Advances in Psychological Science ›› 2018, Vol. 26 ›› Issue (7): 1165-1173.doi: 10.3724/SP.J.1042.2018.01165
• Research Reports • Previous Articles Next Articles
LI Gujing, LI Xin, HE Hui, LUO Cheng, YAO Dezhong()
Received:
2017-11-24
Online:
2018-07-15
Published:
2018-05-29
Contact:
YAO Dezhong
E-mail:dyao@uestc.edu.cn
CLC Number:
LI Gujing, LI Xin, HE Hui, LUO Cheng, YAO Dezhong. Modern dance training and string instrument training have different effects on grey matter architecture[J]. Advances in Psychological Science, 2018, 26(7): 1165-1173.
人口学变量 | 现代舞训练组 | 弦乐训练组 | 对照组 | p |
---|---|---|---|---|
性别(男/女) | 5/13 | 7/13 | 8/17 | 0.892 |
年龄(岁) | 19.00 ± 1.41 | 19.05 ± 1.19 | 19.24 ± 0.87 | 0.765 df (2,60) |
教育水平(年) | 12.83 ± 1.33 | 13.05 ± 1.09 | 13.20 ± 1.11 | 0.574 df (2,60) |
训练年限(年) | 11.44 ± 3.24 | 11.33 ± 2.72 | — | 0.282 df (36) |
人口学变量 | 现代舞训练组 | 弦乐训练组 | 对照组 | p |
---|---|---|---|---|
性别(男/女) | 5/13 | 7/13 | 8/17 | 0.892 |
年龄(岁) | 19.00 ± 1.41 | 19.05 ± 1.19 | 19.24 ± 0.87 | 0.765 df (2,60) |
教育水平(年) | 12.83 ± 1.33 | 13.05 ± 1.09 | 13.20 ± 1.11 | 0.574 df (2,60) |
训练年限(年) | 11.44 ± 3.24 | 11.33 ± 2.72 | — | 0.282 df (36) |
脑区 | MNI坐标 | 体素 个数 | F(2,60)值 (最大点) | dan-con | dan- con (p) | dan- con (t41) | mus-con | mus- con (p) | mus- con (t43) | mus-dan | mus-dan (p) | mus- dan (t36) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x | y | z | ||||||||||||
Cerebelum_ Crus1_R | 33 | -58 | -40 | 32 | 9.99 | p < 0.05 | 0.01029 | 2.69 | 0.07979 | -1.79 | p < 0.001 | 0.00029 | -4.01 | |
Frontal_ Med_Orb_R | 6 | 40 | -6 | 82 | 11.29 | p < 0.001 | 0.00039 | 3.86 | 0.74462 | -0.33 | p < 0.001 | 0.00058 | -3.76 | |
Thalamus_R | 12 | -21 | -1 | 267 | 18.05 | p < 0.001 | 0.00028 | -3.97 | 0.16760 | 1.40 | p < 0.001 | 0.00001 | 5.26 | |
Thalamus_L | -10 | -16 | 1 | 240 | 13.33 | p < 0.001 | 0.00036 | -3.89 | 0.26093 | 1.14 | p < 0.001 | 0.00001 | 5.26 | |
Temporal_ Sup_R | 55 | -15 | 1 | 131 | 13.47 | 0.74732 | 0.32 | p < 0.001 | 0.00002 | 4.80 | p < 0.001 | 0.00090 | 3.61 | |
Putamen_R | 25 | 4 | 13 | 112 | 12.88 | p < 0.001 | 0.00009 | 4.33 | 0.29734 | 1.05 | p < 0.01 | 0.00233 | -3.27 | |
Supp_Motor_ Area_R | 6 | 1 | 63 | 128 | 11.83 | p < 0.01 | 0.00161 | -3.38 | 0.34007 | 0.96 | p < 0.001 | 0.00001 | 5.12 | |
Precentral_L | -34 | -6 | 58 | 120 | 12.12 | p < 0.01 | 0.00564 | -2.92 | p < 0.05 | 0.04677 | 2.05 | p < 0.001 | 0.00004 | 4.68 |
Frontal_ Mid_R | 42 | -3 | 57 | 71 | 11.30 | 0.23886 | -1.20 | p < 0.01 | 0.00225 | 3.24 | p < 0.001 | 0.00003 | 4.77 |
脑区 | MNI坐标 | 体素 个数 | F(2,60)值 (最大点) | dan-con | dan- con (p) | dan- con (t41) | mus-con | mus- con (p) | mus- con (t43) | mus-dan | mus-dan (p) | mus- dan (t36) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x | y | z | ||||||||||||
Cerebelum_ Crus1_R | 33 | -58 | -40 | 32 | 9.99 | p < 0.05 | 0.01029 | 2.69 | 0.07979 | -1.79 | p < 0.001 | 0.00029 | -4.01 | |
Frontal_ Med_Orb_R | 6 | 40 | -6 | 82 | 11.29 | p < 0.001 | 0.00039 | 3.86 | 0.74462 | -0.33 | p < 0.001 | 0.00058 | -3.76 | |
Thalamus_R | 12 | -21 | -1 | 267 | 18.05 | p < 0.001 | 0.00028 | -3.97 | 0.16760 | 1.40 | p < 0.001 | 0.00001 | 5.26 | |
Thalamus_L | -10 | -16 | 1 | 240 | 13.33 | p < 0.001 | 0.00036 | -3.89 | 0.26093 | 1.14 | p < 0.001 | 0.00001 | 5.26 | |
Temporal_ Sup_R | 55 | -15 | 1 | 131 | 13.47 | 0.74732 | 0.32 | p < 0.001 | 0.00002 | 4.80 | p < 0.001 | 0.00090 | 3.61 | |
Putamen_R | 25 | 4 | 13 | 112 | 12.88 | p < 0.001 | 0.00009 | 4.33 | 0.29734 | 1.05 | p < 0.01 | 0.00233 | -3.27 | |
Supp_Motor_ Area_R | 6 | 1 | 63 | 128 | 11.83 | p < 0.01 | 0.00161 | -3.38 | 0.34007 | 0.96 | p < 0.001 | 0.00001 | 5.12 | |
Precentral_L | -34 | -6 | 58 | 120 | 12.12 | p < 0.01 | 0.00564 | -2.92 | p < 0.05 | 0.04677 | 2.05 | p < 0.001 | 0.00004 | 4.68 |
Frontal_ Mid_R | 42 | -3 | 57 | 71 | 11.30 | 0.23886 | -1.20 | p < 0.01 | 0.00225 | 3.24 | p < 0.001 | 0.00003 | 4.77 |
1 | 段旭君 . ( 2013). 基于大尺度脑网络分析方法的脑可塑性研究(博士学位论文). 电子科技大学, 成都. |
2 | 蒋存梅 . ( 2016). 音乐心理学. 上海: 华东师范大学出版社. |
3 | 马清 . ( 2000). 音乐理论与管弦乐基础. 北京: 北京大学出版社. |
4 | 平心 . ( 2004). 舞蹈心理学. 北京: 高等教育出版社. |
5 | 吕艺生 . ( 2003). 舞蹈学导论. 上海: 上海音乐出版社. |
6 | 覃嫔 . ( 2018). 舞蹈艺术的训练研究. 北京: 北京理工大学出版社. |
7 |
周临舒, 赵怀阳, 蒋存梅 . ( 2017). 音乐表演训练对神经可塑性的影响: 元分析研究. 心理科学进展, 25( 11), 1877-1887.
doi: 10.3724/SP.J.1042.2017.01877 URL |
8 |
Ashburner, J., & Friston K. J, . ( 2000). Voxel-based morphometry--the methods. NeuroImage, 11, 805-821.
doi: 10.1006/nimg.2000.0582 URL |
9 |
Ashburner, J., & Friston K. J, . ( 2005). Unified segmentation. NeuroImage, 26( 3), 839-851.
doi: 10.1016/j.neuroimage.2005.02.018 URL |
10 |
Bangert M., Peschel T., Schlaug G., Rotte M., Drescher D., Hinrichs H., .. Altenmüller E . ( 2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage, 30( 3), 917-926.
doi: 10.1016/j.neuroimage.2005.10.044 URL pmid: 16380270 |
11 |
Bangert, M., & Schlaug G. , ( 2006). Specialization of the specialized in features of external human brain morphology. European Journal of Neuroscience, 24( 6), 1832-1834.
doi: 10.1111/j.1460-9568.2006.05031.x URL pmid: 1700494617004946 |
12 |
Baumann S., Koeneke S., Schmidt C. F., Meyer M., Lutz K., & Jancke L . ( 2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Research, 1161, 65-78.
doi: 10.1016/j.brainres.2007.05.045 URL pmid: 17603027 |
13 |
Bermudez P., Lerch J. P., Evans A. C., & Zatorre R. J . ( 2009). Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cerebral Cortex, 19( 7), 1583-1596.
doi: 10.1093/cercor/bhn196 URL pmid: 19073623 |
14 |
Bostan A. C., Dum R. P., & Strick P. L . ( 2013). Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences, 17( 5), 241-254.
doi: 10.1016/j.tics.2013.03.003 URL |
15 |
Brown S., Martinez M. J., & Parsons L. M . ( 2006). The neural basis of human dance. Cerebral Cortex, 16( 8), 1157-1167.
doi: 10.1093/cercor/bhj057 URL pmid: 16221923 |
16 |
Burzynska A. Z., Finc K., Taylor B. K., Knecht A. M., & Kramer A. F . ( 2017). The dancing brain: Structural and functional signatures of expert dance training. Frontiers in Human Neuroscience, 11, 566.
doi: 10.3389/fnhum.2017.00566 URL pmid: 5711858 |
17 |
Calvo-Merino B., Glaser D. E., Grèzes J., Passingham R. E., & Haggard P . ( 2005). Action observation and acquired motor skills: An FMRI study with expert dancers. Cerebral Cortex, 15( 8), 1243-1249.
doi: 10.1093/cercor/bhi007 URL pmid: 15616133 |
18 |
Cross E. S., Hamilton A. F., & Grafton S. T . ( 2006). Building a motor simulation de novo: Observation of dance by dancers. NeuroImage, 31( 3), 1257-1267.
doi: 10.1016/j.neuroimage.2006.01.033 URL |
19 |
Draganski B., Gaser C., Busch V., Schuierer G., Bogdahn U., & May A . ( 2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427( 6972), 311-312.
doi: 10.1038/427311a URL |
20 |
Giacosa C., Karpati F. J., Foster N. E. V., Penhune V. B., & Hyde K. L . ( 2016). Dance and music training have different effects on white matter diffusivity in sensorimotor pathways. NeuroImage, 135, 273-286.
doi: 10.1016/j.neuroimage.2016.04.048 URL pmid: 27114054 |
21 |
Groussard M., Rauchs G., Landeau B., Viader F., Desgranges B., Eustache F., & Platel H . ( 2010). The neural substrates of musical memory revealed by fMRI and two semantic tasks. NeuroImage, 53( 4), 1301-1309.
doi: 10.1016/j.neuroimage.2010.07.013 URL pmid: 20627131 |
22 |
Groussard M., Viader F., Landeau B., Desgranges B., Eustache F., & Platel H . ( 2014). The effects of musical practice on structural plasticity: The dynamics of grey matter changes. Brain and Cognition, 90, 174-180.
doi: 10.1016/j.bandc.2014.06.013 URL pmid: 25127369 |
23 |
Han Y., Yang H., Lv Y. T., Zhu C. Z., He Y., Tang H. H., .. Dong Q . ( 2009). Gray matter density and white matter integrity in pianists' brain: A combined structural and diffusion tensor MRI study. Neuroscience Letters, 459( 1), 3-6.
doi: 10.1016/j.neulet.2008.07.056 URL pmid: 18672026 |
24 |
Hänggi J., Koeneke S., Bezzola L., & Jäncke L . ( 2010). Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Human Brain Mapping, 31( 8), 1196-1206.
doi: 10.1002/hbm.20928 URL pmid: 20024944 |
25 |
Huang H. Y., Wang J. J., Seger C., Min L., Feng D., Wu X. Y., .. Huang R. W . ( 2017). Long-term intensive gymnastic training induced changes in intra- and inter-network functional connectivity: An independent component analysis. Brain Structure and Function, 223( 1), 131-144.
doi: 10.1007/s00429-017-1479-y URL pmid: 28733834 |
26 |
Huang R. W., Lu M., Song Z., & Wang J . ( 2015). Long-term intensive training induced brain structural changes in world class gymnasts. Brain Structure and Function, 220( 2), 625-644.
doi: 10.1007/s00429-013-0677-5 URL pmid: 24297657 |
27 |
Hutchinson S., Lee L. H. L., Gaab N., & Schlaug G . ( 2003). Cerebellar volume of musicians. Cerebral Cortex, 13( 9), 943-949.
doi: 10.1093/cercor/13.9.943 URL |
28 |
Hyde K. L., Peretz I., & Zatorre R. J . ( 2008). Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia, 46( 2), 632-639.
doi: 10.1016/j.neuropsychologia.2007.09.004 URL pmid: 17959204 |
29 |
Jola C., McAleer P., Grosbras M. H., Love S. A., Morison G., & Pollick F. E . ( 2013). Uni- and multisensory brain areas are synchronised across spectators when watching unedited dance recordings. i-Perception, 4( 4), 265-284.
doi: 10.1068/i0536 URL pmid: 24349687 |
30 | Jones J., Adlam A., Benattayallah A., & Milton F . ( 2017, July). Working memory training increases recruitment of the middle frontal gyrus in children. Poster session presented at the Conference of Experimental Psychology Society, Reading, UK. |
31 |
Karpati F. J., Giacosa C., Foster N. E. V., Penhune V. B., & Hyde K. L . ( 2017). Dance and music share gray matter structural correlates. Brain Research, 1657, 62-73.
doi: 10.1016/j.brainres.2016.11.029 URL pmid: 27923638 |
32 |
Kheradmand, A., & Zee D. S, . ( 2011). Cerebellum and ocular motor control. Frontiers in Neurology, 2, 53.
doi: 10.3389/fneur.2011.00053 URL pmid: 3164106 |
33 |
Koelsch, S., & Siebel W. A, . ( 2005). Towards a neural basis of music perception. Trends in Cognitive Sciences, 9( 12), 578-584.
doi: 10.1016/j.tics.2010.01.002 URL |
34 |
Lahav A., Saltzman E., & Schlaug G . ( 2007). Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27( 2), 308-314.
doi: 10.1523/JNEUROSCI.4822-06.2007 URL |
35 |
Laufer I., Negishi M., Lacadie C. M., Papademetris X., & Constable R. T . ( 2011). Dissociation between the activity of the right middle frontal gyrus and the middle temporal gyrus in processing semantic priming. PLoS One, 6( 8), e22368.
doi: 10.1371/journal.pone.0022368 URL pmid: 21829619 |
36 |
Li G. J., He H., Huang M. T., Zhang X. X., Lu J., Lai Y. X., .. Yao D. Z . ( 2015). Identifying enhanced cortico- basal ganglia loops associated with prolonged dance training. Scientific Reports, 5, 10271.
doi: 10.1038/srep10271 URL pmid: 26035693 |
37 |
Li S. Y., Han Y., Wang D. Y., Yang H., Fan Y. B., Lv Y. T., .. He Y . ( 2010). Mapping surface variability of the central sulcus in musicians. Cerebral Cortex, 20( 1), 25-33.
doi: 10.1093/cercor/bhp074 URL pmid: 19433652 |
38 |
Maguire E. A., Gadian D. G., Johnsrude I. S., Good C. D., Ashburner J., Frackowiak R. S. J., & Frith C. D . ( 2000) Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97( 8), 4398-4403.
doi: 10.1073/pnas.070039597 URL pmid: 10716738 |
39 |
Mutschler I., Schulze-Bonhage A., Glauche V., Demandt E., Speck O., & Ball T . ( 2007). A rapid sound-action association effect in human insular cortex. PLoS One, 2( 2), e259.
doi: 10.1371/journal.pone.0000259 URL pmid: 17327919 |
40 |
Nichols, T. E . ( 2012). Multiple testing corrections, nonparametric methods, and random field theory. NeuroImage, 62( 2), 811-815.
doi: 10.1016/j.neuroimage.2012.04.014 URL pmid: 22521256 |
41 |
Oldfield, R. C . ( 1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9( 1), 97-113.
doi: 10.1016/0028-3932(71)90067-4 URL pmid: 5146491 |
42 |
Ono Y., Nomoto Y., Tanaka S., Sato K., Shimada S., Tachibana A., .. Noah J. A . ( 2014). Frontotemporal oxyhemoglobin dynamics predict performance accuracy of dance simulation gameplay: Temporal characteristics of top-down and bottom-up cortical activities. NeuroImage, 85, 461-470.
doi: 10.1016/j.neuroimage.2013.05.071 URL pmid: 23707582 |
43 |
Öztürk A. H., Tasçioglu B., Aktekin M., Kurtoglu Z., & Erden I . ( 2002). Morphometric comparison of the human corpus callosum in professional musicians and non- musicians by using in vivo magnetic resonance imaging. Journal of Neuroradiology, 29( 1), 29-34.
doi: 10.1002/jmri.10067 URL pmid: 11984475 |
44 |
Rüber T., Lindenberg R., & Schlaug G . ( 2015). Differential adaptation of descending motor tracts in musicians. Cerebral Cortex, 25( 6), 1490-1498.
doi: 10.1093/cercor/bht331 URL pmid: 24363265 |
45 |
Schlaug G., Jancke L., Huang Y., & Steinmetz H . ( 1995). In vivo evidence of structural brain asymmetry in musicians. Science, 267( 5198), 699-701.
doi: 10.1126/science.7839149 URL |
46 |
Schneider P., Scherg M., Dosch H. G., Specht H. J., Gutschalk A., & Rupp A . ( 2002). Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5( 7), 688-694.
doi: 10.1038/nn871 URL pmid: 12068300 |
47 |
Shibasaki H., Sadato N., Lyshkow H., Yonekura Y., Honda M., Nagamine T., .. Konishi J . ( 1993). Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain, 116, 1387-1398.
doi: 10.1093/brain/116.6.1387 URL pmid: 8293277 |
48 |
Sluming V., Barrick T., Howard M., Cezayirli E., Mayes A., & Roberts N . ( 2002). Voxel-based morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians. NeuroImage, 17( 3), 1613-1622.
doi: 10.1006/nimg.2002.1288 URL pmid: 12414299 |
49 |
Taubert M., Draganski B., Anwander A., Muller K., Horstmann A., Villringer A., & Ragert P . ( 2010). Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. Journal of Neuroscience, 30( 35), 11670-11677.
doi: 10.1523/JNEUROSCI.2567-10.2010 URL pmid: 20810887 |
50 |
Turner R. S., Grafton S. T., Votaw J. R., Delong M. R., & Hoffman J. M . ( 1998). Motor subcircuits mediating the control of movement velocity: A PET study. Journal of Neurophysiology, 80( 4), 2162-2176.
doi: 10.1097/00005072-199810000-00010 URL pmid: 9772269 |
[1] | ZHANG Caihui, YE Jianqiao, YANG Jing. Brain mechanism underlying learning Chinese as a second language [J]. Advances in Psychological Science, 2023, 31(5): 747-758. |
[2] | LIU Wenhua, WEN Xiujuan, CHEN Ling, YANG Rui, HU Yiru. Reward-anticipation and outcome-evaluation ERPs and its application in psychiatric disorders [J]. Advances in Psychological Science, 2023, 31(5): 783-799. |
[3] | ZHANG Jie, ZHANG Huoyin, LI Hong, LEI Yi. The effect of sleep on fear learning and its cognitive neural mechanisms [J]. Advances in Psychological Science, 2023, 31(4): 631-640. |
[4] | LIU Wenbin, QI Zhengtang, LIU Weina. The effects of different sensory functions on depression and its neuromechanism [J]. Advances in Psychological Science, 2023, 31(4): 641-656. |
[5] | KONG Xiang-Zhen, ZHANG Fengxiang, PU Yi. The functional brain network that supports human spatial navigation [J]. Advances in Psychological Science, 2023, 31(3): 330-337. |
[6] | LIU Peihan, ZHANG Huoyin, ZHANG Xukai, LI Hong, LEI Yi. Effects of acute versus chronic pain on reward processing and the underlying neural mechanisms involved [J]. Advances in Psychological Science, 2023, 31(3): 402-415. |
[7] | MA Yuanxiao, CHEN Xu. The functional mechanism of oxytocin in anxiety detection and extinction among anxiety-susceptible groups [J]. Advances in Psychological Science, 2023, 31(1): 10-19. |
[8] | YU Jiayu, JIN Yuxi, LIANG Dandan. Brain activation differences in lexical-semantics processing in autistic population: A meta-analysis of fMRI studies [J]. Advances in Psychological Science, 2022, 30(11): 2448-2460. |
[9] | WANG Rong, CHEN Xiaoyi, DU Xue, JIANG Jun. The regulatory mechanism of transcutaneous vagus nerve stimulation on inhibition control [J]. Advances in Psychological Science, 2022, 30(10): 2269-2277. |
[10] | HU Xiaoyong, DU Tangyan, LI Lanyu, WANG Tiantian. Neural mechanisms underlying the effect of low socioeconomic status on self-regulation [J]. Advances in Psychological Science, 2022, 30(10): 2278-2290. |
[11] | ZHANG Siyuan, LI Xuebing. The application of different frequencies of transcranial alternating current stimulation in mental disorders [J]. Advances in Psychological Science, 2022, 30(9): 2053-2066. |
[12] | ZOU Di, LI Hong, WANG Fushun. An investigation into the definition of arousal and its cognitive neurophysiological basis [J]. Advances in Psychological Science, 2022, 30(9): 2020-2033. |
[13] | LIANG Fei, JIANG Yao, XIAO Tingwei, DONG Jie, WANG Fushun. Basic emotion and its neural basis: Evidence from fMRI and machine-vision studies [J]. Advances in Psychological Science, 2022, 30(8): 1832-1843. |
[14] | ZHOU Zhenyou, KONG Li, CHAN Raymond. The relationship between gut microbiota and brain imaging and clinical manifestation in schizophrenia [J]. Advances in Psychological Science, 2022, 30(8): 1856-1869. |
[15] | LI Haihong, SHANG Siyuan, XIE Xiaofei. The role of genes in altruistic behavior: Evidence from quantitative genetics and molecular genetics [J]. Advances in Psychological Science, 2022, 30(7): 1574-1588. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||