心理科学进展 ›› 2024, Vol. 32 ›› Issue (6): 995-1009.doi: 10.3724/SP.J.1042.2024.00995
收稿日期:
2023-08-28
出版日期:
2024-06-15
发布日期:
2024-04-07
通讯作者:
吴波, E-mail: wubo212006@126.com
基金资助:
Received:
2023-08-28
Online:
2024-06-15
Published:
2024-04-07
摘要:
设计源效应是指企业产品设计来源信息对消费者产品偏好和企业态度的影响。目前, 专业设计师、用户和AI是三种常见的产品设计源。这三种产品设计源通过不同的作用机制对消费者心理和行为产生积极或消极的影响。其中, 能力是专业设计源效应产生的作用机制, 能力、权力和心理距离是用户设计源效应产生的作用机制, 而价值和信息是AI设计源效应产生的作用机制。同时, 设计源效应是有作用条件的, 会受到消费者、产品、企业因素的约束。未来研究可以深入探讨消费者对混合设计源的反应、进一步探讨设计源效应的作用机制和作用条件。
中图分类号:
吴波, 张傲杰, 曹菲. (2024). 专业设计、用户设计还是AI设计?设计源效应的心理机制. 心理科学进展 , 32(6), 995-1009.
WU Bo, ZHANG Aojie, CAO Fei. (2024). Professional design, user design, or AI design? The psychological mechanism of the source of design effect. Advances in Psychological Science, 32(6), 995-1009.
反应分类 | 维度划分 | 具体反应 | 文献来源 |
---|---|---|---|
积极反应 | 产品偏好 | 消费者对用户设计的产品有更高的支付意愿 | Schreier et al., |
消费者对采用用户设计企业的产品或标明“用户设计”的产品有更高的购买意愿 | Dahl et al., | ||
标明“用户设计”的产品有更好的市场表现 | Nishikawa et al., | ||
企业态度 | 消费者对采用用户设计的企业有更好的态度 | Fuchs & Schreier, | |
消费者对采用用户设计的企业有更积极的行为意向 | Fuchs & Schreier, | ||
消费者对采用用户设计的企业有更高的认同感 | Dahl et al., | ||
如果品牌利用品牌社群用户设计开发新产品, 品牌社群成员有更强的自我品牌联结和品牌依恋 | 王海忠 等, | ||
消极反应 | 产品偏好 | 消费者对用户设计的奢侈品有较低的购买意愿 | Fuchs et al., |
企业态度 | 消费者对采用用户设计复杂产品的陌生品牌有较差的态度 | Liljedal, |
表1 消费者对用户设计的反应
反应分类 | 维度划分 | 具体反应 | 文献来源 |
---|---|---|---|
积极反应 | 产品偏好 | 消费者对用户设计的产品有更高的支付意愿 | Schreier et al., |
消费者对采用用户设计企业的产品或标明“用户设计”的产品有更高的购买意愿 | Dahl et al., | ||
标明“用户设计”的产品有更好的市场表现 | Nishikawa et al., | ||
企业态度 | 消费者对采用用户设计的企业有更好的态度 | Fuchs & Schreier, | |
消费者对采用用户设计的企业有更积极的行为意向 | Fuchs & Schreier, | ||
消费者对采用用户设计的企业有更高的认同感 | Dahl et al., | ||
如果品牌利用品牌社群用户设计开发新产品, 品牌社群成员有更强的自我品牌联结和品牌依恋 | 王海忠 等, | ||
消极反应 | 产品偏好 | 消费者对用户设计的奢侈品有较低的购买意愿 | Fuchs et al., |
企业态度 | 消费者对采用用户设计复杂产品的陌生品牌有较差的态度 | Liljedal, |
[1] | 宋晓兵, 徐珂欣, 吴育振. (2017). 用户设计能否包打天下?——自我建构对用户设计产品偏好的影响研究. 管理世界, (5), 119−130. |
[2] | 孙乃娟, 李辉. (2017). 群发性产品危机后消费者宽恕形成机理研究:顾客参与的动态驱动效应. 中央财经大学学报, (2), 101−109. |
[3] | 王海忠, 闫怡. (2018). 顾客参与新产品构思对消费者自我—品牌联结的正面溢出效应:心理模拟的中介作用. 南开管理评论, 21(1), 132−145. |
[4] | 王海忠, 闫怡, 何朕鑫. (2017). 消费者参与新产品构思对线上社群成员自我-品牌联接和品牌依恋的影响. 管理学报, 14(3), 400−413. |
[5] | Allen B. J., Chandrasekaran D., & Basuroy S. (2018). Design crowdsourcing: The impact on new product performance of sourcing design solutions from the “crowd”. Journal of Marketing, 82(2), 106−123. |
[6] | Althuizen N., & Chen B. (2022). Crowdsourcing ideas using product prototypes: The joint effect of prototype enhancement and the product design goal on idea novelty. Management Science, 68(4), 3008−3025. |
[7] | Bai B., Dai H., Zhang D. J., Zhang F., & Hu H. (2022). The impacts of algorithmic work assignment on fairness perceptions and productivity: Evidence from field experiments. Manufacturing & Service Operations Management, 24(6), 3060−3078. |
[8] | Bayus B. L. (2013). Crowdsourcing new product ideas over time: An analysis of the Dell IdeaStorm community. Management Science, 59(1), 226−244. |
[9] | Bell J. J., Pescher C., Tellis G. J., & Füller J. (2024). Can AI help in ideation? A theory-based model for idea screening in crowdsourcing contests. Marketing Science, 43(1), 54−72. |
[10] | Caprioli S., Fuchs C., & Van den Bergh B. (2023). On breaking functional fixedness: How the Aha! moment enhances perceived product creativity and product appeal. Journal of Consumer Research, 50(1), 48−69. |
[11] | Castelo N., Bos M. W., & Lehmann D. R. (2019). Task-dependent algorithm aversion. Journal of Marketing Research, 56(5), 809−825. |
[12] | Dahl D. W., Fuchs C., & Schreier M. (2015). Why and when consumers prefer products of user-driven firms: A social identification account. Management Science, 61(8), 1978−1988. |
[13] | Fuchs C., Prandelli E., Schreier M., & Dahl D. W. (2013). All that is users might not be gold: How labeling products as user designed backfires in the context of luxury fashion brands. Journal of Marketing, 77(5), 75−91. |
[14] | Fuchs C., & Schreier M. (2011). Customer empowerment in new product development. Journal of Product Innovation Management, 28(1), 17−32. |
[15] | Garvey A. M., Kim T., & Duhachek A. (2023). Bad news? Send an AI. Good news? Send a human. Journal of Marketing, 87(1), 10−25. |
[16] | Givi J., Birg L., Lowrey T. M., & Galak J. (2023). An integrative review of gift‐giving research in consumer behavior and marketing. Journal of Consumer Psychology, 33(3), 529−545. |
[17] | Goodman J. K., & Lim S. (2018). When consumers prefer to give material gifts instead of experiences: The role of social distance. Journal of Consumer Research, 45(2), 365−382. |
[18] | Granulo A., Fuchs C., & Puntoni S. (2021). Preference for human (vs. robotic) labor is stronger in symbolic consumption contexts. Journal of Consumer Psychology, 31(1), 72−80. |
[19] | Guo B., & Wang D. (2024). Will online shopping lead to more brand loyalty than offline shopping? The role of uncertainty avoidance. Journal of Marketing Research, 61(1), 92−109. |
[20] | Haefner N., Wincent J., Parida V., & Gassmann O. (2021). Artificial intelligence and innovation management: A review, framework, and research agenda. Technological Forecasting and Social Change, 162, Article 120392. https://doi.org/10.1016/j.techfore.2020.120392 |
[21] | Heitmann M., Landwehr J. R., Schreiner T. F., & van Heerde H. J. (2020). Leveraging brand equity for effective visual product design. Journal of Marketing Research, 57(2), 257−277. |
[22] | Homburg C., Schwemmle M., & Kuehnl C. (2015). New product design: Concept, measurement, and consequences. Journal of Marketing, 79(3), 41−56. |
[23] | Huang M. H., Rust R., & Maksimovic V. (2019). The feeling economy: Managing in the next generation of artificial intelligence (AI). California Management Review, 61(4), 43−65. |
[24] | Jindal R. P., Sarangee K. R., Echambadi R., & Lee S. (2016). Designed to succeed: Dimensions of product design and their impact on market share. Journal of Marketing, 80(4), 72−89. |
[25] | Kakatkar C., Bilgram V., & Füller J. (2020). Innovation analytics: Leveraging artificial intelligence in the innovation process. Business Horizons, 63(2), 171−181. |
[26] | Kong J., & Lou C. (2023). Do cultural orientations moderate the effect of online review features on review helpfulness? A case study of online movie reviews. Journal of Retailing and Consumer Services, 73, Article 103374. https://doi.org/10.1016/j.jretconser.2023.103374 |
[27] | Kornish L. J., & Ulrich K. T. (2014). The importance of the raw idea in innovation: Testing the sow's ear hypothesis. Journal of Marketing Research, 51(1), 14−26. |
[28] | Kristensson P., Gustafsson A., & Archer T. (2004). Harnessing the creative potential among users. Journal of Product Innovation Management, 21(1), 4−14. |
[29] | LaTour K. A., & Deighton J. A. (2019). Learning to become a taste expert. Journal of Consumer Research, 46(1), 1−19. |
[30] | Lee M. K. (2018). Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management. Big Data & Society, 5(1). https://doi.org/10.1177/2053951718756684 |
[31] | Libai B., Bart Y., Gensler S., Hofacker C. F., Kaplan A., Kötterheinrich K., & Kroll E. B. (2020). Brave new world? On AI and the management of customer relationships. Journal of Interactive Marketing, 51(1), 44−56. |
[32] | Lilien G. L., Morrison P. D., Searls K., Sonnack M., & von Hippel E. (2002). Performance assessment of the lead user idea-generation process for new product development. Management Science, 48(8), 1042−1059. |
[33] | Liljedal K. T. (2016). The effects of advertising consumer co-created new products: A brand-alliance framework model can predict perceptions about co-created brands and their creators. Journal of Advertising Research, 56(1), 53−63. |
[34] | Liu P. J., Dallas S. K., & Fitzsimons G. J. (2019). A framework for understanding consumer choices for others. Journal of Consumer Research, 46(3), 407−434. |
[35] | Liu Y., Li K. J., Chen H., & Balachander S. (2017). The effects of products’ aesthetic design on demand and marketing-mix effectiveness: The role of segment prototypicality and brand consistency. Journal of Marketing, 81(1), 83−102. |
[36] | Logg J. M., Minson J. A., & Moore D. A. (2019). Algorithm appreciation: People prefer algorithmic to human judgment. Organizational Behavior and Human Decision Processes, 151(10), 90−103. |
[37] | Longoni C., Bonezzi A., & Morewedge C. K. (2019). Resistance to medical artificial intelligence. Journal of Consumer Research, 46(4), 629−650. |
[38] | Longoni C., & Cian L. (2022). Artificial intelligence in utilitarian vs. hedonic contexts: The “word-of-machine” effect. Journal of Marketing, 86(1), 91−108. |
[39] | Longoni C., Cian L., & Kyung E. J. (2023). Algorithmic transference: People overgeneralize failures of AI in the government. Journal of Marketing Research, 60(1), 170−188. |
[40] | Mishra A. (2016). Attribute-based design perceptions and consumer-brand relationship: Role of user expertise. Journal of Business Research, 69(12), 5983−5992. |
[41] | Moreau C. P., Bonney L., & Herd K. B. (2011). It’s the thought (and the effort) that counts: How customizing for others differs from customizing for oneself. Journal of Marketing, 75(5), 120−133. |
[42] | Moreau C. P., & Herd K. B. (2010). To each his own? How comparisons with others influence consumers’ evaluations of their self-designed products. Journal of Consumer Research, 36(5), 806−819. |
[43] | Moreau C. P., Prandelli E., Schreier M., & Hieke S. (2020). Customization in luxury brands: Can Valentino get personal? Journal of Marketing Research, 57(5), 937−947. |
[44] | Nishikawa H., Schreier M., Fuchs C., & Ogawa S. (2017). The value of marketing crowdsourced new products as such: Evidence from two randomized field experiments. Journal of Marketing Research, 54(4), 525−539. |
[45] | Nishikawa H., Schreier M., & Ogawa S. (2013). User-generated versus designer-generated products: A performance assessment at Muji. International Journal of Research in Marketing, 30(2), 160−167. |
[46] | Paharia N., & Swaminathan V. (2019). Who is wary of user design? The role of power-distance beliefs in preference for user-designed products. Journal of Marketing, 83(3), 91−107. |
[47] | Poetz M. K., & Schreier M. (2012). The value of crowdsourcing: Can users really compete with professionals in generating new product ideas? Journal of Product Innovation Management, 29(2), 245−256. |
[48] | Puntoni S., Reczek R. W., Giesler M., & Botti S. (2021). Consumers and artificial intelligence: An experiential perspective. Journal of Marketing, 85(1), 131−151. |
[49] | Randall T., Terwiesch C., & Ulrich K. T. (2007). User design of customized products. Marketing Science, 26(2), 268−280. |
[50] | Reich T., Kaju A., & Maglio S. J. (2023). How to overcome algorithm aversion: Learning from mistakes. Journal of Consumer Psychology, 33(2), 285−302. |
[51] | Sample K. L., Hulland J., Sevilla J., & Labrecque L. I. (2024). The design communication assessment scale (DCAS): Assessing and adjusting the effectiveness of product design communications. Journal of Marketing Research, 61(1), 27−48. |
[52] | Särmäkari N., & Vänskä A. (2022). ‘Just hit a button!’-f ashion 4.0 designers as cyborgs, experimenting and designing with generative algorithms. International Journal of Fashion Design, Technology and Education, 15( 2), 211−220. |
[53] | Schreier M., Fuchs C., & Dahl D. W. (2012). The innovation effect of user design: Exploring consumers’ innovation perceptions of firms selling products designed by users. Journal of Marketing, 76(5), 18−32. |
[54] | Simonov A., Ursu R. M., & Zheng C. (2023). Suspense and surprise in media product design: Evidence from twitch. Journal of Marketing Research, 60(1), 1−24. |
[55] | Song X., Jung J., & Zhang Y. (2021). Consumers’ preference for user-designed versus designer-designed products: The moderating role of power distance belief. Journal of Marketing Research, 58(1), 163−181. |
[56] | Srinivasan R., & Sarial-Abi G. (2021). When algorithms fail: Consumers’ responses to brand harm crises caused by algorithm errors. Journal of Marketing, 85(5), 74−91. |
[57] | Starke C., Baleis J., Keller B., & Marcinkowski F. (2022). Fairness perceptions of algorithmic decision-making: A systematic review of the empirical literature. Big Data & Society, 9(2). https://doi.org/10.1177/20539517221115189 |
[58] | Ulrich K. T. (2011). Design: Creation of artifacts in society. Philadelphia: University of Pennsylvania Press. |
[59] | Verganti R., Vendraminelli L., & Iansiti M. (2020). Innovation and design in the age of artificial intelligence. Journal of Product Innovation Management, 37(3), 212−227. |
[60] | Von Hippel E. (1998). Economics of product development by users: The impact of “sticky” local information. Management Science, 44(5), 629−644. |
[61] | Wang S. S., & Van Der Lans R. (2018). Modeling gift choice: The effect of uncertainty on price sensitivity. Journal of Marketing Research, 55(4), 524−540. |
[62] | Xu L., & Mehta R. (2022). Technology devalues luxury? Exploring consumer responses to AI-designed luxury products. Journal of the Academy of Marketing Science, 50(6), 1135−1152. |
[63] | Yin J., Wang Y., Pang J., & Wang K. (2020). Customizing products for self versus close others: The effect of intended recipient on creator perceptions of product uniqueness. Marketing Letters, 31(1), 73−87. |
[64] | Zhang H., Bai X., & Ma Z. (2022). Consumer reactions to AI design: Exploring consumer willingness to pay for AI- designed products. Psychology & Marketing, 39(11), 2171−2183. |
[1] | 周蕾, 林浇敏, 陈艺琦, 梁泳超, 古晨妍, 孙祺章. 不确定性跨期决策视角下绿色行为的心理机制及干预[J]. 心理科学进展, 2024, 32(7): 1048-1056. |
[2] | 王汪帅, 易颜熙, 罗芷薇, 厉杰. 内卷还是躺平?竞争压力如何影响心理补偿[J]. 心理科学进展, 2024, 32(7): 1057-1072. |
[3] | 李育辉, 杨晨露. 团队时间领导的概念内涵及其对团队和个体效能的影响机制[J]. 心理科学进展, 2024, 32(7): 1073-1086. |
[4] | 吴佳桧, 傅海伦. 成就目标定向与学业成绩关系的元分析:自我效能感、学习投入的中介作用[J]. 心理科学进展, 2024, 32(7): 1104-1125. |
[5] | 王涛, 占小军, 余薇. AI感知对员工心理和行为的影响及理论解释[J]. 心理科学进展, 2024, 32(7): 1195-1208. |
[6] | 曹呈旭, 七十三, 金童林, 曾小叶, 安叶青, 卜塔娜. 基于信号检测论的错误信息鉴别层级模型[J]. 心理科学进展, 2024, 32(7): 1209-1220. |
[7] | 汤一鹏, 樊为, 张晓, 王淑红, 熊善阔, 蒲小萍. 见字如面:虚拟沟通风格对领导力涌现的影响[J]. 心理科学进展, 2024, 32(6): 886-907. |
[8] | 陈丝璐, 张光磊, 刘文兴, 田园. 感激导向人力资源管理实践的驱动机制及其作用机理[J]. 心理科学进展, 2024, 32(6): 908-927. |
[9] | 王祯, 管健. 性别刻板印象的变与不变?来自内容、方法与影响的证据[J]. 心理科学进展, 2024, 32(6): 939-950. |
[10] | 郑明璐, 刘林澍, 叶浩生. 社会等级的进阶路径及其演化:来自比较研究的启示[J]. 心理科学进展, 2024, 32(6): 951-964. |
[11] | 杨蕾, 陈维扬, 朱秋锦, 钟年. 心理学视野下的累积文化演化:理论发展与解释流派整合[J]. 心理科学进展, 2024, 32(6): 965-980. |
[12] | 刘霞, 卫武. 职场正念的人际影响及作用机制[J]. 心理科学进展, 2024, 32(6): 981-994. |
[13] | 崔智淞, 贾建锋, 邹纯龙, 李瑞芹. 组织如何应对职场摸鱼?职场网络闲逛行为的作用结果及其反馈效应[J]. 心理科学进展, 2024, 32(5): 738-753. |
[14] | 严鸣, 郑石. 区分还是融合?虚拟化团队工作模式下的员工工作−家庭平衡策略[J]. 心理科学进展, 2024, 32(5): 754-770. |
[15] | 侯悍超, 倪士光, 林书亚, 王蒲生. 当AI学习共情:心理学视角下共情计算的主题、场景与优化[J]. 心理科学进展, 2024, 32(5): 845-858. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||