslexia diagnosis. Multimedia Tools and Applications, 82, 13557-13577. https://doi.org/10.1007/s11042-022-13939-0
doi: 10.1007/s11042-022-13939-0 URL |
[5] | * Ahmad, N., Rehman, M. B., El Hassan, H. M., Ahmad, I., & Rashid, M. (2022). An efficient machine learning-based feature optimization model for the detection of dyslexia. Computational Intelligence and Neuroscience, 2022, 8491753. https://doi.org/10.1155/2022/8491753 |
[6] | * AlGhamdi, A. S. (2022). Novel ensemble model recommendation approach for the detection of dyslexia. Children-Basel, 9, 1337. https://doi.org/10.3390/children9091337 |
[7] | * Asvestopoulou, T., Manousaki, V., Psistakis, A., Smyrnakis, I., Andreadakis, V., Aslanides, I. M., & Papadopouli, M. (2019). DysLexML: Screening tool for dyslexia using machine learning. arXiv. https://doi.org/10.48550/arXiv.1903.06274 |
[8] | Atkar, G., & Jayaraju, P. (2021). Speech synthesis using generative adversarial network for improving readability of Hindi words to recuperate from dyslexia. Neural Computing & Applications, 33(15), 9353-9362. https://doi.org/10.1007/s00521-021-05695-3 |
[9] |
Ballester, P. L., da Silva, L. T., Marcon, M., Esper, N. B., Frey, B. N., Buchweitz, A., & Meneguzzi, F. (2021). Predicting brain age at slice level: Convolutional neural networks and consequences for interpretability. Frontiers in Psychiatry, 12, 598518. https://doi.org/10.3389/fpsyt.2021.598518
doi: 10.3389/fpsyt.2021.598518 URL |
[10] |
* Bhargavi, R., & Prabha, A. J. (2020). Predictive model for dyslexia from fixations and saccadic eye movement events. Computer Methods and Programs in Biomedicine, 195(5), 105538. https://doi.org/10.1016/j.cmpb.2020.105538
doi: 10.1016/j.cmpb.2020.105538 URL |
[11] |
Borleffs, E., Glatz, T. K., Daulay, D. A., Richardson, U., Zwarts, F., & Maassen, B. A. M. (2018). GraphoGame SI: The development of a technology-enhanced literacy learning tool for standard Indonesian. European Journal of Psychology of Education, 33(4), 595-613. https://doi.org/10.1007/s10212-017-0354-9
doi: 10.1007/s10212-017-0354-9 URL |
[12] | Burns, M. K., VanDerHeyden, A. M., Duesenberg-Marshall, M. D., Romero, M. E., Stevens, M. A., Izumi, J. T., & McCollom, E. M. (2022). Decision accuracy of commonly used dyslexia screeners among students who are potentially at-risk for reading difficulties. Learning Disability Quarterly. Advance online publication. https://doi.org/10.1177/07319487221096684 |
[13] |
Catts, H. W., McIlraith, A., Bridges, M. S., & Nielsen, D. C. (2017). Viewing a phonological deficit within a multifactorial model of dyslexia. Reading and Writing, 30(3), 613-629. https://doi.org/10.1007/s11145-016-9692-2
doi: 10.1007/s11145-016-9692-2 URL |
[14] |
Catts, H. W., & Petscher, Y. (2022). A cumulative risk and resilience model of dyslexia. Journal of Learning Disabilities, 55(3), 171-184. https://doi.org/10.1177/00222194211037062
doi: 10.1177/00222194211037062 URL |
[15] |
* Chen, A., Wijnen, F., Koster, C., & Schnack, H. (2017). Individualized early prediction of familial risk of dyslexia: A study of infant vocabulary development. Frontiers in Psychology, 8, 156. https://doi.org/10.3389/fpsyg.2017.00156
doi: 10.3389/fpsyg.2017.00156 URL pmid: 28270778 |
[16] |
Chimeno, Y. G., Zapirain, B. G., Prieto, I. S., & Fernandez- Ruanova, B. (2014). Automatic classification of dyslexic children by applying machine learning to fMRI images. Bio-Medical Materials and Engineering, 24(6), 2995-3002. https://doi.org/10.3233/BME-141120
doi: 10.3233/BME-141120 URL |
[17] |
* Cui, Z. X., Xia, Z. C., Su, M. M., Shu, H., & Gong, G. L. (2016). Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach. Human Brain Mapping, 37(4), 1443-1458. https://doi.org/10.1002/hbm.23112
doi: 10.1002/hbm.23112 URL pmid: 26787263 |
[18] | * Da Silva, L. T., Esper, N. B., Ruiz, D. D., Meneguzzi, F., & Buchweitz, A. (2021). Visual explanation for identification of the brain bases for developmental dyslexia on fMRI data. Frontiers in Computational Neuroscience, 15, 584659. https://doi.org/10.3389/fncom.2021.594659 |
[19] |
Farah, R., Ionta, S., & Horowitz-Kraus, T. (2021). Neuro- behavioral correlates of executive dysfunctions in dyslexia over development from childhood to adulthood. Frontiers in Psychology, 12, 708863. https://doi.org/10.3389/fpsyg.2021.708863
doi: 10.3389/fpsyg.2021.708863 URL |
[20] | Fletcher, J. M., Lyon, G. R., Fuchs, L. S., & Barnes, M. A. (2019). Learning disabilities: From identification to intervention (2nd ed). The Guilford Press. |
[21] |
* Formoso, M. A., Ortiz, A., Martinez-Murcia, F. J., Gallego, N., & Luque, J. L. (2021). Detecting phase-synchrony connectivity anomalies in EEG signals. Application to dyslexia diagnosis. Sensors, 21(21), 7061. https://doi.org/10.3390/s21217061
doi: 10.3390/s21217061 URL |
[22] |
Fox, S. E., Levitt, P., & Nelson, C. A. (2010). How the timing and quality of early experiences influence the development of brain architecture. Child Development, 81(1), 28-40. https://doi.org/10.1111/j.1467-8624.2009. 01380.x
doi: 10.1111/j.1467-8624.2009.01380.x URL pmid: 20331653 |
[23] |
Gabel, L. A., Voss, K., Johnson, E., Lindstrom, E. R., Truong, D. T., Murray, E. M., … Gruen, J. R. (2021). Identifying dyslexia: Link between maze learning and dyslexia susceptibility gene, DCDC2, in young children. Developmental Neuroscience, 43(2), 116-133. https://doi.org/10.1159/000516667
doi: 10.1159/000516667 URL |
[24] |
Galaburda, A. M., LoTurco, J., Ramus, F., Fitch, R. H., & Rosen, G. D. (2006). From genes to behavior in developmental dyslexia. Nature Neuroscience, 9(10), 1213-1217. https://doi.org/10.1038/nn1772
URL pmid: 17001339 |
[25] | Gilvary, C., Elkhader, J., Madhukar, N., Henchcliffe, C., Goncalves, M. D., & Elemento, O. (2020). A machine learning and network framework to discover new indications for small molecules. PLoS Computational Biology, 16(8), e1008098. https://doi.org/10.1371/journal.pcbi.1008098 |
[26] |
Hale, J., Alfonso, V., Berninger, V., Bracken, B., Christo, C., Clark, E., …Yalof, J. (2010). Critical issues in response- to-intervention, comprehensive evaluation, and specific learning disabilities identification and intervention: An expert white paper consensus. Learning Disability Quarterly, 33(3), 223-236. https://doi.org/10.1177/073194871003300310
doi: 10.1177/073194871003300310 URL |
[27] |
* Hmimdi, A., Ward, L. M., Palpanas, T., & Kapoula, Z. (2021). Predicting dyslexia and reading speed in adolescents from eye movements in reading and non-reading tasks: A machine learning approach. Brain Sciences, 11(10), 1337. https://doi.org/10.3390/brainsci11101337
doi: 10.3390/brainsci11101337 URL |
[28] |
Hosseini, S. M. H., Black, J. M., Soriano, T., Bugescu, N., Martinez, R., Raman, M. M., … Hoeft, F. (2013). Topological properties of large-scale structural brain networks in children with familial risk for reading difficulties. NeuroImage, 71, 260-274. https://doi.org/10.1016/j.neuroimage.2013.01.013
doi: 10.1016/j.neuroimage.2013.01.013 URL pmid: 23333415 |
[29] | * Ileri, R., Latifoglu, F., & Demirci, E. (2022). A novel approach for detection of dyslexia using convolutional neural network with EOG signals. Medical & Biological Engineering & Computing, 60(11), 3041-3055. https://doi.org/10.1007/s11517-022-02656-3 |
[30] |
Kaisar, S. (2020). Developmental dyslexia detection using machine learning techniques: A survey. ICT Express, 6(3), 181-184. https://doi.org/10.1016/j.icte.2020.05.006
doi: 10.1016/j.icte.2020.05.006 URL |
[31] | Khan, R. U., Lee, J., & Yin, B. O. (2018). Machine learning and dyslexia: Diagnostic and classification system (DCS) for kids with learning disabilities. Journal of Engineering Technology, 7(3), 97-100. |
[32] | Kraft, I., Cafiero, R., Schaadt, G., Brauer, J., Neef, N. E., Mueller, B., … Skeide, M. A. (2015). Cortical differences in preliterate children at familiar risk of dyslexia are similar to those observed in dyslexic readers. Brain, 138(9), e378. https://doi.org/10.1093/brain/awv036 |
[33] |
Larco, A., Carrillo, J., Chicaiza, N., Yanez, C., & Luján- Mora, S. (2021). Moving beyond limitations: Designing the Helpdys App for children with dyslexia in rural areas. Sustainability, 13, 7801. https://doi.org/10.3390/su13137081
doi: 10.3390/su13147801 URL |
[34] |
* Latifoglu, F., Ileri, R., & Demirci, E. (2021). Assessment of dyslexic children with EOG signals: Determining retrieving words/re-reading and skipping lines using convolutional neural networks. Chaos Solitons & Fractals, 145, 110721. https://doi.org/10.1016/j.chaos.2021.110721
doi: 10.1016/j.chaos.2021.110721 URL |
[35] | * Lee, S. M. K., Liu, H. W., & Tong, S. X. (2022). Identifying chinese children with dyslexia using machine learning with character dictation. Scientific Studies of Reading. https://doi.org/10.1080/10888438.2022.2088373. |
[36] |
Livingston, E. M., Siegel, L. S., & Ribary, U. (2018). Developmental dyslexia: Emotional impact and consequences. Australian Journal of Learning Difficulties, 23(2), 107-135. https://doi.org/10.1080/19404158.2018.1479975
doi: 10.1080/19404158.2018.1479975 URL |
[37] |
Lucchiari, C., Folgieri, R., & Pravettoni, G. (2014). Fuzzy cognitive maps: A tool to improve diagnostic decisions. Diagnosis (Berl), 1(4), 289-293. https://doi.org/10.1515/dx-2014-0026
doi: 10.1515/dx-2014-0026 URL pmid: 29540009 |
[38] |
Lyu, J., & Zhang, J. (2019). BP neural network prediction model for suicide attempt among Chinese rural residents. Journal of Affective Disorders, 246, 465-473. https://doi.org/10.1016/j.jad.2018.12.111
doi: S0165-0327(18)32153-0 URL pmid: 30599370 |
[39] |
Lyytinen, P., Eklund, K., & Lyytinen, H. (2005). Language development and literacy skills in late-talking toddlers with and without familial risk for dyslexia. Annals of Dyslexia, 55(2), 166-192. https://doi.org/10.1007/s11881-005-0010-y
URL pmid: 17849192 |
[40] |
McGrath, L. M., Peterson, R. L., & Pennington, B. F. (2020). The multiple deficit model: Progress, problems, and prospects. Scientific Studies of Reading, 24(1), 7-13. https://doi.org/10.1080/10888438.2019.1706180
doi: 10.1080/10888438.2019.1706180 URL pmid: 32440085 |
[41] |
Miciak, J., & Fletcher, J. M. (2020). The critical role of instructional response for identifying dyslexia and other learning disabilities. Journal of Learning Disabilities, 53(5), 343-353. https://doi.org/10.1177/0022219420906801
doi: 10.1177/0022219420906801 URL pmid: 32075514 |
[42] |
Miciak, J., Stuebing, K. K., Vaughn, S., Roberts, G., Barth, A. E., & Fletcher, J. M. (2014). Cognitive attributes of adequate and inadequate responders to reading intervention in middle school. School Psychology Review, 43(4), 407-427. https://doi.org/10.17105/SPR-13-0052.1
doi: 10.17105/SPR-13-0052.1 URL pmid: 28579668 |
[43] |
Morris, R. D., Stuebing, K. K., Fletcher, J. M., Shaywitz, S. E., Lyon, G. R., Shankweiler, D. P., … Shaywitz, B. A. (1998). Subtypes of reading disability: Variability around a phonological core. Journal of Educational Psychology, 90(3), 347-373. https://doi.org/10.1037/0022-0663.90.3.347
doi: 10.1037/0022-0663.90.3.347 URL |
[44] |
Ojanen, E., Ronimus, M., Ahonen, T., Chansa-Kabali, T., February, P., Jere-Folotiya, J., … Lyytinen, H. (2015). GraphoGame — A catalyst for multi-level promotion of literacy in diverse contexts. Frontiers in Psychology, 6, 671. https://doi.org/10.3389/fpsyg.2015.00671
doi: 10.3389/fpsyg.2015.00671 URL pmid: 26113825 |
[45] |
Oliaee, A., Mohebbi, M., Shirani, S., & Rostami, R. (2022). Extraction of discriminative features from EEG signals of dyslexic children; before and after the treatment. Cognitive Neurodynamics, 16(6), 1249-1259. https://doi.org/10.1007/s11571-022-09794-2.
doi: 10.1007/s11571-022-09794-2 URL pmid: 36408072 |
[46] |
Ortiz, A., Martinez-Murcia, F. J., Luque, J. L., Gimenez, A., Morales-Ortega, R., & Ortega, J. (2020). Dyslexia diagnosis by EEG temporal and spectral descriptors: An anomaly detection approach. International Journal of Neural Systems, 30(7). 2050029. https://doi.org/10.1142/S012906572050029X
doi: 10.1142/S012906572050029X URL |
[47] |
* Plonski, P., Gradkowski, W., Altarelli, I., Monzalvo, K., van Ermingen-Marbach, M., Grande, M., … Jednorog, K. (2017). Multi-parameter machine learning approach to the neuroanatomical basis of developmental dyslexia. Human Brain Mapping, 38(2), 900-908. https://doi.org/10.1002/hbm.23426
doi: 10.1002/hbm.23426 URL pmid: 27712002 |
[48] |
* Prabha, A. J., & Bhargavi, R. (2019). Prediction of dyslexia from eye movements using machine learning. IETE Journal of Research, 68(2), 814-823. https://doi.org/10.1080/03772063.2019.1622461
doi: 10.1080/03772063.2019.1622461 URL |
[49] |
Raatikainen, P., Hautala, J., Loberg, O., Kärkkäinen, T., Leppänen, P., & Nieminen, P. (2021). Detection of developmental dyslexia with machine learning using eye movement data. Array, 12, 100087. https://doi.org/10.1016/j.array.2021.100087
doi: 10.1016/j.array.2021.100087 URL |
[50] | * Radford, J., Richard, G., Richard, H., & Serrurier, M. (2021, February). Detecting dyslexia from audio records: An AI approach. Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies-HEALTHINF (pp. 58-66), Electr Network. https://doi.org/10.5220/0010196000580066 |
[51] |
* Rauschenberger, M., Baeza-Yates, R., & Rello, L. (2022). A universal screening tool for dyslexia by a web-game and machine learning. Frontiers in Computer Science, 3, 628634. https://doi.org/10.3389/fcomp.2021.628634
doi: 10.3389/fcomp.2021.628634 URL |
[52] | * Rello, L., Baeza-Yates, R., Ali, A., Bigham, J. P., & Serra, M. (2020). Predicting risk of dyslexia with an online gamified test. PLoS ONE, 15(12), e0241687. https://doi.org/10.1371/journal.pone.0241687 |
[53] |
Richlan, F., Kronbichler, M., & Wimmer, H. (2013). Structural abnormalities in the dyslexic brain: A meta- analysis of voxel-based morphometry studies. Human Brain Mapping, 34(11), 3055-3065. https://doi.org/10.1002/hbm.22127
doi: 10.1002/hbm.22127 URL pmid: 22711189 |
[54] | Russell, S. J., & Norvig, P. (2010). Artificial intelligence: A modern approach. Hoboken, NJ: Prentice Hall. |
[55] | Sanfilippo, J., Ness, M., Petscher, Y., Rappaport, L., Zuckerman, B., & Gaab, N. (2020). Reintroducing dyslexia: Early identification and implications for pediatric practice. Pediatrics, 146(1), e20193046. https://doi.org/10.1542/peds.2019-3046 |
[56] |
* Shamir, N., Zivan, M., & Horowitz‐Kraus, T. (2019). Six‐minute screening test can provide valid information about the skills that underlie childhood reading and cognitive abilities. Acta Paediatrica, 108(7), 1278-1284. https://doi.org/10.1111/apa.14680
doi: 10.1111/apa.14680 URL |
[57] |
Sihvonen, A. J., Virtala, P., Thiede, A., Laasonen, M., & Kujala, T. (2021). Structural white matter connectometry of reading and dyslexia. NeuroImage, 241, 118411. https://doi.org/10.1016/j.neuroimage.2021.118411
doi: 10.1016/j.neuroimage.2021.118411 URL |
[58] |
* Skeide, M. A., Kraft, I., Mueller, B., Schaadt, G., Neef, N. E., Brauer, J., … Friederici, A. D. (2016). NRSN1 associated grey matter volume of the visual word form area reveals dyslexia before school. Brain, 139, 2792-2803. https://doi.org/10.1093/brain/aww153
URL pmid: 27343255 |
[59] |
Tamboer, P., Vorst, H. C. M., Ghebreab, S., & Scholte, H. S. (2016). Machine learning and dyslexia: Classification of individual structural neuro-imaging scans of students with and without dyslexia. Neuroimage-Clinical, 11, 508-514. https://doi.org/10.1016/j.nicl.2016.03.014
doi: S2213-1582(16)30055-9 URL pmid: 27114899 |
[60] |
Thiede, A., Glerean, E., Kujala, T., & Parkkonen, L. (2020). Atypical MEG inter-subject correlation during listening to continuous natural speech in dyslexia. NeuroImage, 216, 116799. https://doi.org/10.1016/j.neuroimage.2020.116799
doi: 10.1016/j.neuroimage.2020.116799 URL |
[61] | * Tolami, F. A., Khorasani, M., Kahani, M., Yazdi, S. A. A., & Ghalenoei, M. A. (2021, October). An intelligent linguistic error detection approach to automated diagnosis of Dyslexia disorder in Persian speaking children. 11th International Conference on Computer Engineering and Knowledge (ICCKE) (pp. 393-398), Mashad, Iran. https://doi.org/10.1109/ICCKE54056.2021.9721446 |
[62] | Usman, O. L., & Muniyandi, R. C. (2020). CryptoDL: Predicting dyslexia biomarkers from encrypted neuroimaging dataset using energy-efficient residue number system and deep convolutional neural network. Symmetry-Basel, 12(5), 836. https://doi.org/10.3390/sym12050836 |
[63] |
Usman, O. L., Muniyandi, R. C., Omar, K., & Mohamad, M. (2021). Advance machine learning methods for dyslexia biomarker detection: A review of implementation details and challenges. IEEE Access, 9, 36879-36897. https://doi.org/10.1109/ACCESS.2021.3062709
doi: 10.1109/Access.6287639 URL |
[64] |
* Vajs, I., Kovic, V., Papic, T., Savic, A. M., & Jankovic, M. M. (2022). Spatiotemporal eye-tracking feature set for improved recognition of dyslexic reading patterns in children. Sensors, 22(13), 4900. https://doi.org/10.3390/s22134900
doi: 10.3390/s22134900 URL |
[65] |
Vandermosten, M., Boets, B., Wouters, J., & Ghesquiere, P. (2012). A qualitative and quantitative review of diffusion tensor imaging studies in reading and dyslexia. Neuroscience and Biobehavioral Reviews, 36(6), 1532-1552. https://doi.org/10.1016/j.neubiorev.2012.04.002
doi: 10.1016/j.neubiorev.2012.04.002 URL pmid: 22516793 |
[66] |
Vogler, G. P., Defries, J. C., & Decker, S. N. (1985). Family history as an indictor of risk for reading disability. Journal of Learning Disabilities, 17(10), 616-618. https://doi.org/10.1177/002221948401701009
doi: 10.1177/002221948401701009 URL |
[67] |
Walda, S., Hasselman, F., & Bosman, A. (2022). Identifying determinants of dyslexia: An ultimate attempt using machine learning. Frontiers in Psychology, 13, 869352. https://doi.org/10.3389/fpsyg.2022.869352
doi: 10.3389/fpsyg.2022.869352 URL |
[68] |
* Wang, R., & Bi, H. Y. (2022). A predictive model for chinese children with developmental dyslexia - Based on a genetic algorithm optimized back-propagation neural network. Expert Systems with Applications, 187, 115949. https://doi.org/10.1016/j.eswa.2021.115949
doi: 10.1016/j.eswa.2021.115949 URL |
[69] |
Wanzek, J., & Vaughn, S. (2007). Research-based implications from extensive early reading interventions. School Psychology Review, 36(4), 541-561. https://doi.org/10.1080/02796015.2007.12087917
doi: 10.1080/02796015.2007.12087917 URL |
[70] |
Yang, X., Zhang, J., Lv, Y., Wang, F., Ding, G., Zhang, M., … Song, Y. (2021). Failure of resting-state frontal- occipital connectivity in linking visual perception with reading fluency in Chinese children with developmental dyslexia. NeuroImage, 233, 117911. https://doi.org/10.1016/j.neuroimage.2021.117911
doi: 10.1016/j.neuroimage.2021.117911 URL |
[71] | * Yu, Y. C., Shyntassov, K., Zewge, A., & Gabel, L. (2022, March). Classification predictive modeling of dyslexia. 56th Annual Conference on Information Sciences and Systems (pp. 177-181), Electr Network. https://doi.org/10.1109/CISS53076.2022.9751182 |
[72] |
* Zahia, S., Garcia-Zapirain, B., Saralegui, I., & Fernandez- Ruanova, B. (2020). Dyslexia detection using 3D convolutional neural networks and functional magnetic resonance imaging. Computer Methods and Programs in Biomedicine, 197, 105726. https://doi.org/10.1016/j.cmpb.2020.105726
doi: 10.1016/j.cmpb.2020.105726 URL |
[73] | * Zainuddin, A. Z. A., Mansor, W., Lee, K. Y., & Mahmoodin, Z. (2019, July). Comparison of extreme learning machine and K-nearest neighbour performance in classifying EEG signal of normal, poor and capable dyslexic children. Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 4513-4516), Berlin, Germany. https://doi.org/10.1109/EMBC.2019.8857569 |
[1] | Yan Yang, Dingping Yang, Xinping Yu. Cognitive Function in Children with Strabismus [J]. Advances in Psychological Science, 2023, 31(suppl.): 44-44. |
[2] | Xunbing Shen, Xiaoqing Mei, Min Gao, Zhencai Chen, Yafang Li, Mingliang Gong. Eyes are the Windows of Lies [J]. Advances in Psychological Science, 2023, 31(suppl.): 172-172. |
[3] | Yuxi Zhou, Xunbing Shen. Emotion Elicitation Promote the Disclosure of Facial Deception Cues [J]. Advances in Psychological Science, 2023, 31(suppl.): 179-179. |
[4] | CUI Nan, WANG Jiuju, ZHAO Jing. Effectiveness and underlying mechanism of the intervention for children with comorbidity between attention deficit hyperactivity disorder and developmental dyslexia [J]. Advances in Psychological Science, 2023, 31(4): 622-630. |
[5] | ZHANG Libin, ZHANG Qiwen, WANG Chenxu, ZHANG Yunyun. The co-varying relationship between children and adolescents’ peer networks and bullying-related behaviors from the perspective of social networks [J]. Advances in Psychological Science, 2023, 31(3): 416-427. |
[6] | CHEN Xinwen, LI Hongjie, DING Yulong. Exploring the neural representation patterns in event-related EEG/MEG signals: The methods based on classification decoding and representation similarity analysis [J]. Advances in Psychological Science, 2023, 31(2): 173-195. |
[7] | LI Yunduan, MA Xiaofeng, HU Yu. Potential early identification markers for children with developmental dyslexia: Atypical rhythm and its characteristics [J]. Advances in Psychological Science, 2023, 31(12): 2306-2318. |
[8] | DENG Shichang, LIN Zihan, LU Yuqian, LI Xiangqian. New playmates in the age of intelligence: Characteristics of children’s interactions with robots and their impact on child development [J]. Advances in Psychological Science, 2023, 31(12): 2319-2336. |
[9] | LI Kaiqian, LIANG Dandan. Abnormalities in the brain of preschool children at risk for developmental dyslexia and early neural markers of dyslexia [J]. Advances in Psychological Science, 2023, 31(10): 1912-1923. |
[10] | JIANG Danying, YANG Yunmei, LI Jing. Children's distributive justice in group context [J]. Advances in Psychological Science, 2022, 30(9): 2004-2019. |
[11] | JIANG Han. Developing an online model of educational rehabilitation for children with ADHD [J]. Advances in Psychological Science, 2022, 30(8): 1747-1758. |
[12] | KANG Dan, LI Jiajia, CAI Shu. Preschool children’s sleep problem and language disorder [J]. Advances in Psychological Science, 2022, 30(6): 1270-1281. |
[13] | LIU Xiaohan, CHEN Minglong, GUO Jing. Application of machine learning in prognosis and trajectory of post-traumatic stress disorder in children [J]. Advances in Psychological Science, 2022, 30(4): 851-862. |
[14] | CHEN Jing, RAN Guangming, ZHANG Qi, NIU Xiang. The association between peer victimization and aggressive behavior in children and adolescents: A three-level meta-analysis [J]. Advances in Psychological Science, 2022, 30(2): 275-290. |
[15] | LI Hehui, HUANG Huiya, DONG Lin, LUO Yuejia, TAO Wuhai. Developmental dyslexia and cerebellar abnormalities: Multiple roles of the cerebellum and causal relationships between the two [J]. Advances in Psychological Science, 2022, 30(2): 343-353. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||