心理科学进展 ›› 2023, Vol. 31 ›› Issue (3): 330-337.doi: 10.3724/SP.J.1042.2023.00330
收稿日期:
2022-08-19
出版日期:
2023-03-15
发布日期:
2022-12-22
通讯作者:
孔祥祯, E-mail: xiangzhen.kong@zju.edu.cn基金资助:
KONG Xiang-Zhen1,2(), ZHANG Fengxiang1, PU Yi3
Received:
2022-08-19
Online:
2023-03-15
Published:
2022-12-22
摘要:
空间导航在生活中时刻发生, 空间能力衰退是阿尔兹海默症的重要早期表现。早期关于空间导航神经机制的研究主要关注单个脑区的特异性功能, 但这些脑区如何交互以整合不同模态的信息支持复杂导航行为尚不清楚。脑成像技术、脑网络建模方法和神经调控手段的发展, 为在脑网络水平理解人类空间导航的认知神经机制提供了重要研究手段。本研究试图融合空间导航认知神经机制研究的最新进展, 借助脑网络建模、大数据分析、微电流刺激等前沿研究手段, 研究空间导航脑网络的关键拓扑属性特征(如模块化、核心节点等), 探寻该功能特异性神经网络的重要影响因素和调控机制, 并构建空间导航的脑网络理论模型。研究成果将有利于理解人类复杂导航行为的脑网络基础, 为阿尔兹海默症等相关认知障碍脑疾病的筛查和诊断提供重要参考。
中图分类号:
孔祥祯, 张凤翔, 蒲艺. (2023). 空间导航的脑网络基础和调控机制. 心理科学进展 , 31(3), 330-337.
KONG Xiang-Zhen, ZHANG Fengxiang, PU Yi. (2023). The functional brain network that supports human spatial navigation. Advances in Psychological Science, 31(3), 330-337.
[1] | 王欣, 武文博, 李竹, 王涛, 张鑫, 青钊, 张冰. (2018). 网格细胞的电生理及脑功能成像研究进展. 磁共振成像, 9(5), 381-385. |
[2] | 许琴, 罗宇, 刘嘉. (2010). 方向感的加工机制及影响因素. 心理科学进展, 18(8), 1208-1221. |
[3] | 张家鑫, 海拉干, 李会杰. (2019). 空间导航的测量及其在认知老化中的应用. 心理科学进展, 27(12), 2019-2033. |
[4] |
Baumann, O., & Mattingley, J. B. (2021). Extrahippocampal contributions to spatial navigation in humans: A review of the neuroimaging evidence. Hippocampus, 31(7), 640-657.
doi: 10.1002/hipo.23313 pmid: 33595156 |
[5] |
Benabid, A. L., Pollak, P., Gervason, C., Hoffmann, D., Gao, D. M., Hommel, M., Perret, J. E., & de Rougemont, J. (1991). Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet, 337(8738), 403-406.
doi: 10.1016/0140-6736(91)91175-t pmid: 1671433 |
[6] |
Bicanski, A., & Burgess, N. (2020). Neuronal vector coding in spatial cognition. Nature Reviews Neuroscience, 21(9), 453-470.
doi: 10.1038/s41583-020-0336-9 pmid: 32764728 |
[7] |
Bronstein, J. M., Tagliati, M., Alterman, R. L., Lozano, A. M., Volkmann, J., Stefani, A., ... DeLong, M. R. (2011). Deep brain stimulation for Parkinson disease: An expert consensus and review of key issues. Archives of Neurology, 68(2), 165. https://doi.org/10.1001/archneurol.2010.260.
doi: 10.1001/archneurol.2010.260 URL pmid: 20937936 |
[8] |
Cornwell, B. R., Johnson, L. L., Holroyd, T., Carver, F. W., & Grillon, C. (2008). Human hippocampal and parahippocampal theta during goal-directed spatial navigation predicts performance on a virtual Morris water maze. Journal of Neuroscience, 28(23), 5983-5990.
doi: 10.1523/JNEUROSCI.5001-07.2008 pmid: 18524903 |
[9] |
Coughlan, G., Laczó, J., Hort, J., Minihane, A. M., & Hornberger, M. (2018). Spatial navigation deficits - overlooked cognitive marker for preclinical Alzheimer disease? Nature Reviews Neurology, 14(8), 496-506. https://doi.org/10.1038/s41582-018-0031-x
doi: 10.1038/s41582-018-0031-x URL pmid: 29980763 |
[10] |
Ekstrom, A. D., Huffman, D. J., & Starrett, M. (2017). Interacting networks of brain regions underlie human spatial navigation: A review and novel synthesis of the literature. Journal of Neurophysiology, 118(6), 3328-3344. https://doi.org/10.1152/jn.00531.2017
doi: 10.1152/jn.00531.2017 URL pmid: 28931613 |
[11] |
Epstein, R. A., Patai, E. Z., Julian, J. B., & Spiers, H. J. (2017). The cognitive map in humans: Spatial navigation and beyond. Nature Neuroscience, 20(11), 1504-1513. https://doi.org/10.1038/nn.4656.
doi: 10.1038/nn.4656 URL pmid: 29073650 |
[12] |
Evans, A. C. (2013). Networks of anatomical covariance. NeuroImage, 80, 489-504. https://doi.org/10.1016/j.neuroimage.2013.05.054.
doi: 10.1016/j.neuroimage.2013.05.054 URL pmid: 23711536 |
[13] |
Ezzyat, Y., Wanda, P. A., Levy, D. F., Kadel, A., Aka, A., Pedisich, I., ... Kahana, M. J. (2018). Closed-loop stimulation of temporal cortex rescues functional networks and improves memory. Nature Communications, 9(1), 365. https://doi.org/10.1038/s41467-017-02753-0.
doi: 10.1038/s41467-017-02753-0 URL pmid: 29410414 |
[14] |
Fisher, R., Salanova, V., Witt, T., Worth, R., Henry, T., Gross, R., ... Group, S. S. (2010). Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia, 51(5), 899-908. https://doi.org/10.1111/j.1528-1167.2010.02536.x
doi: 10.1111/j.1528-1167.2010.02536.x URL pmid: 20331461 |
[15] |
Fyhn, M., Molden, S., Witter, M. P., Moser, E. I., & Moser, M. B. (2004). Spatial representation in the entorhinal cortex. Science, 305(5688), 1258-1264.
doi: 10.1126/science.1099901 pmid: 15333832 |
[16] |
Greenberg, B. D., Malone, D. A., Friehs, G. M., Rezai, A. R., Kubu, C. S., Malloy, P. F., ··· Rasmussen, S. A. (2006). Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacology, 31(11), 2384-2393. https://doi.org/10.1038/sj.npp.1301165.
doi: 10.1038/sj.npp.1301165 URL pmid: 16855529 |
[17] |
He, Y., Chen, Z. J., & Evans, A. C. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex, 17(10), 2407-2419.
doi: 10.1093/cercor/bhl149 pmid: 17204824 |
[18] |
He, Y., & Evans, A. (2010). Graph theoretical modeling of brain connectivity. Current Opinion in Neurology, 23(4), 341-350. https://doi.org/10.1097/WCO.0b013e32833aa567.
doi: 10.1097/WCO.0b013e32833aa567 URL pmid: 20581686 |
[19] |
Hescham, S., Liu, H., Jahanshahi, A., & Temel, Y. (2020). Deep brain stimulation and cognition: Translational aspects. Neurobiology of Learning and Memory, 174, 107283. https://doi.org/10.1016/j.nlm.2020.107283.
doi: 10.1016/j.nlm.2020.107283 URL |
[20] |
Horner, A. J., Bisby, J. A., Zotow, E., Bush, D., & Burgess, N. (2016). Grid-like processing of imagined navigation. Current Biology, 26(6), 842-847.
doi: 10.1016/j.cub.2016.01.042 pmid: 26972318 |
[21] |
Jacobs, J., Miller, J., Lee, S. A., Coffey, T., Watrous, A. J., Sperling, M. R., ... Rizzuto, D. S. (2016). Direct electrical stimulation of the human entorhinal region and hippocampus impairs memory. Neuron, 92(5), 983-990. https://doi.org/10.1016/j.neuron.2016.10.062
doi: S0896-6273(16)30836-4 URL pmid: 27930911 |
[22] |
Jia, L., Du, Y., Chu, L., Zhang, Z., Li, F., Lyu, D., ... Qiu, Q. (2020). Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. The Lancet Public Health, 5(12), e661-e671.
doi: 10.1016/S2468-2667(20)30185-7 URL |
[23] |
Kelly, C., Biswal, B. B., Craddock, R. C., Castellanos, F. X., & Milham, M. P. (2012). Characterizing variation in the functional connectome: Promise and pitfalls. Trends in Cognitive Sciences, 16(3), 181-188.
doi: 10.1016/j.tics.2012.02.001 pmid: 22341211 |
[24] |
Kessels, R. P., de Haan, E. H., Kappelle, L. J., & Postma, A. (2001). Varieties of human spatial memory: A meta-analysis on the effects of hippocampal lesions. Brain Research Reviews, 35(3), 295-303.
doi: 10.1016/S0165-0173(01)00058-3 URL |
[25] |
Kong, X. Z., Liu, Z. G., Huang, L. J., Wang, X., Yang, Z. T., Zhou, G. F., Zhen, Z. L., & Liu, J. (2015). Mapping individual brain networks using statistical similarity in regional morphology from MRI. PloS One, 10(11), e0141840.
doi: 10.1371/journal.pone.0141840 URL |
[26] |
Kong, X. Z., Wang, X., Huang, L., Pu, Y., Yang, Z., Dang, X., Zhen, Z., & Liu, J. (2014). Measuring individual morphological relationship of cortical regions. Journal of Neuroscience Methods, 237, 103-107.
doi: 10.1016/j.jneumeth.2014.09.003 URL |
[27] |
Kong, X. Z., Wang, X., Pu, Y., Huang, L., Hao, X., Zhen, Z., & Liu, J. (2017). Human navigation network: The intrinsic functional organization and behavioral relevance. Brain Structure and Function, 222(2), 749-764. https://doi.org/10.1007/s00429-016-1243-8.
doi: 10.1007/s00429-016-1243-8 URL |
[28] |
Maier-Hein, K. H., Neher, P. F., Houde, J. C., Côté, M. A., Garyfallidis, E., Zhong, J., ... Descoteaux, M. (2017). The challenge of mapping the human connectome based on diffusion tractography. Nature Communications, 8(1), 1349. https://doi.org/10.1038/s41467-017-01285-x
doi: 10.1038/s41467-017-01285-x URL pmid: 29116093 |
[29] |
McIntyre, C. C., & Hahn, P. J. (2010). Network perspectives on the mechanisms of deep brain stimulation. Neurobiology of Disease, 38(3), 329-337. https://doi.org/10.1016/j.nbd.2009.09.022
doi: 10.1016/j.nbd.2009.09.022 URL pmid: 19804831 |
[30] |
Mitchell, K. J., Johnson, M. K., Raye, C. L., & D'Esposito, M. (2000). fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cognitive Brain Research, 10(1-2), 197-206. https://doi.org/10.1016/s0926-6410(00)00029-x
URL pmid: 10978709 |
[31] |
Mohan, U. R., Watrous, A. J., Miller, J. F., Lega, B. C., Sperling, M. R., Worrell, G. A., ... Jacobs, J. (2020). The effects of direct brain stimulation in humans depend on frequency, amplitude, and white-matter proximity. Brain Stimulation, 13(5), 1183-1195. https://doi.org/10.1016/j.brs.2020.05.009
doi: S1935-861X(20)30108-X URL pmid: 32446925 |
[32] | O'Keefe, J., & Nadel, L.. (Eds.). (1978). The Hippocampus as a Cognitive Map. London, Clarendon Press. |
[33] |
O’Reilly, R. C., Ranganath, C., & Russin, J. L. (2022). The structure of systematicity in the brain. Current directions in psychological science, 31(2), 124-130.
doi: 10.1177/09637214211049233 pmid: 35785023 |
[34] | Pu, Y., Cheyne, D., Sun, Y., & Johnson, B. W. (2020). Theta oscillations support the interface between language and memory. NeuroImage, 215, 1-12. |
[35] |
Smith, S. M., Vidaurre, D., Beckmann, C. F., Glasser, M. F., Jenkinson, M., Miller, K. L., ... van Essen, D. C. (2013). Functional connectomics from resting-state fMRI. Trends in Cognitive Sciences, 17(12), 666-682. https://doi.org/10.1016/j.tics.2013.09.016
doi: 10.1016/j.tics.2013.09.016 URL pmid: 24238796 |
[36] |
Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10(1), 89-96.
pmid: 17181705 |
[37] |
Suthana, N., Haneef, Z., Stern, J., Mukamel, R., Behnke, E., Knowlton, B., & Fried, I. (2012). Memory enhancement and deep-brain stimulation of the entorhinal area. The New England Journal of Medicine, 366(6), 502-510. https://doi.org/10.1056/NEJMoa1107212
doi: 10.1056/NEJMoa1107212 URL pmid: 22316444 |
[38] |
Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., ··· Connelly, A. (2019). MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage, 202, 116137. https://doi.org/10.1016/j.neuroimage.2019.116137.
doi: 10.1016/j.neuroimage.2019.116137 URL |
[39] |
Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817-835.
doi: 10.1037/a0016127 URL |
[40] |
Watrous, A. J., Deuker, L., Fell, J., & Axmacher, N. (2015). Phase-amplitude coupling supports phase coding in human ECoG. Elife, 4, e07886. https://doi.org/10.7554/eLife.07886.
doi: 10.7554/eLife.07886 URL |
[41] |
Weisberg, S. M., & Ekstrom, A. D. (2021). Hippocampal volume and navigational ability: The map (ping) is not to scale. Neuroscience and Biobehavioral Reviews, 126, 102-112. https://doi.org/10.1016/j.neubiorev.2021.03.012.
doi: 10.1016/j.neubiorev.2021.03.012 URL pmid: 33722618 |
[42] |
Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14(3), 138-146.
doi: 10.1016/j.tics.2010.01.001 pmid: 20138795 |
[43] |
Yarkoni, T., Poldrack, R. A., Nichols, T. E., van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665-670.
doi: 10.1038/nmeth.1635 pmid: 21706013 |
[44] |
Zhen, Z., Kong, X. Z., Huang, L., Yang, Z., Wang, X., Hao, X., Huang, T., Song, Y., & Liu, J. (2017). Quantifying the variability of scene-selective regions: Interindividual, interhemispheric, and sex differences. Human Brain Mapping, 38(4), 2260-2275. https://doi.org/10.1002/hbm.23519.
doi: 10.1002/hbm.23519 URL pmid: 28117508 |
[45] |
Zuo, X. N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X., Sporns, O., & Milham, M. P. (2012). Network centrality in the human functional connectome. Cerebral Cortex, 22(8), 1862-1875.
doi: 10.1093/cercor/bhr269 URL |
[1] | 刘月月, 何文广. 书写认知老化发生机制及神经机理[J]. 心理科学进展, 2024, 32(9): 1502-1513. |
[2] | 雷怡, 梅颖, 王金霞, 袁子昕. 焦虑青少年无意识恐惧的神经机制及干预[J]. 心理科学进展, 2024, 32(8): 1221-1232. |
[3] | 丁颖, 汪紫滢, 李卫东. 抑郁症疼痛加工的行为特点及神经机制[J]. 心理科学进展, 2024, 32(8): 1315-1327. |
[4] | 曾庆贺, 崔晓宇, 唐为, 李娟. 记忆辨别力受老化影响的认知神经机制及其应用[J]. 心理科学进展, 2024, 32(7): 1138-1151. |
[5] | 刘海宁, 董现玲, 刘海虹, 刘艳丽, 李现文. 老年遗忘型轻度认知障碍执行功能的神经机制及数字干预[J]. 心理科学进展, 2024, 32(6): 873-885. |
[6] | 冯攀, 赵恒越, 姜雨矇, 张悦彤, 冯廷勇. 催产素影响条件化恐惧情绪加工的认知机制及神经基础[J]. 心理科学进展, 2024, 32(4): 557-567. |
[7] | 郑好, 陈荣荣, 买晓琴. 第三方惩罚行为的认知神经机制[J]. 心理科学进展, 2024, 32(2): 398-412. |
[8] | 孙丽君, 杨玉芳. 预期视角下音乐节拍结构的认知与神经机制[J]. 心理科学进展, 2024, 32(10): 1567-1577. |
[9] | 张凤翔, 陈美璇, 蒲艺, 孔祥祯. 空间导航能力个体差异的多层次形成机制[J]. 心理科学进展, 2023, 31(9): 1642-1664. |
[10] | 曹晋菁, 仇式明, 定险峰, 程晓荣, 范炤. 意识的层级性和丰富性:解读意识的两条路径[J]. 心理科学进展, 2023, 31(7): 1172-1185. |
[11] | 王勇丽, 葛胜男, Lancy Lantin Huang, 万勤, 卢海丹. 言语想象的神经机制[J]. 心理科学进展, 2023, 31(4): 608-621. |
[12] | 冯廷勇, 张碧滢. 拖延行为的认知神经模型及干预[J]. 心理科学进展, 2023, 31(3): 350-359. |
[13] | 邵红涛, 任桂琴, 丁晓茜, 史梦梦, 李蕊妍, 李阳. 正念冥想对走神的影响及其作用机制[J]. 心理科学进展, 2023, 31(12): 2368-2379. |
[14] | 刘永, 陈红. 超重/肥胖个体工作记忆的神经机制及干预[J]. 心理科学进展, 2023, 31(10): 1775-1784. |
[15] | 吴文雅, 王亮. 认知地图及其内在机制[J]. 心理科学进展, 2023, 31(10): 1856-1872. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||