心理科学进展 ›› 2024, Vol. 32 ›› Issue (6): 1010-1033.doi: 10.3724/SP.J.1042.2024.01010
• 研究方法 • 上一篇
收稿日期:
2023-08-18
出版日期:
2024-06-15
发布日期:
2024-04-07
通讯作者:
汪文义, E-mail: wenyiwang@jxnu.edu.cn
基金资助:
SONG Lihong1, WANG Wenyi2(), DING Shuliang2
Received:
2023-08-18
Online:
2024-06-15
Published:
2024-04-07
摘要:
Q矩阵是认知心理学与心理计量学结合的重要载体, Q矩阵在认知诊断中发挥着十分重要的作用。Q矩阵理论和应用研究近年来取得了重要进展。众多研究者从结构化到非结构化、属性二值到多值、简单到复杂模型、独立到一般结构、0-1到多级评分方面不断深入和拓展Q矩阵理论。Q矩阵理论也广泛应用于测验构念效度评价、计算机化自适应测验选题策略设计、Q矩阵学习和标定、认知诊断测验组卷等。与模型无关的Q矩阵理论和适合特定认知诊断模型下Q矩阵理论, 以及最新Q矩阵理论的应用都值得深入研究。
中图分类号:
宋丽红, 汪文义, 丁树良. (2024). 认知诊断评估中Q矩阵理论及应用. 心理科学进展 , 32(6), 1010-1033.
SONG Lihong, WANG Wenyi, DING Shuliang. (2024). Q-matrix theory and its applications in cognitive diagnostic assessment. Advances in Psychological Science, 32(6), 1010-1033.
知识状态 | |||||||
---|---|---|---|---|---|---|---|
- | |||||||
- | |||||||
- | |||||||
- | |||||||
- | |||||||
- | |||||||
- |
表1 结论7后面第二个条件验证
知识状态 | |||||||
---|---|---|---|---|---|---|---|
- | |||||||
- | |||||||
- | |||||||
- | |||||||
- | |||||||
- | |||||||
- |
结构 | 水平 | 机制 | Q矩阵 | 理论基础 | 样本量 | 诊断方法 |
---|---|---|---|---|---|---|
层级 | 二值 | 连接 | Q矩阵包含单位矩阵 Q矩阵可达矩阵R (定理1) Q矩阵包含介于两者之间的E* (定理4) | Chiu ( 丁树良等( Köhn和Chiu ( Heller ( | 小 | NPC |
定理10或定理11的条件 | Gu和Xu ( | 中 | DINA-AHM | |||
非连接 | Q矩阵包含单位矩阵(充分条件) | Chiu和Köhn ( | 小 | NPC | ||
定理A6 | Gu和Xu ( | 中 | DINO-AHM | |||
原文中定理3(充分条件) | Gu和Xu ( | 中 | ACDM/LLTM | |||
独立 | 二值 | 连接 | Q矩阵包含单位矩阵 定理2或定理3的条件 | Chiu ( Heller ( | 小 | NPC |
定理8的条件 | Gu和Xu ( | 中 | DINA | |||
非连接 | Q矩阵包含单位矩阵 | Chiu和Köhn ( | 小 | NPC | ||
定理8的条件 | Gu和Xu ( | 中 | DINO | |||
定理9的条件 | Gu和Xu ( | 中 | ACDM/LLTM | |||
大 | GDINA LCDM GDM | |||||
层级 (含独立) | 多值 | 非连接 | Q矩阵包含拟可达矩阵 | 丁树良, 罗芬等( Sun等人( 蔡艳和涂冬波( | 中 | GDD-P |
一般 | 二值 | 连接 | Q矩阵包含基本属性模式矩阵B或定理5、6、7中条件 | Heller ( | 小 | NPC |
表2 完备Q矩阵应用条件
结构 | 水平 | 机制 | Q矩阵 | 理论基础 | 样本量 | 诊断方法 |
---|---|---|---|---|---|---|
层级 | 二值 | 连接 | Q矩阵包含单位矩阵 Q矩阵可达矩阵R (定理1) Q矩阵包含介于两者之间的E* (定理4) | Chiu ( 丁树良等( Köhn和Chiu ( Heller ( | 小 | NPC |
定理10或定理11的条件 | Gu和Xu ( | 中 | DINA-AHM | |||
非连接 | Q矩阵包含单位矩阵(充分条件) | Chiu和Köhn ( | 小 | NPC | ||
定理A6 | Gu和Xu ( | 中 | DINO-AHM | |||
原文中定理3(充分条件) | Gu和Xu ( | 中 | ACDM/LLTM | |||
独立 | 二值 | 连接 | Q矩阵包含单位矩阵 定理2或定理3的条件 | Chiu ( Heller ( | 小 | NPC |
定理8的条件 | Gu和Xu ( | 中 | DINA | |||
非连接 | Q矩阵包含单位矩阵 | Chiu和Köhn ( | 小 | NPC | ||
定理8的条件 | Gu和Xu ( | 中 | DINO | |||
定理9的条件 | Gu和Xu ( | 中 | ACDM/LLTM | |||
大 | GDINA LCDM GDM | |||||
层级 (含独立) | 多值 | 非连接 | Q矩阵包含拟可达矩阵 | 丁树良, 罗芬等( Sun等人( 蔡艳和涂冬波( | 中 | GDD-P |
一般 | 二值 | 连接 | Q矩阵包含基本属性模式矩阵B或定理5、6、7中条件 | Heller ( | 小 | NPC |
[1] | 蔡艳, 涂冬波. (2015). 属性多级化的认知诊断模型拓展及其Q矩阵设计. 心理学报, 47(10), 1300−1308. |
[2] | 昌维, 詹沛达, 王立君. (2018). 认知诊断中多分属性与二分属性的对比研究. 心理科学, 41(4), 982−988. |
[3] | 丁树良, 罗芬, 汪文义. (2012). Q矩阵理论的扩展. 心理学探新, 32(5), 417−422. |
[4] | 丁树良, 罗芬, 汪文义. (2014). 多级评分认知诊断测验蓝图的设计——独立型和收敛型结构. 江西师范大学学报(自然科学版), 38(3), 265−269. |
[5] | 丁树良, 罗芬, 汪文义, 李佳, 熊建华. (2022). 非结构化完备Q阵的构造与判定. 江西师范大学学报(自然科学版), 46(5), 441−446. |
[6] | 丁树良, 罗芬, 汪文义, 熊建华. (2015). 0-1和多值可达矩阵的性质及应用. 江西师范大学学报(自然科学版), 39(1), 64−68. |
[7] | 丁树良, 罗芬, 汪文义, 熊建华. (2019). 0-1评分认知诊断测验设计. 江西师范大学学报(自然科学版), 43(5), 441−447. |
[8] | 丁树良, 毛萌萌, 汪文义, 罗芬, Cui, Y. (2012). 教育认知诊断测验与认知模型一致性的评估. 心理学报, 44(11), 1535−1546. |
[9] | 丁树良, 汪文义, 罗芬. (2012). 认知诊断中Q矩阵和Q矩阵理论. 江西师范大学学报(自然科学版), 36(5), 441−445. |
[10] | 丁树良, 汪文义, 罗芬. (2014). 多级评分认知诊断测验蓝图的设计——根树型结构. 江西师范大学学报(自然科学版), 38(2), 111−118. |
[11] | 丁树良, 汪文义, 罗芬, 熊建华. (2015). 多值Q矩阵理论. 江西师范大学学报(自然科学版), 39(4), 365−370. |
[12] | 丁树良, 汪文义, 罗芬, 熊建华. (2016). 可达阵功能的不可替代性. 江西师范大学学报(自然科学版), 40(3), 290−294+298. |
[13] | 丁树良, 汪文义, 罗芬, 熊建华. (2017). Q矩阵理论探微. 江西师范大学学报(哲学社会科学版), 50(1), 71−79. |
[14] | 丁树良, 汪文义, 罗芬, 熊建华. (2018). Q矩阵标定的一种简便方法. 江西师范大学学报(自然科学版), 42(2), 130−133. |
[15] | 丁树良, 汪文义, 杨淑群. (2011). 认知诊断测验蓝图的设计. 心理科学, 34(2), 258−265. |
[16] | 丁树良, 杨淑群, 汪文义. (2010). 可达矩阵在认知诊断测验编制中的重要作用. 江西师范大学学报(自然科学版), 34(5), 490−494. |
[17] | 丁树良, 祝玉芳, 林海菁, 蔡艳. (2009). Tatsuoka Q矩阵理论的修正. 心理学报, 41(2), 175-181. |
[18] | 高椿雷, 罗照盛, 郑蝉金, 喻晓锋, 彭亚风, 郭小军. (2017). CD-CAT初始阶段项目选取方法. 心理科学, 40(2), 485−491. |
[19] | 康春花, 杨亚坤, 曾平飞. (2017). 海明距离判别法分类准确率的影响因素. 江西师范大学学报(自然科学版), 41(4), 394−400. |
[20] | 康春花, 朱仕浩, 宫皓明, 曾平飞. (2023). 一种可融入额外信息的机器学习诊断法. 心理科学, 46(1), 212−220. |
[21] | 李佳, 毛秀珍, 张雪琴. (2021). 认知诊断Q矩阵估计(修正)方法. 心理科学进展, 29(12), 2272−2280. |
[22] | 李元白, 曾平飞, 杨亚坤, 康春花. (2018). 一种非参数的多策略方法:多策略的海明距离判别法. 江西师范大学学报(自然科学版), 42(1), 67−73. |
[23] | 罗芬, 王晓庆, 丁树良, 熊建华. (2018). 自适应分组认知诊断测验设计及其选题策略. 心理科学, 41(3), 720−726. |
[24] | 唐小娟, 丁树良, 毛萌萌, 俞宗火. (2013). 基于属性层级结构的认知诊断测验的组卷. 心理学探新, 33(3), 252−259. |
[25] | 唐小娟, 丁树良, 俞宗火. (2022). 题目属性向量平衡策略的认知诊断测验设计. 心理科学, 45(6), 1466−1474. |
[26] | 田伟, 辛涛. (2012). 基于等级反应模型的规则空间方法. 心理学报, 44(1), 249−262. |
[27] | 涂冬波, 蔡艳, 戴海琦. (2013). 认知诊断CAT选题策略及初始题选取方法. 心理科学, 36(2), 469−474. |
[28] | 王立君, 唐芳, 詹沛达. (2020). 基于认知诊断测评的个性化补救教学效果分析: 以“一元一次方程”为例. 心理科学, 43(6), 1490−1497. |
[29] | 汪文义, 丁树良, 宋丽红. (2015). 认知诊断中基于条件期望的距离判别方法. 心理学报, 47(12), 1499−1510. |
[30] | 汪文义, 宋丽红, 丁树良. (2015). 基于探索性因素分析的Q矩阵标定方法. 江西师范大学学报(自然科学版), 39(2), 138−144+170. |
[31] | 汪文义, 宋丽红, 丁树良. (2018). 基于可达阵的一种Q矩阵标定方法. 心理科学, 41(4), 968−975. |
[32] | 王晓庆, 丁树良, 罗芬. (2019). 认知诊断中的Q矩阵及其作用. 心理科学, 42(3), 739-746. |
[33] | 詹沛达, 边玉芳, 王立君. (2016). 重参数化的多分属性诊断分类模型及其判准率影响因素. 心理学报, 48(3), 318−330. |
[34] | 詹沛达, 丁树良, 王立君. (2017). 多分属性层级结构下引入逻辑约束的理想掌握模式. 江西师范大学学报(自然科学版), 41(3), 289−295. |
[35] | 祝玉芳, 丁树良. (2009). 基于等级反应模型的属性层级方法. 心理学报, 41(3), 267−275. |
[36] | Bao Y. (2019). A diagnostic classification model for polytomous attributes (Unpublished doctoral dissertation). University of Georgia. |
[37] | Briggs D., Alonzo A., Schwab C., & Wilson M. (2006). Diagnostic assessment with ordered multiple-choice items. Educational Assessment, 11(1), 33−63. |
[38] | Briggs D. C., & Alonzo A. C. (2012). The psychometric modeling of ordered multiple-choice item responses for diagnostic assessment with a learning progression. In A.C. Alonzo, &A.W. Gotwals (Eds.), Learning progressions in science (pp.293−316). Rotterdam, Sense Publishers. |
[39] | Cai Y., Tu D., & Ding S. (2018). Theorems and methods of a complete Q matrix with attribute hierarchies under restricted Q-matrix design. Frontiers in Psychology, 9, Article 1413. |
[40] | Chang Y. P., Chiu C. Y., & Tsai R. C. (2019). Nonparametric CAT for CD in educational settings with small samples. Applied Psychological Measurement, 43(7), 543−561. |
[41] | Chen J., & de la Torre J. (2013). A general cognitive diagnosis model for expert-defined polytomous attributes. Applied Psychological Measurement, 37(6), 419−437. |
[42] | Chen J., & de la Torre J. (2018). Introducing the general polytomous diagnosis modeling framework. Frontiers in Psychology, 9, Article 1474. |
[43] | Chen Y., Liu J., Xu G., & Ying Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110(510), 850−866. |
[44] | Chen Y., & Wang S. (2023). Bayesian estimation of attribute hierarchy for cognitive diagnosis models. Journal of Educational and Behavioral Statistics, 48(6), 810−841. https://doi.org/10.3102/10769986231174918. |
[45] | Chiu C.-Y., & Chang Y. (2021). Advances in CD-CAT: The general nonparametric item selection method. Psychometrika, 86(4), 1039−1057. |
[46] | Chiu C.-Y, & Douglas J. (2013). A nonparametric approach to cognitive diagnosis by proximity to ideal response patterns. Journal of Classification, 30, 225−250. |
[47] | Chiu C.-Y., Douglas J. A., & Li X. D. (2008). Cluster analysis for cognitive diagnosis: Theory and applications (Unpublished doctoral dissertation). University of Illinois at Urbana-Champaign. |
[48] | Chiu C.-Y., Douglas J. A., & Li X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74(4), 633−665. |
[49] | Chiu C.-Y., & Köhn H.-F. (2015a). A general proof of consistency of heuristic classification for cognitive diagnosis models. British Journal of Mathematical and Statistical Psychology, 68(3), 387−409. |
[50] | Chiu C.-Y., & Köhn H.-F. (2015b). Consistency of cluster analysis for cognitive diagnosis: The DINO model and the DINA model revisited. Applied Psychological Measurement, 39(6), 465−479. |
[51] | Culpepper S. A. (2023). A note on weaker conditions for identifying restricted latent class models for binary responses. Psychometrika, 88(1), 158−174. |
[52] | Decarlo L. T. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the Q-matrix. Applied Psychological Measurement, 35(1), 8−26. |
[53] | Dibello L. V., Stout W. F., & Roussos L. A. (1995). Unified cognitive psychometric diagnostic assessment likelihood-based classification techniques. In P. D.Nichols, S. F.Chipman, & R. L.Brennan (Eds.), Cognitively Diagnostic Assessment (pp.361−389). Routledge. |
[54] | de la Torre J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179−199. |
[55] | de la Torre J., Qiu X. L., & Santos K.C. (2022). An empirical Q-matrix validation method for the polytomous G-DINA model. Psychometrika, 87(2), 693−724. |
[56] | Falmagne J.-C., & Doignon J.-P. (2011). Learning spaces: Interdisciplinary applied mathematics. Berlin, Heidelberg: Springer. |
[57] | Gu Y., & Xu G. (2019a). Learning attribute patterns in high-dimensional structured latent attribute models. Journal of Machine Learning Research, 20(115), 1−58. |
[58] | Gu Y., & Xu G. (2019b). The sufficient and necessary condition for the identifiability and estimability of the DINA model. Psychometrika, 84(2), 468−483. |
[59] | Gu Y., & Xu G. (2020). Partial identifiability of restricted latent class models. The Annals of Statistics, 48(4), 2082−2107. |
[60] | Gu Y., & Xu G. (2021a). Identifiability of hierarchical latent attribute models. Retrieved July 15, 2023, from https://arxiv.org/abs/1906.07869. |
[61] | Gu Y., & Xu G. (2021b). Sufficient and necessary conditions for the identifiability of the Q-matrix. Statistica Sinica, 31(1), 449−472. |
[62] | Gu Y., & Xu G. (2023). Identifiability of hierarchical latent attribute models. Statistica Sinica, 33, 1−31. |
[63] | Haertel E. H. (1989). Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement, 26(4), 301−321. |
[64] | He S., Culpepper S. A., Douglas J. (2023). A sparse latent class model for polytomous attributes in cognitive diagnostic assessments. In L.A. van derArk,W.H.M. Emons, & R.R. Meijer (Eds.), Essays on Contemporary Psychometrics (pp.413−442). Springer. |
[65] | Heller J. (2022). Complete Q-matrices in conjunctive models on general attribute structures. British Journal of Mathematical and Statistical Psychology, 75(2), 522−549. |
[66] | Heller J., Anselmi P., Stefanutti L., & Robusto E. (2017). A necessary and sufficient condition for unique skill assessment. Journal of Mathematical Psychology, 79, 23−28. |
[67] | Heller J., Stefanutti L., Anselmi P., & Robusto E. (2015). On the link between cognitive diagnostic models and knowledge space theory. Psychometrika, 80(4), 995−1019. |
[68] | Kaplan M., de la Torre J., & Barrada J. R. (2015). New item selection methods for cognitive diagnosis computerized adaptive testing. Applied Psychological Measurement, 39(3), 167−188. |
[69] | Karelitz T. M. (2004). Ordered category attribute coding framework for cognitive assessments (Unpublished doctoral dissertation). University of Illinois at Urbana- Champaign. |
[70] | Köhn H.-F., & Chiu C.-Y. (2017). A procedure for assessing the completeness of the Q-matrices of cognitively diagnostic tests. Psychometrika, 82(1), 112−132. |
[71] | Köhn H.-F., Chiu C. -Y. (2018). How to build a complete Q-matrix for a cognitively diagnostic test. Journal of Classification, 35, 273−299. |
[72] | Köhn H.-F., & Chiu C.-Y. (2019). Attribute hierarchy models in cognitive diagnosis: Identifiability of the latent attribute space and conditions for completeness of the Q-matrix. Journal of Classification, 36, 541−565. |
[73] | Köhn H.-F., & Chiu C.-Y. (2021). A unified theory of the completeness of Q-matrices for the DINA model. Journal of Classification, 38(3), 500−518. |
[74] | Kuo B.-C., Pai H.-S., & de la Torre J. (2016). Modified cognitive diagnostic index and modified attribute-level discrimination index for test construction. Applied Psychological Measurement, 40(5), 315−330. |
[75] | Leighton J., & Gierl M. (2007). Cognitive diagnostic assessment for education: Theory and applications. Cambridge, UK: Cambridge University Press. |
[76] | Leighton J. P., Gierl M. J., & Hunka S. M. (2004). The attribute hierarchy method for cognitive assessment: A variation on Tatsuoka’s rule-space approach. Journal of Educational Measurement, 41(3), 205−237. |
[77] | Liu J., Xu G., & Ying Z. (2012). Data-driven learning of Q-matrix. Applied Psychological Measurement, 36(7), 548−564. |
[78] | Liu J., Xu G., & Ying Z. (2013). Theory of self-learning Q-matrix. Bernoulli, 19(5A), 1790−1817. |
[79] | Liu R. (2018). Misspecification of attribute structure in diagnostic measurement. Educational and Psychological Measurement, 78(4), 605−634. |
[80] | Liu R., Huggins-Manley A. C., & Bradshaw L. (2016). The impact of Q-matrix designs on diagnostic classification accuracy in the presence of attribute hierarchies. Educational and Psychological Measurement, 77(2), 220−240. |
[81] | Liu R., & Jiang Z. (2018). Diagnostic classification models for ordinal item responses. Frontiers in Psychology, 9, Article 2512, https://doi.org/10.3389/fpsyg.2018.02512. |
[82] | Liu R., Liu H., Shi D., & Jiang Z. (2022). Diagnostic classification models for a mixture of ordered and non-ordered response options in rating scales. Applied Psychological Measurement, 46(7), 622−639. |
[83] | Liu Y., Xu G., & Ying Z. (2011). Learning item-attribute relationship in Q-matrix based diagnostic classification models. Retrieved July 15, 2023, from http://arxiv.org/pdf/1106.0721v1.pdf. |
[84] | Ma C., Ouyang J. & Xu G. (2023). Learning latent and hierarchical structures in cognitive diagnosis models. Psychometrika, 88(1), 175−207. |
[85] | Ma W. (2022). A higher-order cognitive diagnosis model with ordinal attributes for dichotomous response data. Multivariate Behavioral Research, 57(2-3), 408−421. |
[86] | Ma C., de la Torre J. & Xu G. (2023). Bridging parametric and nonparametric methods in cognitive diagnosis. Psychometrika, 88(1), 51−75. |
[87] | Ma W., & de la Torre J. (2016). A sequential cognitive diagnosis model for polytomous responses. British Journal of Mathematical and Statistical Psychology, 69(3), 253−275. |
[88] | Ma W., & Guo W. (2019). Cognitive diagnosis models for multiple strategies. British Journal of Mathematical and Statistical Psychology, 72(2), 370−392. |
[89] | Ma W., & Jiang Z. (2021). Estimating cognitive diagnosis models in small samples: Bayes modal estimation and monotonic constraints. Applied Psychological Measurement, 45(2), 95−111. |
[90] | Madison M. J., & Bradshaw L. P. (2015). The effects of q-matrix design on classification accuracy in the log-linear cognitive diagnosis model. Educational and Psychological Measurement, 75(3), 491−511. |
[91] | Maris E. (1999). Estimating multiple classification latent class models. Psychometrika, 64(2), 187−212. |
[92] | Rupp A. A., Templin J., & Henson R. (2010). Diagnostic measurement: Theory, methods, and applications. New York, NY: Guilford Press. |
[93] | Sen S., & Cohen A. S. (2021). Sample size requirements for applying diagnostic classification models. Frontiers in Psychology, 11, Article 621251. https://doi.org/10.3389/fpsyg.2020.621251. |
[94] | Sun J., Xin T., Zhang S., & de la Torre J. (2013). A polytomous extension of the generalized distance discriminating method. Applied Psychological Measurement, 37(7), 503−521. |
[95] | Sun Y., Ye S., Inoue S., & Sun Y. (2014). Alternating recursive method for Q-matrix learning. In J. C. Stamper, Z.A. Pardos, M. Mavrikis, & B. M. McLaren (Eds.), Proceedings of the 7th International Conference on Educational Data Mining (pp.14−20). London, UK. |
[96] | Sun Y., Ye S., Sun Y., & Kameda T. (2015). Improved algorithms for exact and approximate Boolean matrix decomposition. In Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics (pp. 1-10). Paris, France. |
[97] | Tang X., Duan H., Ding S., & Mao M. (2021). A simplified method for predicting pattern match ratio. Frontiers in Psychology, 12, Article 704724. https://doi.org/10.3389/fpsyg.2021.704724. |
[98] | Tatsuoka K. K. (1983). Rule-space: An approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20(4), 345−354. |
[99] | Tatsuoka K. K. (1991). Boolean algebra applied to determination of the universal set of knowledge states (ONR- Tech. Rep. No. RR-91-44). Princeton, NJ: Educational Testing Services. |
[100] | Tatsuoka K. K. (1995). Architecture of knowledge structures and cognitive diagnosis:A statistical pattern recognition and classification approach. In P. D. Nichols, S. F. Chipman, & R. L. Brennan (Eds.), Cognitively diagnostic assessment (pp.327−361). Erlbaum. |
[101] | Tatsuoka K. K. (2009). Cognitive assessment: An introduction to the rule space method. New York: Routledge Taylor & Francis group. |
[102] | Templin J. L., & Henson R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), 287−305. |
[103] | Tian W., Zhang J., Peng Q., & Yang X. (2020). Q-matrix designs of longitudinal diagnostic classification models with hierarchical attributes for formative assessment. Frontiers in Psychology, 11, Article 1694. https://doi.org/10.3389/fpsyg.2020.01694. |
[104] | Toprak T. E. (2021). An international comparison using cognitive diagnostic assessment: Fourth graders’ diagnostic profile of reading skills on PIRLS 2016. Studies In Educational Evaluation, 70(6), 101057. https://doi.org/ 10.1016/j.stueduc.2021.101057. |
[105] | Tu D., Wang S., Cai Y., Douglas J., & Chang H.-H. (2019). Cognitive diagnostic models with attribute hierarchies: Model estimation with a restricted Q-matrix design. Applied Psychological Measurement, 43(4), 255−271. |
[106] | von Davier M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61(2), 287−307. |
[107] | von Davier M., & Lee Y-S. (2019). Handbook of diagnostic classification models: Models and model extensions, applications, software packages. Springer. |
[108] | Wang C., & Lu J. (2021). Learning attribute hierarchies from data: Two exploratory approaches. Journal of Educational and Behavioral Statistics, 46(1), 58−84. |
[109] | Wang D., Ma W., Cai Y., & Tu D. (2023). A general nonparametric classification method for multiple strategies in cognitive diagnostic assessment. Behavior Research Methods, 56, 723−735. https://doi.org/10.3758/s13428-023-02075-8. |
[110] | Wang W., Zheng J., Song L., Tu Y., & Gao P. (2021). Test assembly for cognitive diagnosis using mixed-integer linear programming. Frontiers in Psychology, 12, Article 623077. https://doi.org/10.3389/fpsyg.2021.623077. |
[111] | Xiong J., Luo Z., Luo G., & Yu X. (2022). Data-driven Q-matrix learning based on Boolean matrix factorization in cognitive diagnostic assessment. British Journal of Mathematical and Statistical Psychology, 75(3), 638−667. |
[112] | Xu G. (2013). Statistical inference for diagnostic classification models (Unpublished doctoral dissertation). Columbia University, New York. |
[113] | Xu G. (2017). Identifiability of restricted latent class models with binary responses. The Annals of Statistics, 45(2), 675−707. |
[114] | Xu G., & Shang Z. (2018). Identifying latent structures in restricted latent class models. Journal of the American Statistical Association, 113(523), 1284−1295. |
[115] | Xu G., Wang C., & Shang Z. (2016). On initial item selection in cognitive diagnostic computerized adaptive testing. The British Journal of Mathematical and Statistical Psychology, 69(3), 291−315. |
[116] | Xu G., & Zhang S. (2016). Identifiability of diagnostic classification models. Psychometrika, 81(3), 625−649. |
[117] | Zhan P., Liu Y., Yu Z., & Pan Y. (2023). Tracking ordinal development of skills with a longitudinal DINA model with polytomous attributes. Applied Measurement in Education, 36(2), 99−114. |
[118] | Zhan P., Wang W. C., & Li X. (2020). A partial mastery, higher-order latent structural model for polytomous attributes in cognitive diagnostic assessments. Journal of Classification, 37, 328−351. |
[119] | Zheng Y., & Chang H. H. (2015). On-the-fly assembled multistage adaptive testing. Applied Psychological Measurement, 39(2), 104−118. |
[120] | Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74(2), 191−210. |
[1] | 李佳, 毛秀珍, 张雪琴. 认知诊断Q矩阵估计(修正)方法[J]. 心理科学进展, 2021, 29(12): 2272-2280. |
[2] | 唐倩, 毛秀珍, 何明霜, 何洁. 认知诊断计算机化自适应测验的选题策略[J]. 心理科学进展, 2020, 28(12): 2160-2168. |
[3] | 张雪琴, 毛秀珍, 李佳. 基于CAT的在线标定:设计与方法[J]. 心理科学进展, 2020, 28(11): 1970-1978. |
[4] | 高一珠, 陈孚, 辛涛, 詹沛达, 姜宇. 心理测量学模型在学习进阶中的应用:理论、途径和突破[J]. 心理科学进展, 2017, 25(9): 1623-1630. |
[5] | 陈孚;辛涛;刘彦楼;刘拓;田伟. 认知诊断模型资料拟合检验方法和统计量[J]. 心理科学进展, 2016, 24(12): 1946-1960. |
[6] | 李瑜;丁树良;唐小娟. 多项选择题认知诊断潜能的最大化[J]. 心理科学进展, 2014, 22(5): 866-880. |
[7] | 郭磊;苑春永;边玉芳. 从新模型视角探讨认知诊断的发展趋势[J]. 心理科学进展, 2013, 21(12): 2256-2264. |
[8] | 陈平;张佳慧;辛涛. 在线标定技术在计算机化自适应测验中的应用[J]. 心理科学进展, 2013, 21(10): 1883-1892. |
[9] | 刘源;刘红云. 音乐能力测验:结构拓展与分析方式的转换[J]. 心理科学进展, 2012, 20(8): 1322-1328. |
[10] | 唐小娟;丁树良;俞宗火. 计算机化自适应测验在认知诊断中的应用[J]. 心理科学进展, 2012, 20(4): 616-626. |
[11] | 陈秋梅; 张敏强. 认知诊断模型发展及其应用方法述评[J]. 心理科学进展, 2010, 18(3): 522-529. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||