心理科学进展 ›› 2025, Vol. 33 ›› Issue (1): 62-76.doi: 10.3724/SP.J.1042.2025.0062
收稿日期:
2024-03-11
出版日期:
2025-01-15
发布日期:
2024-10-28
通讯作者:
李会杰, E-mail: lihj@psych.ac.cn基金资助:
Received:
2024-03-11
Online:
2025-01-15
Published:
2024-10-28
摘要:
认知地图不仅可以映射物理空间, 还可以支持认知空间映射, 形成包括感知空间、情景记忆空间、概念空间和社会空间等在内的跨不同信息领域的地图式表征。认知空间映射的神经机制包括海马体对潜在结构的抽象和概括、支持分布式位置地图的生成、将信息与背景结构捆绑, 以及海马体与其它脑区的协同。未来研究应关注预测性的认知空间地图、海马体对不同精度和层级信息的表征、认知空间映射微观和介观层面的研究空缺以及物理空间和认知空间映射的共同机制和特异性机制等问题。
中图分类号:
吴际, 李会杰. (2025). 认知空间映射及其神经机制. 心理科学进展 , 33(1), 62-76.
WU Ji, LI Hui-Jie. (2025). Cognitive space mapping and its neural mechanisms. Advances in Psychological Science, 33(1), 62-76.
空间类型 | 参考文献 | 研究对象 | 海马体 | 其它脑区 的参与 | ||
---|---|---|---|---|---|---|
潜在结构 | 编码方式 | 信息和空间背景 | ||||
感知空间 信息抽象程度低 信息内容:感官刺激 空间背景:由感知觉的基本属性(如声音频率)定义 | Killian et al., | 猴子 | 二维结构 | 分布式位置地图 | 视觉刺激+视觉空间背景 | |
Julian et al., | 人类 | 二维结构 | 方向编码 | 视觉刺激+视觉空间背景 | ||
Aronov et al., | 老鼠 | 一维结构 | 分布式位置地图 | 听觉刺激+听觉空间背景 | ||
Radvansky & Dombeck, | 老鼠 | 二维结构 | 分布式位置地图 | 嗅觉刺激+嗅觉空间背景 | ||
Bao et al., | 人类 | 二维结构 | 方向编码 | 嗅觉刺激+嗅觉空间背景 | 梨状皮层、腹内侧前额叶 | |
情景记忆空间 信息抽象程度高 信息内容:具有时空特性的事件 空间背景:时空背景 | Kraus et al., | 老鼠 | 二维结构 | 分布式位置地图 | 事件+特征空间(时空)背景 | |
Kraus et al., | 老鼠 | 二维结构 | 分布式位置地图 | 事件+特征空间(时空)背景 | ||
Deuker et al., | 人类 | 二维结构 | 距离编码 | 事件+特征空间(时空)背景 | ||
Nielson et al., | 人类 | 二维结构 | 距离编码 | 事件+特征空间(时空)背景 | ||
概念空间 信息抽象程度高 信息内容:抽象概念, 主要为人工概念; “奖赏”概念 空间背景:根据概念的特点、任务要求而变化 | Constantinescu et al., | 人类 | 二维结构 | 方向编码 | 概念+特征(鸟类概念)空间背景 | 眶额皮层、内侧前额叶、后扣带回、颞顶联合区 |
Theves et al., | 人类 | 二维欧氏空间结构 | 距离编码 | 概念+特征空间背景 | ||
Theves et al., | 人类 | 二维欧氏空间结构 | 距离编码 | 概念+特征空间背景 | ||
Vigano & Piazza, | 人类 | 二维结构 | 距离和方向编码 | 概念+特征(语义概念)空间背景 | 眶额皮层、内侧前额叶 | |
Theves et al., | 人类 | 二维层级拓扑图结构 | 距离编码 | 概念+层级(概念)空间背景 | 喙外侧前额叶 | |
Boccara et al., | 老鼠 | 二维结构 | 分布式位置地图 | 奖赏+物理空间背景 | ||
Butler et al., | 老鼠 | 二维结构 | 分布式位置地图 | 奖赏+物理空间背景 | ||
Knudsen & Wallis, | 老鼠 | 三维结构 | 分布式位置地图 | 奖赏+特征(奖赏)空间背景 | ||
社会空间 信息抽象程度高 信息内容:社会情境中的他人 空间背景:与社会环境和人的社会属性如声望、权力、亲密等关联 | Omer et al., | 蝙蝠 | 二维结构 | 分布式位置地图 | 同类动物+物理空间背景 | |
Danjo et al., | 老鼠 | 二维结构 | 分布式位置地图 | 同类动物+物理空间背景 | ||
Tavares et al., | 人类 | 二维欧氏空间结构 | 距离和方向编码 | 他人+特征空间背景 | 后扣带回 | |
Zhang et al., | 人类 | 二维欧氏空间结构 | 距离和方向编码 | 他人+特征空间背景 | ||
Park et al., | 人类 | 二维欧氏空间结构 | 距离编码 | 他人+特征空间背景 | 腹内侧前额叶、内侧眶额皮层 | |
Park et al., | 人类 | 二维欧氏空间结构 | 距离和方向编码 | 他人+特征空间背景 | 内侧前额叶、眶额皮层、颞上沟、颞顶联合区 |
表1 认知空间映射的文献梳理
空间类型 | 参考文献 | 研究对象 | 海马体 | 其它脑区 的参与 | ||
---|---|---|---|---|---|---|
潜在结构 | 编码方式 | 信息和空间背景 | ||||
感知空间 信息抽象程度低 信息内容:感官刺激 空间背景:由感知觉的基本属性(如声音频率)定义 | Killian et al., | 猴子 | 二维结构 | 分布式位置地图 | 视觉刺激+视觉空间背景 | |
Julian et al., | 人类 | 二维结构 | 方向编码 | 视觉刺激+视觉空间背景 | ||
Aronov et al., | 老鼠 | 一维结构 | 分布式位置地图 | 听觉刺激+听觉空间背景 | ||
Radvansky & Dombeck, | 老鼠 | 二维结构 | 分布式位置地图 | 嗅觉刺激+嗅觉空间背景 | ||
Bao et al., | 人类 | 二维结构 | 方向编码 | 嗅觉刺激+嗅觉空间背景 | 梨状皮层、腹内侧前额叶 | |
情景记忆空间 信息抽象程度高 信息内容:具有时空特性的事件 空间背景:时空背景 | Kraus et al., | 老鼠 | 二维结构 | 分布式位置地图 | 事件+特征空间(时空)背景 | |
Kraus et al., | 老鼠 | 二维结构 | 分布式位置地图 | 事件+特征空间(时空)背景 | ||
Deuker et al., | 人类 | 二维结构 | 距离编码 | 事件+特征空间(时空)背景 | ||
Nielson et al., | 人类 | 二维结构 | 距离编码 | 事件+特征空间(时空)背景 | ||
概念空间 信息抽象程度高 信息内容:抽象概念, 主要为人工概念; “奖赏”概念 空间背景:根据概念的特点、任务要求而变化 | Constantinescu et al., | 人类 | 二维结构 | 方向编码 | 概念+特征(鸟类概念)空间背景 | 眶额皮层、内侧前额叶、后扣带回、颞顶联合区 |
Theves et al., | 人类 | 二维欧氏空间结构 | 距离编码 | 概念+特征空间背景 | ||
Theves et al., | 人类 | 二维欧氏空间结构 | 距离编码 | 概念+特征空间背景 | ||
Vigano & Piazza, | 人类 | 二维结构 | 距离和方向编码 | 概念+特征(语义概念)空间背景 | 眶额皮层、内侧前额叶 | |
Theves et al., | 人类 | 二维层级拓扑图结构 | 距离编码 | 概念+层级(概念)空间背景 | 喙外侧前额叶 | |
Boccara et al., | 老鼠 | 二维结构 | 分布式位置地图 | 奖赏+物理空间背景 | ||
Butler et al., | 老鼠 | 二维结构 | 分布式位置地图 | 奖赏+物理空间背景 | ||
Knudsen & Wallis, | 老鼠 | 三维结构 | 分布式位置地图 | 奖赏+特征(奖赏)空间背景 | ||
社会空间 信息抽象程度高 信息内容:社会情境中的他人 空间背景:与社会环境和人的社会属性如声望、权力、亲密等关联 | Omer et al., | 蝙蝠 | 二维结构 | 分布式位置地图 | 同类动物+物理空间背景 | |
Danjo et al., | 老鼠 | 二维结构 | 分布式位置地图 | 同类动物+物理空间背景 | ||
Tavares et al., | 人类 | 二维欧氏空间结构 | 距离和方向编码 | 他人+特征空间背景 | 后扣带回 | |
Zhang et al., | 人类 | 二维欧氏空间结构 | 距离和方向编码 | 他人+特征空间背景 | ||
Park et al., | 人类 | 二维欧氏空间结构 | 距离编码 | 他人+特征空间背景 | 腹内侧前额叶、内侧眶额皮层 | |
Park et al., | 人类 | 二维欧氏空间结构 | 距离和方向编码 | 他人+特征空间背景 | 内侧前额叶、眶额皮层、颞上沟、颞顶联合区 |
图1 感知空间映射。(a)一个网格细胞的放电模式投射到视觉空间上。该网格细胞以正六边形放电模式平铺整个视觉空间, 当猴子的视线移动到正六边形的顶点和中心时, 该网格细胞激活程度最大。图片改编自Killian等(2012)。(b)气味空间。气味空间的两个维度分别由两种单一气味的强度标定。执行气味导航任务会在气味空间中形成不同的导航轨迹(θ1和θ2)。图片改编自Bao等(2019)。(c)六重旋转对称性BOLD信号。该信号以60°为周期, 当导航轨迹θ与网格方向对齐时, 比不对齐产生更大的神经活动信号。彩图见电子版。
图2 一般概念空间映射。Constantinescu等(2016)假定的鸟类空间。该空间由鸟脖子长度和腿长度两个维度构成。二维鸟类空间中的不同位置对应具有不同脖子长度和腿长度的鸟。研究者设置了6个圣诞符号, 每个圣诞符号对应鸟类空间中的一只鸟。轨迹θ代表按照一定脖子长度和腿长度比例从一只鸟变成另一只鸟; 正式实验前, 被试通过自由调整鸟的脖子和腿长度的比例来探索和学习假定的鸟类空间。当被试把鸟变形至特定圣诞符号所对应的鸟时, 该圣诞符号会出现在屏幕上。正式实验时, 被试观看鸟的脖子和腿长度按照一定比例变形, 接着想象如果这只鸟按照这一比例继续变形是否能变成某一圣诞符号, 并做出选择。图片改编自Constantinescu等(2016)。
图3 奖赏空间映射。在Knudsen和Wallis (2021)的研究中, 猕猴观看屏幕上三张可能具有不同奖赏价值的图片, 并在大脑中构建了三维奖赏空间。黑色轨迹表示三张图片的奖赏价值不断变化而在奖赏空间中形成的价值变化轨迹, 彩色圆点代表放电的海马神经元。图片改编自Knudsen和Wallis (2021)。
图4 社会空间映射。(a) Tavares等(2015)的 “社会空间”示意图。本例展示了一个角色在四次社会互动过程中相对于被试的移动轨迹。图片改编自Tavares等(2015)。(b-c)Park等(2021)发现, 被试在完成社会推理任务时, 会在假定的社会空间中形成方向向量(轨迹θ), 并在大脑引发六重旋转对称性BOLD信号。θ1和θ2分别对应对齐和不对齐网格方向的推理轨迹。图片改编自Park等(2021)。
[1] |
吴文雅, 王亮. (2023). 认知地图及其内在机制. 心理科学进展, 31(10), 1856-1872. https://doi.org/10.3724/SP.J.1042.2023.01856
doi: 10.3724/SP.J.1042.2023.01856 URL |
[2] |
张家鑫, 海拉干, 李会杰. (2019). 空间导航的测量及其在认知老化中的应用. 心理科学进展, 27(12), 2019-2033. https://doi.org/10.3724/sp.J.1042.2019.02019
doi: 10.3724/SP.J.1042.2019.02019 URL |
[3] | Aronov, D., Nevers, R., & Tank, D. W. (2017). Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature, 543(7647), 719-722. https://doi.org/10.1038/nature21692 |
[4] |
Bao, X., Gjorgieva, E., Shanahan, L. K., Howard, J. D., Kahnt, T., & Gottfried, J. A. (2019). Grid-like neural representations support olfactory navigation of a two-dimensional odor space. Neuron, 102(5), 1066-1075. https://doi.org/10.1016/j.neuron.2019.03.034
doi: S0896-6273(19)30297-1 URL pmid: 31023509 |
[5] |
Baraduc, P., Duhamel, J. R., & Wirth, S. (2019). Schema cells in the macaque hippocampus. Science, 363(6427), 635-639. https://doi.org/10.1126/science.aav5404
doi: 10.1126/science.aav5404 URL pmid: 30733419 |
[6] |
Behrens, T. E. J., Muller, T. H., Whittington, J. C. R., Mark, S., Baram, A. B., Stachenfeld, K. L., & Kurth-Nelson, Z. (2018). What is a cognitive map? Organizing knowledge for flexible behavior. Neuron, 100(2), 490-509. https://doi.org/10.1016/j.neuron.2018.10.002
doi: S0896-6273(18)30856-0 URL pmid: 30359611 |
[7] |
Bellmund, J. L. S., de Cothi, W., Ruiter, T. A., Nau, M., Barry, C., & Doeller, C. F. (2020). Deforming the metric of cognitive maps distorts memory. Nature Human Behaviour, 4(2), 177-188. https://doi.org/10.1038/s41562-019-0767-3
doi: 10.1038/s41562-019-0767-3 URL pmid: 31740749 |
[8] | Bellmund, J. L. S., Gardenfors, P., Moser, E. I., & Doeller, C. F. (2018). Navigating cognition: Spatial codes for human thinking. Science, 362(6415), eaat6766. https://doi.org/10.1126/science.aat6766 |
[9] |
Boccara, C. N., Nardin, M., Stella, F., O’Neill, J., & Csicsvari, J. (2019). The entorhinal cognitive map is attracted to goals. Science, 363(6434), 1443-1447. https://doi.org/10.1126/science.aav4837
doi: 10.1126/science.aav4837 URL pmid: 30923221 |
[10] | Boorman, E. D., Sweigart, S. C., & Park, S. A. (2021). Cognitive maps and novel inferences: A flexibility hierarchy. Current Opinion in Behavioral Sciences, 38, 141-149. https://doi.org/10.1016/j.cobeha.2021.02.017 |
[11] |
Brunec, I. K., Bellana, B., Ozubko, J. D., Man, V., Robin, J., Liu, Z. X., … Moscovitch, M. (2018). Multiple scales of representation along the hippocampal anteroposterior axis in humans. Current Biology, 28(13), 2129-2135.e6. https://doi.org/10.1016/j.cub.2018.05.016
doi: S0960-9822(18)30618-3 URL pmid: 29937352 |
[12] |
Bush, D., Barry, C., Manson, D., & Burgess, N. (2015). Using grid cells for navigation. Neuron, 87(3), 507-520. https://doi.org/10.1016/j.neuron.2015.07.006
doi: 10.1016/j.neuron.2015.07.006 URL pmid: 26247860 |
[13] |
Butler, W. N., Hardcastle, K., & Giocomo, L. M. (2019). Remembered reward locations restructure entorhinal spatial maps. Science, 363(6434), 1447-1452. https://doi.org/10.1126/science.aav5297
doi: 10.1126/science.aav5297 URL pmid: 30923222 |
[14] |
Buzsaki, G., & Tingley, D. (2018). Space and time: The hippocampus as a sequence generator. Trends in Cognitive Sciences, 22(10), 853-869. https://doi.org/10.1016/j.tics.2018.07.006
doi: S1364-6613(18)30166-9 URL pmid: 30266146 |
[15] | Cohen, N. J., & Eichenbaum, H. (1993). Memory, amnesia, and the hippocampal system. MIT Press. |
[16] |
Colgin, L. L., Moser, E. I., & Moser, M. B. (2008). Understanding memory through hippocampal remapping. Trends in Neurosciences, 31(9), 469-477. https://doi.org/10.1016/j.tins.2008.06.008
doi: 10.1016/j.tins.2008.06.008 URL pmid: 18687478 |
[17] |
Constantinescu, A. O., O’Reilly, J. X., & Behrens, T. E. J. (2016). Organizing conceptual knowledge in humans with a gridlike code. Science, 352(6292), 1464-1468. https://doi.org/10.1126/science.aaf0941
doi: 10.1126/science.aaf0941 URL pmid: 27313047 |
[18] |
Danjo, T., Toyoizumi, T., & Fujisawa, S. (2018). Spatial representations of self and other in the hippocampus. Science, 359(6372), 213-218. https://doi.org/10.1126/science.aao3898
doi: 10.1126/science.aao3898 URL pmid: 29326273 |
[19] | Dayan, P. (1993). Improving generalization for temporal difference learning: The successor representation. Neural Computation, 5(4), 613-624. https://doi.org/10.1162/neco.1993.5.4.613 |
[20] | de Cothi, W., Nyberg, N., Griesbauer, E. M., Ghaname, C., Zisch, F., Lefort, J. M., … Spiers, H. J. (2022). Predictive maps in rats and humans for spatial navigation. Current Biology, 32(17), 3676-3689.e5. https://doi.org/10.1016/j.cub.2022.06.090 |
[21] | Deuker, L., Bellmund, J. L., Navarro Schroder, T., & Doeller, C. F. (2016). An event map of memory space in the hippocampus. eLife, 5, e16534. https://doi.org/10.7554/eLife.16534 |
[22] | Doeller, C. F., Barry, C., & Burgess, N. (2010). Evidence for grid cells in a human memory network. Nature, 463(7281), 657-661. https://doi.org/10.1038/nature08704 |
[23] | Duvernoy, H. M. (2005). The human hippocampus: Functional anatomy, vascularization, and serial sections with MRI (3rd ed.). Springer. |
[24] |
Eichenbaum, H. (2004). Hippocampus: Cognitive processes and neural representations that underlie declarative memory. Neuron, 44(1), 109-120. https://doi.org/10.1016/j.neuron.2004.08.028
doi: 10.1016/j.neuron.2004.08.028 URL pmid: 15450164 |
[25] |
Eichenbaum, H. (2014). Time cells in the hippocampus: A new dimension for mapping memories. Nature Reviews Neuroscience, 15(11), 732-744. https://doi.org/10.1038/nrn3827
doi: 10.1038/nrn3827 URL pmid: 25269553 |
[26] |
Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H. (1999). The hippocampus, memory, and place cells: Is it spatial memory or a memory space? Neuron, 23(2), 209-226. https://doi.org/10.1016/S0896-6273(00)80773-4
doi: 10.1016/s0896-6273(00)80773-4 URL pmid: 10399928 |
[27] |
Ekstrom, A. D., Harootonian, S. K., & Huffman, D. J. (2020). Grid coding, spatial representation, and navigation: Should we assume an isomorphism? Hippocampus, 30(4), 422-432. https://doi.org/10.1002/hipo.23175
doi: 10.1002/hipo.23175 URL pmid: 31742364 |
[28] | Ekstrom, A. D., & Yonelinas, A. P. (2020). Precision, binding, and the hippocampus: Precisely what are we talking about? Neuropsychologia, 138, 107341. https://doi.org/10.1016/j.neuropsychologia.2020.107341 |
[29] |
Epstein, R. A., Patai, E. Z., Julian, J. B., & Spiers, H. J. (2017). The cognitive map in humans: Spatial navigation and beyond. Nature Neuroscience, 20(11), 1504-1513. https://doi.org/10.1038/nn.4656
doi: 10.1038/nn.4656 URL pmid: 29073650 |
[30] | Farzanfar, D., Spiers, H. J., Moscovitch, M., & Rosenbaum, R. S. (2023). From cognitive maps to spatial schemas. Nature Reviews Neuroscience, 24(2), 63-79. https://doi.org/10.1038/s41583-022-00655-9 |
[31] | Fyhn, M., Hafting, T., Treves, A., Moser, M. B., & Moser, E. I. (2007). Hippocampal remapping and grid realignment in entorhinal cortex. Nature, 446(7132), 190-194. https://doi.org/10.1038/nature05601 |
[32] | Gärdenfors, P. (2000). Conceptual spaces: The geometry of thought. MIT Press. |
[33] | Garvert, M. M., Dolan, R. J., & Behrens, T. E. (2017). A map of abstract relational knowledge in the human hippocampal- entorhinal cortex. eLife, 6, e17086. https://doi.org/10.7554/eLife.17086 |
[34] | Gauthier, B., & van Wassenhove, V. (2016). Time is not space: Core computations and domain-specific networks for mental travels. The Journal of Neuroscience, 36(47), 11891-11903. https://doi.org/10.1523/JNEUROSCI.1400-16.2016 |
[35] | Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801-806. https://doi.org/10.1038/nature03721 |
[36] |
Hawkins, J., Lewis, M., Klukas, M., Purdy, S., & Ahmad, S. (2018). A framework for intelligence and cortical function based on grid cells in the neocortex. Frontiers in Neural Circuits, 12, 121. https://doi.org/10.3389/fncir.2018.00121
doi: 10.3389/fncir.2018.00121 URL pmid: 30687022 |
[37] | Hok, V., Lenck-Santini, P. P., Roux, S., Save, E., Muller, R. U., & Poucet, B. (2007). Goal-related activity in hippocampal place cells. The Journal of Neuroscience, 27(3), 472-482. https://doi.org/10.1523/JNEUROSCI.2864-06.2007 |
[38] |
Howard, L. R., Javadi, A. H., Yu, Y., Mill, R. D., Morrison, L. C., Knight, R., … Spiers, H. J. (2014). The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation. Current Biology, 24(12), 1331-1340. https://doi.org/10.1016/j.cub.2014.05.001
doi: S0960-9822(14)00526-0 URL pmid: 24909328 |
[39] | Hsieh, L. T., Gruber, M. J., Jenkins, L. J., & Ranganath, C. (2014). Hippocampal activity patterns carry information about objects in temporal context. Neuron, 81(5), 1165-1178. https://doi.org/10.1016/j.neuron.2014.01.015 |
[40] |
Julian, J. B., Keinath, A. T., Frazzetta, G., & Epstein, R. A. (2018). Human entorhinal cortex represents visual space using a boundary-anchored grid. Nature Neuroscience, 21(2), 191-194. https://doi.org/10.1038/s41593-017-0049-1
doi: 10.1038/s41593-017-0049-1 URL pmid: 29311745 |
[41] | Killian, N. J., Jutras, M. J., & Buffalo, E. A. (2012). A map of visual space in the primate entorhinal cortex. Nature, 491(7426), 761-764. https://doi.org/10.1038/nature11587 |
[42] |
Knudsen, E. B., & Wallis, J. D. (2021). Hippocampal neurons construct a map of an abstract value space. Cell, 184(18), 4640-4650.e10. https://doi.org/10.1016/j.cell.2021.07.010
doi: 10.1016/j.cell.2021.07.010 URL pmid: 34348112 |
[43] | Komorowski, R. W., Manns, J. R., & Eichenbaum, H. (2009). Robust conjunctive item-place coding by hippocampal neurons parallels learning what happens where. The Journal of Neuroscience, 29(31), 9918-9929. https://doi.org/10.1523/JNEUROSCI.1378-09.2009 |
[44] |
Kraus, B. J., Brandon, M. P., Robinson, R. J., 2nd, Connerney, M. A., Hasselmo, M. E., & Eichenbaum, H. (2015). During running in place, grid cells integrate elapsed time and distance run. Neuron, 88(3), 578-589. https://doi.org/10.1016/j.neuron.2015.09.031
doi: 10.1016/j.neuron.2015.09.031 URL pmid: 26539893 |
[45] |
Kraus, B. J., Robinson, R. J., 2nd White, J. A., Eichenbaum, H., & Hasselmo, M. E. (2013). Hippocampal "time cells": Time versus path integration. Neuron, 78(6), 1090-1101. https://doi.org/10.1016/j.neuron.2013.04.015
doi: 10.1016/j.neuron.2013.04.015 URL pmid: 23707613 |
[46] |
Kumaran, D., Summerfield, J. J., Hassabis, D., & Maguire, E. A. (2009). Tracking the emergence of conceptual knowledge during human decision making. Neuron, 63(6), 889-901. https://doi.org/10.1016/j.neuron.2009.07.030
doi: 10.1016/j.neuron.2009.07.030 URL pmid: 19778516 |
[47] |
Kunz, L., Maidenbaum, S., Chen, D., Wang, L., Jacobs, J., & Axmacher, N. (2019). Mesoscopic neural representations in spatial navigation. Trends in Cognitive Sciences, 23(7), 615-630. https://doi.org/10.1016/j.tics.2019.04.011
doi: S1364-6613(19)30103-2 URL pmid: 31130396 |
[48] |
Lisman, J., Buzsaki, G., Eichenbaum, H., Nadel, L., Ranganath, C., & Redish, A. D. (2017). Viewpoints: How the hippocampus contributes to memory, navigation and cognition. Nature Neuroscience, 20(11), 1434-1447. https://doi.org/10.1038/nn.4661
doi: 10.1038/nn.4661 URL pmid: 29073641 |
[49] | Long, X., Deng, B., Cai, J., Chen, Z. S., & Zhang, S. -J. (2021). A compact spatial map in V2 visual cortex. bioRxiv. https://doi.org/10.1101/2021.02.11.430687 |
[50] |
Long, X., & Zhang, S. J. (2021). A novel somatosensory spatial navigation system outside the hippocampal formation. Cell Research, 31(6), 649-663. https://doi.org/10.1038/s41422-020-00448-8
doi: 10.1038/s41422-020-00448-8 URL pmid: 33462427 |
[51] |
MacDonald, C. J., Lepage, K. Q., Eden, U. T., & Eichenbaum, H. (2011). Hippocampal "time cells" bridge the gap in memory for discontiguous events. Neuron, 71(4), 737-749. https://doi.org/10.1016/j.neuron.2011.07.012
doi: 10.1016/j.neuron.2011.07.012 URL pmid: 21867888 |
[52] |
Mack, M. L., Preston, A. R., & Love, B. C. (2020). Ventromedial prefrontal cortex compression during concept learning. Nature Communications, 11(1), 46. https://doi.org/10.1038/s41467-019-13930-8
doi: 10.1038/s41467-019-13930-8 URL pmid: 31911628 |
[53] |
Manns, J. R., & Eichenbaum, H. (2006). Evolution of declarative memory. Hippocampus, 16(9), 795-808. https://doi.org/10.1002/hipo.20205
URL pmid: 16881079 |
[54] |
Mark, S., Moran, R., Parr, T., Kennerley, S. W., & Behrens, T. E. J. (2020). Transferring structural knowledge across cognitive maps in humans and models. Nature Communications, 11(1), 4783. https://doi.org/10.1038/s41467-020-18254-6
doi: 10.1038/s41467-020-18254-6 URL pmid: 32963219 |
[55] |
Morton, N. W., & Preston, A. R. (2021). Concept formation as a computational cognitive process. Current Opinion in Behavioral Sciences, 38, 83-89. https://doi.org/10.1016/j.cobeha.2020.12.005
doi: 10.1016/j.cobeha.2020.12.005 URL pmid: 33628870 |
[56] |
Morton, N. W., Schlichting, M. L., & Preston, A. R. (2020). Representations of common event structure in medial temporal lobe and frontoparietal cortex support efficient inference. Proceedings of the National Academy of Sciences of the United States of America, 117(47), 29338-29345. https://doi.org/10.1073/pnas.1912338117
doi: 10.1073/pnas.1912338117 URL pmid: 33229532 |
[57] | Nieh, E. H., Schottdorf, M., Freeman, N. W., Low, R. J., Lewallen, S., Koay, S. A., … Tank, D. W. (2021). Geometry of abstract learned knowledge in the hippocampus. Nature, 595(7865), 80-84. https://doi.org/10.1038/s41586-021-03652-7 |
[58] |
Nielson, D. M., Smith, T. A., Sreekumar, V., Dennis, S., & Sederberg, P. B. (2015). Human hippocampus represents space and time during retrieval of real-world memories. Proceedings of the National Academy of Sciences of the United States of America, 112(35), 11078-11083. https://doi.org/10.1073/pnas.1507104112
doi: 10.1073/pnas.1507104112 URL pmid: 26283350 |
[59] |
Niv, Y. (2019). Learning task-state representations. Nature Neuroscience, 22(10), 1544-1553. https://doi.org/10.1038/s41593-019-0470-8
doi: 10.1038/s41593-019-0470-8 URL pmid: 31551597 |
[60] | O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford University Press. |
[61] |
Omer, D. B., Maimon, S. R., Las, L., & Ulanovsky, N. (2018). Social place-cells in the bat hippocampus. Science, 359(6372), 218-224. https://doi.org/10.1126/science.aao3474
doi: 10.1126/science.aao3474 URL pmid: 29326274 |
[62] |
Park, S. A., Miller, D. S., & Boorman, E. D. (2021). Inferences on a multidimensional social hierarchy use a grid-like code. Nature Neuroscience, 24(9), 1292-1301. https://doi.org/10.1038/s41593-021-00916-3
doi: 10.1038/s41593-021-00916-3 URL pmid: 34465915 |
[63] |
Park, S. A., Miller, D. S., Nili, H., Ranganath, C., & Boorman, E. D. (2020). Map making: Constructing, combining, and inferring on abstract cognitive maps. Neuron, 107(6), 1226-1238.e8. https://doi.org/10.1016/j.neuron.2020.06.030
doi: S0896-6273(20)30484-0 URL pmid: 32702288 |
[64] |
Pastalkova, E., Itskov, V., Amarasingham, A., & Buzsaki, G. (2008). Internally generated cell assembly sequences in the rat hippocampus. Science, 321(5894), 1322-1327. https://doi.org/10.1126/science.1159775
doi: 10.1126/science.1159775 URL pmid: 18772431 |
[65] |
Peer, M., Brunec, I. K., Newcombe, N. S., & Epstein, R. A. (2021). Structuring knowledge with cognitive maps and cognitive graphs. Trends in Cognitive Sciences, 25(1), 37-54. https://doi.org/10.1016/j.tics.2020.10.004
doi: 10.1016/j.tics.2020.10.004 URL pmid: 33248898 |
[66] | Poo, C., Agarwal, G., Bonacchi, N., & Mainen, Z. F. (2022). Spatial maps in piriform cortex during olfactory navigation. Nature, 601(7894), 595-599. https://doi.org/10.1038/s41586-021-04242-3 |
[67] | Poucet, B., & Hok, V. (2017). Remembering goal locations. Current Opinion in Behavioral Sciences, 17, 51-56. https://doi.org/10.1016/j.cobeha.2017.06.003 |
[68] | Quiroga, R. Q. (2012). Concept cells: The building blocks of declarative memory functions. Nature Review Neuroscience, 13(8), 587-597. https://doi.org/10.1038/nrn3251 |
[69] |
Quiroga, R. Q. (2019). Neural representations across species: Nonspatial cognitive factors modulate the firing of spatially tuned neurons. Science, 363(6434), 1388-1389. https://doi.org/10.1126/science.aaw8829
doi: 10.1126/science.aaw8829 URL pmid: 30923208 |
[70] | Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435(7045), 1102-1107. https://doi.org/10.1038/nature03687 |
[71] |
Radvansky, B. A., & Dombeck, D. A. (2018). An olfactory virtual reality system for mice. Nature Communications, 9(1), 839. https://doi.org/10.1038/s41467-018-03262-4
doi: 10.1038/s41467-018-03262-4 URL pmid: 29483530 |
[72] | Reddy, L., Zoefel, B., Possel, J. K., Peters, J., Dijksterhuis, D. E., Poncet, M., … Self, M. W. (2021). Human hippocampal neurons track moments in a sequence of events. The Journal of Neuroscience, 41(31), 6714-6725. https://doi.org/10.1523/JNEUROSCI.3157-20.2021 |
[73] | Salz, D. M., Tiganj, Z., Khasnabish, S., Kohley, A., Sheehan, D., Howard, M. W., & Eichenbaum, H. (2016). Time cells in hippocampal area CA3. The Journal of Neuroscience, 36(28), 7476-7484. https://doi.org/10.1523/JNEUROSCI.0087-16.2016 |
[74] |
Sanders, H., Wilson, M., Klukas, M., Sharma, S., & Fiete, I. (2020). Efficient inference in structured spaces. Cell, 183(5), 1147-1148. https://doi.org/10.1016/j.cell.2020.11.008
doi: 10.1016/j.cell.2020.11.008 URL pmid: 33242414 |
[75] |
Schafer, M., & Schiller, D. (2018). Navigating social space. Neuron, 100(2), 476-489. https://doi.org/10.1016/j.neuron.2018.10.006
doi: S0896-6273(18)30894-8 URL pmid: 30359610 |
[76] | Schlichting, M. L., Mumford, J. A., & Preston, A. R. (2015). Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex. Nature Communications, 6(1), 8151. https://doi.org/10.1038/ncomms9151 |
[77] |
Schuck, N. W., Cai, M. B., Wilson, R. C., & Niv, Y. (2016). Human orbitofrontal cortex represents a cognitive map of state space. Neuron, 91(6), 1402-1412. https://doi.org/10.1016/j.neuron.2016.08.019
doi: S0896-6273(16)30511-6 URL pmid: 27657452 |
[78] |
Stachenfeld, K. L., Botvinick, M. M., & Gershman, S. J. (2017). The hippocampus as a predictive map. Nature Neuroscience, 20(11), 1643-1653. https://doi.org/10.1038/nn.4650
doi: 10.1038/nn.4650 URL pmid: 28967910 |
[79] |
Stalnaker, T. A., Cooch, N. K., & Schoenbaum, G. (2015). What the orbitofrontal cortex does not do. Nature Neuroscience, 18(5), 620-627. https://doi.org/10.1038/nn.3982
doi: 10.1038/nn.3982 URL pmid: 25919962 |
[80] | Stensola, H., Stensola, T., Solstad, T., Froland, K., Moser, M. B., & Moser, E. I. (2012). The entorhinal grid map is discretized. Nature, 492(7427), 72-78. https://doi.org/10.1038/nature11649 |
[81] |
Stoewer, P., Schilling, A., Maier, A., & Krauss, P. (2023). Neural network based formation of cognitive maps of semantic spaces and the putative emergence of abstract concepts. Scientific Reports, 13(1), 3644. https://doi.org/10.1038/s41598-023-30307-6
doi: 10.1038/s41598-023-30307-6 URL pmid: 36871003 |
[82] |
Stoewer, P., Schlieker, C., Schilling, A., Metzner, C., Maier, A., & Krauss, P. (2022). Neural network based successor representations to form cognitive maps of space and language. Scientific Reports, 12(1), 11233. https://doi.org/10.1038/s41598-022-14916-1
doi: 10.1038/s41598-022-14916-1 URL pmid: 35787659 |
[83] | Strange, B. A., Witter, M. P., Lein, E. S., & Moser, E. I. (2014). Functional organization of the hippocampal longitudinal axis. Nature Review Neuroscience, 15(10), 655-669. https://doi.org/10.1038/nrn3785 |
[84] |
Sun, C., Yang, W., Martin, J., & Tonegawa, S. (2020). Hippocampal neurons represent events as transferable units of experience. Nature Neuroscience, 23(5), 651-663. https://doi.org/10.1038/s41593-020-0614-x
doi: 10.1038/s41593-020-0614-x URL pmid: 32251386 |
[85] |
Tavares, R. M., Mendelsohn, A., Grossman, Y., Williams, C. H., Shapiro, M., Trope, Y., & Schiller, D. (2015). A map for social navigation in the human brain. Neuron, 87(1), 231-243. https://doi.org/10.1016/j.neuron.2015.06.011
doi: 10.1016/j.neuron.2015.06.011 URL pmid: 26139376 |
[86] |
Theves, S., Fernandez, G., & Doeller, C. F. (2019). The hippocampus encodes distances in multidimensional feature space. Current Biology, 29(7), 1226-1231.e3. https://doi.org/10.1016/j.cub.2019.02.035
doi: S0960-9822(19)30205-2 URL pmid: 30905602 |
[87] | Theves, S., Fernandez, G., & Doeller, C. F. (2020). The hippocampus maps concept space, not feature space. The Journal of Neuroscience, 40(38), 7318-7325. https://doi.org/10.1523/JNEUROSCI.0494-20.2020 |
[88] | Theves, S., Neville, D. A., Fernandez, G., & Doeller, C. F. (2021). Learning and representation of hierarchical concepts in hippocampus and prefrontal cortex. The Journal of Neuroscience, 41(36), 7675-7686. https://doi.org/10.1523/JNEUROSCI.0657-21.2021 |
[89] |
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189-208. https://doi.org/10.1037/h0061626
doi: 10.1037/h0061626 URL pmid: 18870876 |
[90] |
Umbach, G., Kantak, P., Jacobs, J., Kahana, M., Pfeiffer, B. E., Sperling, M., & Lega, B. (2020). Time cells in the human hippocampus and entorhinal cortex support episodic memory. Proceedings of the National Academy of Sciences of the United States of America, 117(45), 28463-28474. https://doi.org/10.1073/pnas.2013250117
doi: 10.1073/pnas.2013250117 URL pmid: 33109718 |
[91] | Vigano, S., & Piazza, M. (2020). Distance and direction codes underlie navigation of a novel semantic space in the human brain. The Journal of Neuroscience, 40(13), 2727-2736. https://doi.org/10.1523/JNEUROSCI.1849-19.2020 |
[92] |
Whittington, J. C. R., McCaffary, D., Bakermans, J. J. W., & Behrens, T. E. J. (2022). How to build a cognitive map. Nature Neuroscience, 25(10), 1257-1272. https://doi.org/10.1038/s41593-022-01153-y
doi: 10.1038/s41593-022-01153-y URL pmid: 36163284 |
[93] | Whittington, J. C. R., Muller, T. H., Barry, C., Mark, S., & Behrens, T. E. J. (2018). Generalisation of structural knowledge in the hippocampal-entorhinal system. 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada. |
[94] |
Whittington, J. C. R., Muller, T. H., Mark, S., Chen, G., Barry, C., Burgess, N., & Behrens, T. E. J. (2020). The Tolman-Eichenbaum machine: Unifying space and relational memory through generalization in the hippocampal formation. Cell, 183(5), 1249-1263.e23. https://doi.org/10.1016/j.cell.2020.10.024
doi: 10.1016/j.cell.2020.10.024 URL pmid: 33181068 |
[95] |
Wikenheiser, A. M., Marrero-Garcia, Y., & Schoenbaum, G. (2017). Suppression of ventral hippocampal output impairs integrated orbitofrontal encoding of task structure. Neuron, 95(5), 1197-1207.e3. https://doi.org/10.1016/j.neuron.2017.08.003
doi: S0896-6273(17)30694-3 URL pmid: 28823726 |
[96] | Wikenheiser, A. M., & Schoenbaum, G. (2016). Over the river, through the woods: Cognitive maps in the hippocampus and orbitofrontal cortex. Nature Review Neuroscience, 17(8), 513-523. https://doi.org/10.1038/nrn.2016.56 |
[97] | Wirth, S., Baraduc, P., Plante, A., Pinede, S., & Duhamel, J. R. (2017). Gaze-informed, task-situated representation of space in primate hippocampus during virtual navigation. PLoS Biology, 15(2), e2001045. https://doi.org/10.1371/journal.pbio.2001045 |
[98] |
Zeithamova, D., Dominick, A. L., & Preston, A. R. (2012). Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference. Neuron, 75(1), 168-179. https://doi.org/10.1016/j.neuron.2012.05.010
doi: 10.1016/j.neuron.2012.05.010 URL pmid: 22794270 |
[99] | Zhang, J. X., Wang, L., Hou, H. Y., Yue, C. L., Wang, L., & Li, H. J. (2021). Age-related impairment of navigation and strategy in virtual star maze. BMC Geriatrics, 21(1), 108. https://doi.org/10.1186/s12877-021-02034-y |
[100] |
Zhang, L., Chen, P., Schafer, M., Zheng, S., Chen, L., Wang, S., … Huang, R. (2022). A specific brain network for a social map in the human brain. Scientific Reports, 12(1), 1773. https://doi.org/10.1038/s41598-022-05601-4
doi: 10.1038/s41598-022-05601-4 URL pmid: 35110581 |
[1] | 张凤翔, 陈美璇, 蒲艺, 孔祥祯. 空间导航能力个体差异的多层次形成机制[J]. 心理科学进展, 2023, 31(9): 1642-1664. |
[2] | 孔祥祯, 张凤翔, 蒲艺. 空间导航的脑网络基础和调控机制[J]. 心理科学进展, 2023, 31(3): 330-337. |
[3] | 吴文雅, 王亮. 认知地图及其内在机制[J]. 心理科学进展, 2023, 31(10): 1856-1872. |
[4] | 聂婧;凌文辁;李明. 认知地图技术及其在管理心理学中的应用述评[J]. 心理科学进展, 2013, 21(1): 155-165. |
[5] | 许琴;罗宇;刘嘉. 方向感的加工机制及影响因素[J]. 心理科学进展, 2010, 18(8): 1208-1221. |
[6] | 于平;徐晖;尹文娟;魏曙光;于萍. 网格细胞在空间记忆中的作用[J]. 心理科学进展, 2009, 17(6): 1228-1233. |
[7] | 王彦;苏彦捷. 迷宫与动物行为研究[J]. 心理科学进展, 2001, 9(3): 264-269. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||