Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (11): 2092-2105.doi: 10.3724/SP.J.1042.2023.02092
• Regular Articles • Previous Articles Next Articles
BU Xiaoou, WANG Yao, DU Yawen, WANG Pei
Received:
2022-11-08
Online:
2023-11-15
Published:
2023-08-28
CLC Number:
BU Xiaoou, WANG Yao, DU Yawen, WANG Pei. Application of machine learning in early screening of children with dyslexia[J]. Advances in Psychological Science, 2023, 31(11): 2092-2105.
*为纳入系统分析的文献 [1] 苏萌萌, 张玉平, 史冰洁, 舒华. (2012). 发展性阅读障碍的遗传关联分析. [2] Aaron P. G., Joshi M., & Williams K. A. (1999). Not all reading disabilities are alike. [3] Abd Rahman,R., Omar, K., Noah, S. A. M., Danuri, M. S. N. M., & Al-Garadi, M. A.(2020). Application of machine learning methods in mental health detection: A systematic review. [4] Ahire N., Awale R. N., Patnaik S., & Wagh A. (2022). A comprehensive review of machine learning approaches for dyslexia diagnosis. [5] *Ahmad N., Rehman M. B., El Hassan H. M., Ahmad I., & Rashid M. (2022). An efficient machine learning-based feature optimization model for the detection of dyslexia. [6] *AlGhamdi, A. S. (2022). Novel ensemble model recommendation approach for the detection of dyslexia. [7] *Asvestopoulou, T., Manousaki, V., Psistakis, A., Smyrnakis, I., Andreadakis, V., Aslanides, I. M., & Papadopouli, M.(2019). DysLexML: Screening tool for dyslexia using machine learning. [8] Atkar, G., & Jayaraju, P. (2021). Speech synthesis using generative adversarial network for improving readability of Hindi words to recuperate from dyslexia. [9] Ballester P. L., da Silva, L. T., Marcon, M., Esper, N. B., Frey, B. N., Buchweitz, A., & Meneguzzi, F.(2021). Predicting brain age at slice level: Convolutional neural networks and consequences for interpretability. [10] *Bhargavi, R., & Prabha, A. J.(2020). Predictive model for dyslexia from fixations and saccadic eye movement events. [11] Borleffs E., Glatz T. K., Daulay D. A., Richardson U., Zwarts F., & Maassen, B. A. M. (2018). GraphoGame SI: The development of a technology-enhanced literacy learning tool for standard Indonesian. [12] Burns M. K., VanDerHeyden A. M., Duesenberg-Marshall M. D., Romero M. E., Stevens M. A., Izumi J. T., & McCollom E. M. (2022). Decision accuracy of commonly used dyslexia screeners among students who are potentially at-risk for reading difficulties. [13] Catts H. W., McIlraith A., Bridges M. S., & Nielsen D. C. (2017). Viewing a phonological deficit within a multifactorial model of dyslexia. [14] Catts, H. W., & Petscher, Y. (2022). A cumulative risk and resilience model of dyslexia. [15] *Chen, A., Wijnen, F., Koster, C., & Schnack, H.(2017). Individualized early prediction of familial risk of dyslexia: A study of infant vocabulary development. [16] Chimeno Y. G., Zapirain B. G., Prieto I. S., & Fernandez- Ruanova B. (2014). Automatic classification of dyslexic children by applying machine learning to fMRI images. [17] *Cui Z. X., Xia Z. C., Su M. M., Shu H., & Gong G. L. (2016). Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach. [18] *Da Silva, L. T., Esper, N. B., Ruiz, D. D., Meneguzzi, F., & Buchweitz, A.(2021). Visual explanation for identification of the brain bases for developmental dyslexia on fMRI data. [19] Farah R., Ionta S.,& Horowitz-Kraus, T.(2021). Neuro- behavioral correlates of executive dysfunctions in dyslexia over development from childhood to adulthood. [20] Fletcher J. M., Lyon G. R., Fuchs L. S., & Barnes, M. A. (2019). Learning disabilities: From identification to intervention, 2nd ed The Guilford Press From identification to intervention, 2nd ed. The Guilford Press. [21] *Formoso M. A., Ortiz A., Martinez-Murcia F. J., Gallego N., & Luque J. L. (2021). Detecting phase-synchrony connectivity anomalies in EEG signals. Application to dyslexia diagnosis. [22] Fox S. E., Levitt P., & Nelson C. A. (2010). How the timing and quality of early experiences influence the development of brain architecture. [23] Gabel L. A., Voss K., Johnson E., Lindstrom E. R., Truong D. T., Murray E. M., … Gruen J. R. (2021). Identifying dyslexia: Link between maze learning and dyslexia susceptibility gene, DCDC2, in young children. [24] Galaburda A. M., LoTurco J., Ramus F., Fitch R. H., & Rosen G. D. (2006). From genes to behavior in developmental dyslexia. [25] Gilvary C., Elkhader J., Madhukar N., Henchcliffe C., Goncalves M. D., & Elemento O. (2020). A machine learning and network framework to discover new indications for small molecules. [26] Hale J., Alfonso V., Berninger V., Bracken B., Christo C., Clark E., …Yalof J. (2010). Critical issues in response- to-intervention, comprehensive evaluation, and specific learning disabilities identification and intervention: An expert white paper consensus. [27] *Hmimdi A., Ward L. M., Palpanas T., & Kapoula Z. (2021). Predicting dyslexia and reading speed in adolescents from eye movements in reading and non-reading tasks: A machine learning approach. [28] Hosseini S. M.H., Black, J. M., Soriano, T., Bugescu, N., Martinez, R., Raman, M. M., … Hoeft, F.(2013). Topological properties of large-scale structural brain networks in children with familial risk for reading difficulties. [29] *Ileri R., Latifoglu F., & Demirci E. (2022). A novel approach for detection of dyslexia using convolutional neural network with EOG signals. [30] Kaisar, S. (2020). Developmental dyslexia detection using machine learning techniques: A survey. [31] Khan R. U., Lee J., & Yin B. O. (2018). Machine learning and dyslexia: Diagnostic and classification system (DCS) for kids with learning disabilities. [32] Kraft I., Cafiero R., Schaadt G., Brauer J., Neef N. E., Mueller B., … Skeide M. A. (2015). Cortical differences in preliterate children at familiar risk of dyslexia are similar to those observed in dyslexic readers. [33] Larco A., Carrillo J., Chicaiza N., Yanez C., & Luján- Mora S. (2021). Moving beyond limitations: Designing the Helpdys App for children with dyslexia in rural areas. [34] *Latifoglu, F., Ileri, R., & Demirci, E.(2021). Assessment of dyslexic children with EOG signals: Determining retrieving words/re-reading and skipping lines using convolutional neural networks. [35] *Lee, S. M. K., Liu, H. W., & Tong, S. X.(2022). Identifying chinese children with dyslexia using machine learning with character dictation. [36] Livingston E. M., Siegel L. S.,& Ribary, U.(2018). Developmental dyslexia: Emotional impact and consequences. [37] Lucchiari C., Folgieri R., & Pravettoni G. (2014). Fuzzy cognitive maps: A tool to improve diagnostic decisions. [38] Lyu, J., & Zhang, J. (2019). BP neural network prediction model for suicide attempt among Chinese rural residents. [39] Lyytinen P., Eklund K., & Lyytinen H. (2005). Language development and literacy skills in late-talking toddlers with and without familial risk for dyslexia. [40] McGrath, L. M., Peterson, R. L., & Pennington, B. F.(2020). The multiple deficit model: Progress, problems, and prospects. [41] Miciak, J., & Fletcher, J. M. (2020). The critical role of instructional response for identifying dyslexia and other learning disabilities. [42] Miciak J., Stuebing K. K., Vaughn S., Roberts G., Barth A. E., & Fletcher J. M. (2014). Cognitive attributes of adequate and inadequate responders to reading intervention in middle school. [43] Morris R. D., Stuebing K. K., Fletcher J. M., Shaywitz S. E., Lyon G. R., Shankweiler D. P., … Shaywitz B. A. (1998). Subtypes of reading disability: Variability around a phonological core. [44] Ojanen E., Ronimus M., Ahonen T.,Chansa-Kabali, T., February, P., Jere-Folotiya, J., … Lyytinen, H.(2015). GraphoGame — A catalyst for multi-level promotion of literacy in diverse contexts. [45] Oliaee A., Mohebbi M., Shirani S., & Rostami R. (2022). Extraction of discriminative features from EEG signals of dyslexic children; before and after the treatment. [46] Ortiz A., Martinez-Murcia F. J., Luque J. L., Gimenez A., Morales-Ortega R., & Ortega J. (2020). Dyslexia diagnosis by EEG temporal and spectral descriptors: An anomaly detection approach. [47] *Plonski P., Gradkowski W., Altarelli I., Monzalvo K., van Ermingen-Marbach M., Grande M., … Jednorog K. (2017). Multi-parameter machine learning approach to the neuroanatomical basis of developmental dyslexia. [48] *Prabha, A. J., & Bhargavi, R.(2019). Prediction of dyslexia from eye movements using machine learning. [49] Raatikainen P., Hautala J., Loberg O., Kärkkäinen T., Leppänen P.,& Nieminen, P.(2021). Detection of developmental dyslexia with machine learning using eye movement data. [50] *Radford J., Richard G., Richard H., & Serrurier M. (2021, February). [51] *Rauschenberger, M., Baeza-Yates, R., & Rello, L.(2022). A universal screening tool for dyslexia by a web-game and machine learning. [52] *Rello L., Baeza-Yates R., Ali A., Bigham J. P., & Serra M. (2020). Predicting risk of dyslexia with an online gamified test. [53] Richlan F., Kronbichler M., & Wimmer H. (2013). Structural abnormalities in the dyslexic brain: A meta- analysis of voxel-based morphometry studies. [54] Russell, S. J., & Norvig, P. (2010). [55] Sanfilippo J., Ness M., Petscher Y., Rappaport L., Zuckerman B., & Gaab N. (2020). Reintroducing dyslexia: Early identification and implications for pediatric practice. [56] *Shamir N., Zivan M., & Horowitz‐Kraus T. (2019). Six‐minute screening test can provide valid information about the skills that underlie childhood reading and cognitive abilities. [57] Sihvonen A. J., Virtala P., Thiede A., Laasonen M.,& Kujala, T.(2021). Structural white matter connectometry of reading and dyslexia. [58] *Skeide M. A., Kraft I., Mueller B., Schaadt G., Neef N. E., Brauer J., … Friederici A. D. (2016). NRSN1 associated grey matter volume of the visual word form area reveals dyslexia before school. [59] Tamboer, P., Vorst, H. C.M., Ghebreab, S., & Scholte, H. S.(2016). Machine learning and dyslexia: Classification of individual structural neuro-imaging scans of students with and without dyslexia. [60] Thiede A., Glerean E., Kujala T.,& Parkkonen, L.(2020). Atypical MEG inter-subject correlation during listening to continuous natural speech in dyslexia. [61] *Tolami F. A., Khorasani M., Kahani M., Yazdi S. A. A., & Ghalenoei M. A. (2021, October). [62] Usman, O. L., & Muniyandi, R. C. (2020). CryptoDL: Predicting dyslexia biomarkers from encrypted neuroimaging dataset using energy-efficient residue number system and deep convolutional neural network. [63] Usman O. L., Muniyandi R. C., Omar K., & Mohamad M. (2021). Advance machine learning methods for dyslexia biomarker detection: A review of implementation details and challenges. [64] *Vajs I., Kovic V., Papic T., Savic A. M., & Jankovic M. M. (2022). Spatiotemporal eye-tracking feature set for improved recognition of dyslexic reading patterns in children. [65] Vandermosten M., Boets B., Wouters J., & Ghesquiere P. (2012). A qualitative and quantitative review of diffusion tensor imaging studies in reading and dyslexia. [66] Vogler G. P., Defries J. C., & Decker S. N. (1985). Family history as an indictor of risk for reading disability. [67] Walda S., Hasselman F.,& Bosman, A.(2022). Identifying determinants of dyslexia: An ultimate attempt using machine learning. [68] *Wang, R., & Bi, H. Y.(2022). A predictive model for chinese children with developmental dyslexia - Based on a genetic algorithm optimized back-propagation neural network. [69] Wanzek J.,& Vaughn, S.(2007). Research-based implications from extensive early reading interventions. [70] Yang X., Zhang J., Lv Y., Wang F., Ding G., Zhang M.,… Song, Y.(2021). Failure of resting-state frontal- occipital connectivity in linking visual perception with reading fluency in Chinese children with developmental dyslexia. [71] *Yu, Y. C., Shyntassov, K., Zewge, A., & Gabel, L.(2022, March). [72] *Zahia, S., Garcia-Zapirain, B., Saralegui, I., & Fernandez- Ruanova, B.(2020). Dyslexia detection using 3D convolutional neural networks and functional magnetic resonance imaging. [73] *Zainuddin, A. Z. A., Mansor, W., Lee, K. Y., & Mahmoodin, Z.(2019, July). |
[1] | Yan Yang, Dingping Yang, Xinping Yu. Cognitive Function in Children with Strabismus [J]. Advances in Psychological Science, 2023, 31(suppl.): 44-44. |
[2] | Xunbing Shen, Xiaoqing Mei, Min Gao, Zhencai Chen, Yafang Li, Mingliang Gong. Eyes are the Windows of Lies [J]. Advances in Psychological Science, 2023, 31(suppl.): 172-172. |
[3] | Yuxi Zhou, Xunbing Shen. Emotion Elicitation Promote the Disclosure of Facial Deception Cues [J]. Advances in Psychological Science, 2023, 31(suppl.): 179-179. |
[4] | CUI Nan, WANG Jiuju, ZHAO Jing. Effectiveness and underlying mechanism of the intervention for children with comorbidity between attention deficit hyperactivity disorder and developmental dyslexia [J]. Advances in Psychological Science, 2023, 31(4): 622-630. |
[5] | ZHANG Libin, ZHANG Qiwen, WANG Chenxu, ZHANG Yunyun. The co-varying relationship between children and adolescents’ peer networks and bullying-related behaviors from the perspective of social networks [J]. Advances in Psychological Science, 2023, 31(3): 416-427. |
[6] | CHEN Xinwen, LI Hongjie, DING Yulong. Exploring the neural representation patterns in event-related EEG/MEG signals: The methods based on classification decoding and representation similarity analysis [J]. Advances in Psychological Science, 2023, 31(2): 173-195. |
[7] | LI Yunduan, MA Xiaofeng, HU Yu. Potential early identification markers for children with developmental dyslexia: Atypical rhythm and its characteristics [J]. Advances in Psychological Science, 2023, 31(12): 2306-2318. |
[8] | DENG Shichang, LIN Zihan, LU Yuqian, LI Xiangqian. New playmates in the age of intelligence: Characteristics of children’s interactions with robots and their impact on child development [J]. Advances in Psychological Science, 2023, 31(12): 2319-2336. |
[9] | LI Kaiqian, LIANG Dandan. Abnormalities in the brain of preschool children at risk for developmental dyslexia and early neural markers of dyslexia [J]. Advances in Psychological Science, 2023, 31(10): 1912-1923. |
[10] | JIANG Danying, YANG Yunmei, LI Jing. Children's distributive justice in group context [J]. Advances in Psychological Science, 2022, 30(9): 2004-2019. |
[11] | JIANG Han. Developing an online model of educational rehabilitation for children with ADHD [J]. Advances in Psychological Science, 2022, 30(8): 1747-1758. |
[12] | KANG Dan, LI Jiajia, CAI Shu. Preschool children’s sleep problem and language disorder [J]. Advances in Psychological Science, 2022, 30(6): 1270-1281. |
[13] | LIU Xiaohan, CHEN Minglong, GUO Jing. Application of machine learning in prognosis and trajectory of post-traumatic stress disorder in children [J]. Advances in Psychological Science, 2022, 30(4): 851-862. |
[14] | CHEN Jing, RAN Guangming, ZHANG Qi, NIU Xiang. The association between peer victimization and aggressive behavior in children and adolescents: A three-level meta-analysis [J]. Advances in Psychological Science, 2022, 30(2): 275-290. |
[15] | LI Hehui, HUANG Huiya, DONG Lin, LUO Yuejia, TAO Wuhai. Developmental dyslexia and cerebellar abnormalities: Multiple roles of the cerebellum and causal relationships between the two [J]. Advances in Psychological Science, 2022, 30(2): 343-353. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||