心理科学进展 ›› 2023, Vol. 31 ›› Issue (1): 1-9.doi: 10.3724/SP.J.1042.2023.00001
• 研究构想 • 下一篇
收稿日期:
2022-03-21
出版日期:
2023-01-15
发布日期:
2022-10-13
通讯作者:
张明霞
E-mail:zhangmx@psych.ac.cn
基金资助:
ZHANG Mingxia1,2(), LI Yuxin1,2, LI Jin3, LIU Xun1,2
Received:
2022-03-21
Online:
2023-01-15
Published:
2022-10-13
Contact:
ZHANG Mingxia
E-mail:zhangmx@psych.ac.cn
摘要:
动机是一切行为的核心, 动机可分为外在和内在动机。青少年时期既是记忆的关键期, 也是动机发展的特殊时期。然而, 目前关于内外动机影响青少年记忆的研究才刚刚起步, 尚不清楚外在和内在动机影响青少年记忆的规律和机制是否一致, 也不清楚二者如何交互影响记忆。本研究将结合认知范式和脑成像技术, 考察外在和内在动机如何分别影响以及交互影响青少年记忆。这将有助于更加全面、深刻理解内外动机影响青少年记忆的独特规律和机制, 为科学提升青少年动机和记忆效果提供研究证据。
中图分类号:
张明霞, 李雨欣, 李瑾, 刘勋. (2023). 内外动机对青少年记忆的影响及其神经机制. 心理科学进展 , 31(1), 1-9.
ZHANG Mingxia, LI Yuxin, LI Jin, LIU Xun. (2023). The influence of extrinsic and intrinsic motivation on memory in adolescents and the underlying neural mechanisms. Advances in Psychological Science, 31(1), 1-9.
[1] | 姜怡. (2016). 动机的神经机制. 教育生物学杂志, 4(4), 194-202. |
[2] | 鞠恩霞, 李红, 龙长权, 袁加锦. (2010). 基于神经成像技术的青少年大脑发育研究. 心理科学进展, 18(6), 907-913. |
[3] | 梁海梅, 郭德俊, 张贵良. (1998). 成就目标对青少年成就动机和学业成就影响的研究. 心理科学, 21(5), 332-335. |
[4] | 王振宏, 刘萍. (2000). 动机因素、学习策略、智力水平对学生学业成就的影响. 心理学报, 32(1), 65-69. |
[5] | 吴波, 方晓义, 李一飞. (2003). 青少年自主研究综述. 心理发展与教育, 19(1), 89-96. |
[6] | 曾细花, 王耘. (2011). 初中生英语学习动机、学习行为和成绩的关系研究. 教学与管理, 21, 76-77. |
[7] | 张丹慧, 符定梦, 刘红云, 刘鲁曼. (2018). 学生感知教师自主支持对学生学业成绩的影响: 自主心理需要、 内部动机的中介作用. 教师教育研究, 30(1), 79-86. |
[8] | 张剑, 郭德俊. (2003). 内部动机与外部动机的关系. 心理科学进展, 11(5), 545-550. |
[9] | 周园. (2016). 高中生外部动机、自我效能感和自主性的关系及其对学业成绩的影响——基于中部地区某市46所中学的纵向数据. 教育测量与评价, 7, 60-64. |
[10] |
Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50(3), 507-517.
pmid: 16675403 |
[11] |
Ariel, R., & Castel, A. D. (2014). Eyes wide open: Enhanced pupil dilation when selectively studying important information. Experimental Brain Research, 232(1), 337-344.
doi: 10.1007/s00221-013-3744-5 pmid: 24162863 |
[12] |
Cameron, J., & Pierce, W. D. (1994). Reinforcement, reward, and intrinsic motivation: A meta-analysis. Review of Educational research, 64(3), 363-423.
doi: 10.3102/00346543064003363 URL |
[13] |
Casey, B. J. (2015). Beyond simple models of self-control to circuit-based accounts of adolescent behavior. Annual Review of Psychology, 66(1), 295-319.
doi: 10.1146/annurev-psych-010814-015156 URL |
[14] |
Cerasoli, C. P., Nicklin, J. M., & Ford, M. T. (2014). Intrinsic motivation and extrinsic incentives jointly predict performance: A 40-year meta-analysis. Psychological Bulletin, 140(4), 980-1008.
doi: 10.1037/a0035661 pmid: 24491020 |
[15] |
Cheng, S., Jiang, T., Xue, J., Wang, S., Chen, C., & Zhang, M. (2020). The influence of rewards on incidental memory: More does not mean better. Learning and Memory, 27(11), 462-466.
doi: 10.1101/lm.051722.120 pmid: 33060283 |
[16] | Cohen, M. S., Rissman, J., Suthana, N. A., Castel, A. D., & Knowlton, B. J. (2014). Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 578-592. |
[17] |
Cohen, M. S., Rissman, J., Suthana, N. A., Castel, A. D., Knowlton, B. J. (2016). Effects of aging on value-directed modulation of semantic network activity during verbal learning. Neuroimage, 125, 1046-1062.
doi: S1053-8119(15)00699-0 pmid: 26244278 |
[18] |
Davidow, J. Y., Foerde, K., Galván, A., & Shohamy, D. (2016). An upside to reward sensitivity: The hippocampus supports enhanced reinforcement learning in adolescence. Neuron, 92(1), 93-99.
doi: S0896-6273(16)30524-4 pmid: 27710793 |
[19] |
Davidow, J. Y., Insel, C., & Somerville, L. H. (2018). Adolescent development of value-guided goal pursuit. Trends in Cognitive Sciences, 22(8), 725-736.
doi: S1364-6613(18)30116-5 pmid: 29880333 |
[20] |
Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18(1), 105-115.
doi: 10.1037/h0030644 URL |
[21] |
Deci, E. L., Koestner, R., & Ryan, R.M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125(6), 627-668.
pmid: 10589297 |
[22] |
Defoe, I. N., Dubas, J. S., Figner, B., & van Aken, M. A. (2015). A meta-analysis on age differences in risky decision making: Adolescents versus children and adults. Psychological Bulletin, 141(1), 48-84.
doi: 10.1037/a0038088 pmid: 25365761 |
[23] |
Di Domenico, S. I., & Ryan, R. M. (2017). The emerging neuroscience of intrinsic motivation: A new frontier in self-determination research. Frontiers in Human Neuroscience, 11, 145.
doi: 10.3389/fnhum.2017.00145 pmid: 28392765 |
[24] | Dickerson, K. C., & Adcock, R. A. (2018). Motivation and memory. In J. T. Wixted (Ed-in-Chief.), E. A. Phelps & L.Davachi (Vol. Eds.), Stevens' handbook of experimental psychology and cognitive neuroscience: Vol.1. Learning and memory (4th ed.). (pp.215-150). New York: John Wiley & Sons. |
[25] |
Eisenberger, R., Pierce, W. D., & Cameron, J. (1999). Effects of reward on intrinsic motivation-negative, neutral and positive: Comment on Deci, Koestner, and Ryan (1999). Psychological Bulletin, 125(6), 677-691.
pmid: 10589299 |
[26] | Elliott, B. L., Blais, C., McClure, S. M., & Brewer, G. A. (2019). Neural correlates underlying the effect of reward value on recognition memory. Neuroimage, 206, 116296. |
[27] |
Fuhrmann, D., Knoll, L. J., & Blakemore, S. J. (2015). Adolescence as a sensitive period of brain development. Trends in Cognitive Sciences, 19(10), 558-566.
doi: S1364-6613(15)00172-2 pmid: 26419496 |
[28] |
Galván, A. (2013). The teenage brain: Sensitivity to rewards. Current Directions in Psychological Science, 22(2), 88-93.
doi: 10.1177/0963721413480859 URL |
[29] |
Gee, D. G., Bath, K. G., Johnson, C. M., Meyer, H. C., Murty, V. P., van den Bos, W., & Hartley, C. A. (2018). Neurocognitive development of motivated behavior: Dynamic changes across childhood and adolescence. The Journal of Neuroscience, 38(44), 9433-9445.
doi: 10.1523/JNEUROSCI.1674-18.2018 URL |
[30] |
Gruber, M. J., Ritchey, M., Wang, S. F., Doss, M. K., & Ranganath, C. (2016). Post-learning hippocampal dynamics promote preferential retention of rewarding events. Neuron, 89(5), 1110-1120.
doi: 10.1016/j.neuron.2016.01.017 pmid: 26875624 |
[31] | Hull, C. L. (1943). Principles of behavior. New York: Appleton-century-crofts. |
[32] |
Keijsers, L., & Poulin, F. (2013). Developmental changes in parent-child communication throughout adolescence. Developmental Psychology, 49(12), 2301-2308.
doi: 10.1037/a0032217 pmid: 23477535 |
[33] | Kim, S. I. (2013). Neuroscientific model of motivational process. Frontiers in Psychology, 4, 98. |
[34] | Lee, W., & Reeve, J. (2017). Identifying the neural substrates of intrinsic motivation during task performance. Cognitive, Affective, & Behavioral Neuroscience, 17(5), 939-953. |
[35] |
Leotti, L. A., & Delgado, M. R. (2011). The inherent reward of choice. Psychological Science, 22(10), 1310-1318.
doi: 10.1177/0956797611417005 pmid: 21931157 |
[36] |
Madan, C. R., & Spetch, M. L. (2012). Is the enhancement of memory due to reward driven by value or salience? Acta Psychologica, 139(2), 343-349.
doi: 10.1016/j.actpsy.2011.12.010 pmid: 22266252 |
[37] |
Meng, L., & Ma, Q. (2015). Live as we choose: The role of autonomy support in facilitating intrinsic motivation. International Journal of Psychophysiology, 98(3), 441-447.
doi: 10.1016/j.ijpsycho.2015.08.009 URL |
[38] |
Mills, K. L., & Tamnes, C. K. (2014). Methods and considerations for longitudinal structural brain imaging analysis across development. Developmental Cognitive Neuroscience, 9, 172-190.
doi: 10.1016/j.dcn.2014.04.004 pmid: 24879112 |
[39] | Murayama, K., & Kitagami, S. (2014). Consolidation power of extrinsic rewards: Reward cues enhance long-term memory for irrelevant past events. Journal of Experimental Psychology, 143(1), 15-20. |
[40] |
Murayama, K., Matsumoto, M., Izuma, K., Sugiura, A., Ryan, R. M., Deci, E. L., & Matsumoto, K. (2015). How self-determined choice facilitates performance: A key role of the ventromedial prefrontal cortex. Cerebral Cortex, 25(5), 1241-1251.
doi: 10.1093/cercor/bht317 URL |
[41] |
Murre, J. M., Janssen, S. M., Rouw, R., & Meeter, M. (2013). The rise and fall of immediate and delayed memory for verbal and visuospatial information from late childhood to late adulthood. Acta Psychologica, 142(1), 96-107.
doi: 10.1016/j.actpsy.2012.10.005 pmid: 23261419 |
[42] |
Murty, V. P., Calabro, F., & Luna, B. (2016). The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neuroscience & Biobehavioral Reviews, 70, 46-58.
doi: 10.1016/j.neubiorev.2016.07.034 URL |
[43] |
Murty, V. P., DuBrow, S., & Davachi, L. (2015). The simple act of choosing influences declarative memory. Journal of Neuroscience, 35(16), 6255-6264.
doi: 10.1523/JNEUROSCI.4181-14.2015 pmid: 25904779 |
[44] |
Murty, V. P., DuBrow, S., Davachi, L. (2019). Decision-making increases episodic memory via postencoding consolidation. Journal of Cognitive Neuroscience, 31(9), 1308-1317.
doi: 10.1162/jocn_a_01321 pmid: 30063181 |
[45] |
Murty, V. P., Shah, H., Montez, D., Foran, W., Calabro, F., & Luna, B. (2018). Age-related trajectories of functional coupling between the VTA and nucleus accumbens depend on motivational state. The Journal of Neuroscience, 38(34), 7420-7427.
doi: 10.1523/JNEUROSCI.3508-17.2018 URL |
[46] |
Ofen, N. (2012). The development of neural correlates for memory formation. Neuroscience and Biobehavioral Reviews, 36(7), 1708-1717.
doi: 10.1016/j.neubiorev.2012.02.016 pmid: 22414608 |
[47] | Patil, A., Murty, V. P., Dunsmoor, J. E., Phelps, E. A., & Davachi, L. (2017). Reward retroactively enhances memory consolidation for related items. Learning & Memory, 24(1), 65-69. |
[48] | Qin, N., Gu, R., Xue, J., Chen, C., & Zhang, M. (2021). Reward-driven attention alters perceived salience. Journal of Vision, 21(1), 7. |
[49] | Qin, N., Xue, J., Chen, C., & Zhang, M. (2020). The bright and dark sides of performance-dependent monetary rewards: Evidence from visual perception tasks. Cognitive Science, 44(3), e12825. |
[50] | Reeve, J., & Lee, W. (2019). Motivational neuroscience. In R.M. Ryan (Eds.), The Oxford handbook of human motivation (pp.355-371). New York: Oxford University Press. |
[51] |
Ryan, R. M., & Deci, E. L. (2000a). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54-67.
doi: 10.1006/ceps.1999.1020 URL |
[52] |
Ryan, R. M., & Deci, E. L. (2000b). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68-78.
doi: 10.1037/0003-066X.55.1.68 URL |
[53] | Ryan, R. M., & Deci, E. L. (2020). Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemporary Educational Psychology, 61, 101860. |
[54] |
Shohamy, D., & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences, 14(10), 464-472.
doi: 10.1016/j.tics.2010.08.002 pmid: 20829095 |
[55] | Skinner, B. F. (1938). The behavior of organisms: An experimental analysis. New York: Appleton-Century. |
[56] | Skinner, B. F. (1955). The control of human behavior. Transactions of the New York Academy of Sciences, 17(7), 547-551. |
[57] |
Smith, D. G., Xiao, L., & Bechara, A. (2012). Decision making in children and adolescents: Impaired iowa gambling task performance in early adolescence. Developmental Psychology, 48(4), 1180-1187.
doi: 10.1037/a0026342 pmid: 22081879 |
[58] |
Somerville, L. H., & Casey, B. J. (2010). Developmental neurobiology of cognitive control and motivational systems. Current Opinion in Neurobiology, 20(2), 236-241.
doi: 10.1016/j.conb.2010.01.006 pmid: 20167473 |
[59] |
Steinberg, L., Graham, S., O'Brien, L., Woolard, J., Cauffman, E., & Banich, M. (2009). Age differences in future orientation and delay discounting. Child Development, 80(1), 28-44.
doi: 10.1111/j.1467-8624.2008.01244.x pmid: 19236391 |
[60] |
Steinberg, L., & Silverberg, S. B. (1986). The vicissitudes of autonomy in early adolescence. Child Development, 57(4), 841-851.
pmid: 3757604 |
[61] |
Voss, J. L., Gonsalves, B. D., Federmeier, K. D., Tranel, D., & Cohen, N. J. (2011). Hippocampal brain-network coordination during volitional exploratory behavior enhances learning. Nature Neuroscience, 14(1), 115-120.
doi: 10.1038/nn.2693 pmid: 21102449 |
[62] | Wehmeyer, M. L., & Shogren, K. A. (2017). The development of self-determination during adolescence. In M. Wehmeyer, K. Shogren, T. Little, & S. Lopez (Eds.), Development of self-determination through the life-course (pp. 89-98). Dordrecht: Springer. |
[63] |
Wierenga, L., Langen, M., Ambrosino, S., van Dijk, S., Oranje, B., & Durston, S. (2014). Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24. Neuroimage, 96, 67-72.
doi: 10.1016/j.neuroimage.2014.03.072 pmid: 24705201 |
[64] | Wu, Q., He, Y., Luo, Y., Hughes, B. L., Jiang, C., & Chen, X. (2021). Self-choice preference: The propensity to under-delegate irrespective of sense of control. Acta Psychologica, 214(18), 103262. |
[65] |
Yu, S., Chen, B., Levesque-Bristol, C., & Vansteenkiste, M. (2018). Chinese education examined via the lens of self-determination. Educational Psychology Review, 30, 177-214.
doi: 10.1007/s10648-016-9395-x URL |
[66] |
Zhang, M., Tu, J., Dong, B., Chen, C., & Bao, M. (2017). Preliminary evidence for a role of the personality trait in visual perceptual learning. Neurobiology of Learning and Memory, 139, 22-27.
doi: S1074-7427(16)30388-4 pmid: 27993649 |
[1] | 王勇丽, 葛胜男, Lancy Lantin Huang, 万勤, 卢海丹. 言语想象的神经机制[J]. 心理科学进展, 2023, 31(4): 608-621. |
[2] | 孔祥祯, 张凤翔, 蒲艺. 空间导航的脑网络基础和调控机制[J]. 心理科学进展, 2023, 31(3): 330-337. |
[3] | 张李斌, 张其文, 王晨旭, 张云运. 社会网络视角下儿童青少年同伴关系网络与欺凌相关行为的共同变化关系[J]. 心理科学进展, 2023, 31(3): 416-427. |
[4] | 王松雪, 程思, 蒋挺, 刘勋, 张明霞. 外在奖赏对陈述性记忆的影响[J]. 心理科学进展, 2023, 31(1): 78-86. |
[5] | 陈必忠, 孙晓军. 中国内地大学生时间管理倾向的时代变迁:1999~2020[J]. 心理科学进展, 2022, 30(9): 1968-1980. |
[6] | 赵冰洁, 张琪涵, 陈怡馨, 章鹏, 白学军. 智力运动专家领域内知觉与记忆的加工特点及其机制[J]. 心理科学进展, 2022, 30(9): 1993-2003. |
[7] | 邓尧, 王梦梦, 饶恒毅. 风险决策研究中的仿真气球冒险任务[J]. 心理科学进展, 2022, 30(6): 1377-1392. |
[8] | 李亮, 李红. 人们为什么会羞怯:认知机制及神经基础[J]. 心理科学进展, 2022, 30(5): 1038-1049. |
[9] | 王鑫麟, 邱晓悦, 翁旭初, 杨平. 工作记忆的神经振荡调控:基于神经振荡夹带现象[J]. 心理科学进展, 2022, 30(4): 802-816. |
[10] | 李俊娇, 陈伟, 石佩, 董媛媛, 郑希付. 预期错误在恐惧记忆更新中的作用与机制[J]. 心理科学进展, 2022, 30(4): 834-850. |
[11] | 武晓菲, 肖风, 罗劲. 创造性认知重评在情绪调节中的迁移效应及其神经基础[J]. 心理科学进展, 2022, 30(3): 477-485. |
[12] | 陈幸明, 付彤, 刘昌, 张宾, 伏云发, 李恩泽, ZHANG Jian, 陈盛强, 党彩萍. 工作记忆训练诱发的神经可塑性——基于系列fMRI实验的脑区分布递减时空模型[J]. 心理科学进展, 2022, 30(2): 255-274. |
[13] | 陈静, 冉光明, 张琪, 牛湘. 儿童和青少年同伴侵害与攻击行为关系的三水平元分析[J]. 心理科学进展, 2022, 30(2): 275-290. |
[14] | 章丽娜, 宣宾. 语言产生中词频效应老化的神经基础与时间进程[J]. 心理科学进展, 2022, 30(2): 333-342. |
[15] | 李何慧, 黄慧雅, 董琳, 罗跃嘉, 陶伍海. 发展性阅读障碍与小脑异常:小脑的功能和两者的因果关系[J]. 心理科学进展, 2022, 30(2): 343-353. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||