心理科学进展 ›› 2022, Vol. 30 ›› Issue (4): 817-833.doi: 10.3724/SP.J.1042.2022.00817
收稿日期:
2021-04-17
出版日期:
2022-04-15
发布日期:
2022-02-22
ZHANG Hang1, MENG Le1, ZHANG Jijia2()
Received:
2021-04-17
Online:
2022-04-15
Published:
2022-02-22
摘要:
音乐是高级意识活动产生的声音艺术, 对人类的情感表达和交流具有重要意义。作为连接音乐与情绪的核心要素, 协和性的形成原理至今仍然未有定论。人类如何加工多个音符构成的和声?为什么一些和声听起来协和(愉悦), 一些和声听起来不协和(不愉悦)?协和感究竟是自下而上的声学感知还是自上而下的审美体验?从古希腊时代至今, 这些问题就一直吸引着学者的目光。物理学家从协和与不协和的声学区别中寻找答案, 生理学家从听觉生理机制方面分析协和感的产生, 心理学家研究协和音程偏好是与生俱来的还是后天形成的。目前, 音乐协和性的理论内容主要以西方音乐为主, 中国传统民族音乐迫切需要开展相关的实证研究。
中图分类号:
张航, 孟乐, 张积家. (2022). 为什么和声能诱发音乐情感?——音乐协和性的作用及其认知机制. 心理科学进展 , 30(4), 817-833.
ZHANG Hang, MENG Le, ZHANG Jijia. (2022). Why musical emotion can be induced by harmony? The effect and cognitive mechanism of musical consonance. Advances in Psychological Science, 30(4), 817-833.
假设观点 | 影响因素 | 基本理论 | 相关文献 |
---|---|---|---|
生物决定论 | 音符之间的数理规律 | 同时响起的音符之间音高之比越简单, 声音整体听起来越协和 | Crocker, |
泛音列的和谐性 | 音乐协和性是基于纵向叠置的声学特征在多大程度上近似一个和谐的自然泛音列 | Bowling et al., | |
人耳的生理机制 | 不协和音程的泛音周期性差, 频谱分布不均匀, 导致频率过于接近的泛音列之间会在基底膜引起拍频效应, 从而引发不愉悦的粗糙感体验 | Greenwood, | |
比较心理学(动物行为研究) | 音乐协和性偏好受到听觉加工系统约束, 具有重要的生物学意义 | Fishman et al., | |
认知神经机制 | 皮层和皮层下水平的神经通路对和谐泛音特征存在编码优势。 | Bidelman, | |
毕生发展(先天) | 音乐协和性偏好是与生俱来的知觉能力 | Virtala et al., | |
环境决定论 | 毕生发展(后天) | 音乐协和性是后天习得的音乐审美经验 | Plantinga & Trehub, |
文化因素 | 音乐协和性知觉存在文化差异 | Ambrazevičius, | |
音乐训练 | 音乐训练对音乐协和性知觉具有重要的塑造作用 | Foss et al., | |
交互作用论 | 多因素混合理论 | 泛音和谐性、拍频效应和文化熏陶共同影响音乐协和性知觉 | Harrison & Pearce, |
表1 音乐协和性的相关理论
假设观点 | 影响因素 | 基本理论 | 相关文献 |
---|---|---|---|
生物决定论 | 音符之间的数理规律 | 同时响起的音符之间音高之比越简单, 声音整体听起来越协和 | Crocker, |
泛音列的和谐性 | 音乐协和性是基于纵向叠置的声学特征在多大程度上近似一个和谐的自然泛音列 | Bowling et al., | |
人耳的生理机制 | 不协和音程的泛音周期性差, 频谱分布不均匀, 导致频率过于接近的泛音列之间会在基底膜引起拍频效应, 从而引发不愉悦的粗糙感体验 | Greenwood, | |
比较心理学(动物行为研究) | 音乐协和性偏好受到听觉加工系统约束, 具有重要的生物学意义 | Fishman et al., | |
认知神经机制 | 皮层和皮层下水平的神经通路对和谐泛音特征存在编码优势。 | Bidelman, | |
毕生发展(先天) | 音乐协和性偏好是与生俱来的知觉能力 | Virtala et al., | |
环境决定论 | 毕生发展(后天) | 音乐协和性是后天习得的音乐审美经验 | Plantinga & Trehub, |
文化因素 | 音乐协和性知觉存在文化差异 | Ambrazevičius, | |
音乐训练 | 音乐训练对音乐协和性知觉具有重要的塑造作用 | Foss et al., | |
交互作用论 | 多因素混合理论 | 泛音和谐性、拍频效应和文化熏陶共同影响音乐协和性知觉 | Harrison & Pearce, |
图1 a. 从1898年至2020年间, 来自6个国家受试者对12个和声音程音乐协和性的等级排列结果高度一致。数据分别选自:美国(Guernsey, 1928), 日本(Butler & Daston, 1968), 德国(Stumpf, 1989), 英国(Pear, 1911), 新加坡(Bowling & Purves, 2015), 加拿大(Weiss et al., 2020)。b. 吉他琴弦振动产生的泛音列。c. 协和音程(纯五度)和不协和音程(三全音)的频谱示意图。绿色实线代表根音音符A的频率成分, 基频是110 Hz, 泛音是220, 330, 440, 550, 660 Hz等。三全音中红色虚线代表冠音音符Eb, 基频是156 Hz, 泛音是 312, 468, 624, 780, 936 Hz等。纯五度中红色虚线代表冠音音符E, 基频是165 Hz, 泛音列是330, 495, 660, 852 Hz等。黑色虚线代表纯五度的虚拟音高。d. 基底膜上拍频效应的示意图。拍频效应通常由泛音列过于接近的不协和音程引发。
名称 | 与基音的关系 | 与基音的音程关系 | 协和性 | 与前一泛音的关系 | 音程名称 | 协和性 |
---|---|---|---|---|---|---|
基音 | 1:1 | 纯一度 | C | 1:1 | 纯一度 | C |
第一泛音 | 2:1 | 纯八度 | C | 2:1 | 纯八度 | C |
第二泛音 | 3:1 | 纯八度+纯五度 | C | 3:2 | 纯五度 | C |
第三泛音 | 4:1 | 纯八度+纯八度 | C | 4:3 | 纯四度 | C |
第四泛音 | 5:1 | 纯八度+纯八度+大三度 | C | 5:4 | 大三度 | C |
第五泛音 | 6:1 | 纯八度+纯八度+纯五度 | C | 6:5 | 小三度 | C |
第六泛音 | 7:1 | 纯八度+纯八度+小七度 | D | 7:6 | 无该音程 | *** |
第七泛音 | 8:1 | 纯八度+纯八度+纯八度 | C | 8:7 | 无该音程 | *** |
第八泛音 | 9:1 | 三个纯八度+大二度 | D | 9:8 | 大二度 | D |
第十五泛音 | 16:1 | 四个纯八度 | C | 16:15 | 小二度 | D |
表2 自然倍音列中基音与泛音之间的协和关系
名称 | 与基音的关系 | 与基音的音程关系 | 协和性 | 与前一泛音的关系 | 音程名称 | 协和性 |
---|---|---|---|---|---|---|
基音 | 1:1 | 纯一度 | C | 1:1 | 纯一度 | C |
第一泛音 | 2:1 | 纯八度 | C | 2:1 | 纯八度 | C |
第二泛音 | 3:1 | 纯八度+纯五度 | C | 3:2 | 纯五度 | C |
第三泛音 | 4:1 | 纯八度+纯八度 | C | 4:3 | 纯四度 | C |
第四泛音 | 5:1 | 纯八度+纯八度+大三度 | C | 5:4 | 大三度 | C |
第五泛音 | 6:1 | 纯八度+纯八度+纯五度 | C | 6:5 | 小三度 | C |
第六泛音 | 7:1 | 纯八度+纯八度+小七度 | D | 7:6 | 无该音程 | *** |
第七泛音 | 8:1 | 纯八度+纯八度+纯八度 | C | 8:7 | 无该音程 | *** |
第八泛音 | 9:1 | 三个纯八度+大二度 | D | 9:8 | 大二度 | D |
第十五泛音 | 16:1 | 四个纯八度 | C | 16:15 | 小二度 | D |
[1] | 陈思, 陈其射. (2019). 《老子》“一二三”的音乐阐微. 中国音乐, (6), 125-134. |
[2] | 孙铿亮. (2017). “十二平均律”:从理论提出到键盘实践--j.s. 巴赫对钢琴艺术的历史贡献. 艺术百家, 33(6), 255-256. |
[3] | 唐朴林. (2010). “乐改”何从? 中国音乐, (2), 1-6. |
[4] | 王小盾. (2017). 上古中国人的用耳之道--兼论若干音乐学概念和哲学概念的起源. 中国社会科学, (4), 149-183. |
[5] | 薛冬艳. (2018). 声生于日, 律生于辰--阐发先秦、两汉二分、三分生律思维. 中国音乐, (2), 64-72. |
[6] | Ambrazevičius, R. (2017). Dissonance/roughness and tonality perception in Lithuanian traditional Schwebungs diaphonie. Journal of Interdisciplinary Music Studies, 8(1&2), 39-53. |
[7] |
Andermann, M., Patterson, R. D., & Rupp, A. (2020). Transient and sustained processing of musical consonance in auditory cortex and the effect of musicality. Journal of Neurophysiology, 123(4), 1320-1331.
doi: 10.1152/jn.00876.2018 pmid: 32073930 |
[8] |
Arnal, L. H., Flinker, A., Kleinschmidt, A., Giraud, A.-L., & Poeppel, D. (2015). Human screams occupy a privileged niche in the communication soundscape. Current Biology, 25(15), 2051-2056.
doi: 10.1016/j.cub.2015.06.043 pmid: 26190070 |
[9] |
Ball, P. (2008). Facing the music. Nature, 453(7192), 160-162.
doi: 10.1038/453160a URL |
[10] | Belfi, A. M., Moreno, G. L., Gugliano, M., & Neill, C. (2021). Musical reward across the lifespan. Aging & Mental Health, 1-8. |
[11] | Bennett, W. R., & Holland, C. K. Eds. (2018). The science of musical sound: Volume 1: Stringed instruments, pipe organs, and the human voice. Switzerland, Cham: Springer Nature Switzerland AG. |
[12] |
Bernini, A., & Talamucci, F. (2014). Consonance of complex tones with harmonics of different intensity. Open Journal of Acoustics, 4(2), 78-89.
doi: 10.4236/oja.2014.42008 URL |
[13] |
Bidelman, G. M. (2013). The role of the auditory brainstem in processing musically relevant pitch. Frontiers in Psychology, 4, 264.
doi: 10.3389/fpsyg.2013.00264 pmid: 23717294 |
[14] |
Bidelman, G. M., & Grall, J. (2014). Functional organization for musical consonance and tonal pitch hierarchy in human auditory cortex. NeuroImage, 101, 204-214.
doi: 10.1016/j.neuroimage.2014.07.005 pmid: 25019679 |
[15] |
Bidelman, G. M., & Heinz, M. G. (2011). Auditory-nerve responses predict pitch attributes related to musical consonance-dissonance for normal and impaired hearing. The Journal of the Acoustical Society of America, 130(3), 1488-1502.
doi: 10.1121/1.3605559 URL |
[16] |
Bidelman, G. M., & Krishnan, A. (2009). Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem. Journal of Neuroscience, 29(42), 13165-13171.
doi: 10.1523/JNEUROSCI.3900-09.2009 pmid: 19846704 |
[17] |
Bones, O., Hopkins, K., Krishnan, A., & Plack, C. J. (2014). Phase locked neural activity in the human brainstem predicts preference for musical consonance. Neuropsychologia, 58, 23-32.
doi: 10.1016/j.neuropsychologia.2014.03.011 URL |
[18] | Bonin, T., & Smilek, D. (2016). Inharmonic music elicits more negative affect and interferes more with a concurrent cognitive task than does harmonic music. Attention, Perception, & Psychophysics, 78(3), 946-959. |
[19] | Bowling, D. L., Hoeschele, M., Gill, K. Z., & Fitch, W. T. (2017). The nature and nurture of musical consonance. Music Perception: An Interdisciplinary Journal, 35(1), 118-121. |
[20] |
Bowling, D. L., & Purves, D. (2015). A biological rationale for musical consonance. Proceedings of the National Academy of Sciences, 112(36), 11155-11160.
doi: 10.1073/pnas.1505768112 URL |
[21] |
Bowling, D. L., Purves, D., & Gill, K. Z. (2018). Vocal similarity predicts the relative attraction of musical chords. Proceedings of the National Academy of Sciences, 115(1), 216-221.
doi: 10.1073/pnas.1713206115 URL |
[22] |
Brattico, E., Pallesen, K. J., Varyagina, O., Bailey, C., Anourova, I., Järvenpää, M., ... Tervaniemi, M. (2009). Neural discrimination of nonprototypical chords in music experts and laymen: An MEG study. Journal of Cognitive Neuroscience, 21(11), 2230-2244.
doi: 10.1162/jocn.2008.21144 pmid: 18855547 |
[23] |
Bravo, F., Cross, I., Hopkins, C., Gonzalez, N., Docampo, J., Bruno, C., & Stamatakis, E. A. (2020). Anterior cingulate and medial prefrontal cortex response to systematically controlled tonal dissonance during passive music listening. Human Brain Mapping, 41(1), 46-66.
doi: 10.1002/hbm.v41.1 URL |
[24] |
Brown, S., & Jordania, J. (2013). Universals in the world’s musics. Psychology of Music, 41(2), 229-248.
doi: 10.1177/0305735611425896 URL |
[25] |
Butler, J. W., & Daston, P. G. (1968). Musical consonance as musical preference: A cross-cultural study. The Journal of General Psychology, 79(1), 129-142.
doi: 10.1080/00221309.1968.9710460 URL |
[26] | Chan, P. Y., Dong, M., & Li, H. (2019). The science of harmony: A psychophysical basis for perceptual tensions and resolutions in music. Research, 2019, 2369041. |
[27] |
Chiandetti, C., & Vallortigara, G. (2011). Chicks like consonant music. Psychological Science, 22(10), 1270-1273.
doi: 10.1177/0956797611418244 pmid: 21934134 |
[28] |
Chow, S. (2020). A localised boundary object: Seventeenth- century western music theory in China. Early Music History, 39, 75-113.
doi: 10.1017/S0261127920000078 URL |
[29] | Christensen, T. (2004). Rameau and musical thought in the Enlightenment. In I. Bent, (general ed.), Cambridge Studies in Music Theory and Analysis, Series Number 4. Cambridge: Cambridge University Press. |
[30] |
Coffey, E. B. J., Herholz, S. C., Chepesiuk, A. M. P., Baillet, S., & Zatorre, R. J. (2016). Cortical contributions to the auditory frequency-following response revealed by MEG. Nature communications, 7, 11070.
doi: 10.1038/ncomms11070 pmid: 27009409 |
[31] |
Conard, N. J., Malina, M., & Münzel, S. C. (2009). New flutes document the earliest musical tradition in southwestern Germany. Nature, 460(7256), 737-740.
doi: 10.1038/nature08169 URL |
[32] |
Cousineau, M., McDermott, J. H., & Peretz, I. (2012). The basis of musical consonance as revealed by congenital amusia. Proceedings of the National Academy of Sciences, 109(48), 19858-19863.
doi: 10.1073/pnas.1207989109 URL |
[33] |
Crespo-Bojorque, P., & Toro, J. M. (2015). The use of interval ratios in consonance perception by rats (rattus norvegicus) and humans (homo sapiens). Journal of Comparative Psychology, 129(1), 42-51.
doi: 10.1037/a0037991 pmid: 25285599 |
[34] |
Crocker, R. L. (1963). Pythagorean mathematics and music. The Journal of Aesthetics and Art Criticism, 22(2), 189-198.
doi: 10.1111/1540_6245.jaac22.2.0189 URL |
[35] |
Crowder, R. G., Reznick, J. S., & Rosenkrantz, S. L. (1991). Perception of the major/minor distinction: V. Preferences among infants. Bulletin of the Psychonomic Society, 29(3), 187-188.
doi: 10.3758/BF03342673 URL |
[36] | de Cheveigné, A. (2005). Pitch perception models. In C. J. Plack & A. J. Oxenham (Eds.), Pitch: Neural coding and perception (pp.169-233). New York: Springer. |
[37] |
Dellacherie, D., Roy, M., Hugueville, L., Peretz, I., & Samson, S. (2011). The effect of musical experience on emotional self-reports and psychophysiological responses to dissonance. Psychophysiology, 48(3), 337-349.
doi: 10.1111/j.1469-8986.2010.01075.x pmid: 20701708 |
[38] |
di Stefano, N., Focaroli, V., Giuliani, A., Formica, D., Taffoni, F., & Keller, F. (2017). A new research method to test auditory preferences in young listeners: Results from a consonance versus dissonance perception study. Psychology of Music, 45(5), 699-712.
doi: 10.1177/0305735616681205 URL |
[39] |
Dostrovsky, S. (1975). Early vibration theory: Physics and music in the seventeenth century. Archive for History of Exact Sciences, 14(3), 169-218.
doi: 10.1007/BF00327447 URL |
[40] | Feng, L., & Wang, X. (2017). Harmonic template neurons in primate auditory cortex underlying complex sound processing. Proceedings of the National Academy of Sciences, 114(5), E840-E848. |
[41] |
Fishman, Y. I., Volkov, I. O., Noh, M. D., Garell, P. C., Bakken, H., Arezzo, J. C., ... Steinschneider, M. (2001). Consonance and dissonance of musical chords: Neural correlates in auditory cortex of monkeys and humans. Journal of Neurophysiology, 86(6), 2761-2788.
pmid: 11731536 |
[42] |
Foss, A. H., Altschuler, E. L., & James, K. H. (2007). Neural correlates of the Pythagorean ratio rules. Neuroreport, 18(15), 1521-1525.
doi: 10.1097/WNR.0b013e3282ef6b51 URL |
[43] |
Friedman, R. S., Kowalewski, D. A., Vuvan, D. T., & Neill, W. T. (2021). Consonance preferences within an unconventional tuning system. Music Perception, 38(3), 313-330.
doi: 10.1525/mp.2021.38.3.313 URL |
[44] |
Gill, K. Z., & Purves, D. (2009). A biological rationale for musical scales. PLoS One, 4(12), e8144.
doi: 10.1371/journal.pone.0008144 URL |
[45] |
Gold, B. P., Mas-Herrero, E., Zeighami, Y., Benovoy, M., Dagher, A., & Zatorre, R. J. (2019). Musical reward prediction errors engage the nucleus accumbens and motivate learning. Proceedings of the National Academy of Sciences, 116(8), 3310-3315.
doi: 10.1073/pnas.1809855116 URL |
[46] |
Greenwood, D. D. (1961). Auditory masking and the critical band. The Journal of the Acoustical Society of America, 33(4), 484-502.
doi: 10.1121/1.1908699 URL |
[47] |
Greenwood, D. D. (1991). Critical bandwidth and consonance in relation to cochlear frequency-position coordinates. Hearing Research, 54(2), 164-208.
pmid: 1938625 |
[48] |
Guernsey, M. (1928). The role of consonance and dissonance in music. The American Journal of Psychology, 40(2), 173-204.
doi: 10.2307/1414484 URL |
[49] |
Harrison, P., & Pearce, M. T. (2020). Simultaneous consonance in music perception and composition. Psychological Review, 127(2), 216-244.
doi: 10.1037/rev0000169 pmid: 31868392 |
[50] |
Harrison, P. M. (2021). Three questions concerning consonance perception. Music Perception, 38(3), 337-339.
doi: 10.1525/mp.2021.38.3.337 URL |
[51] | Helmholtz, H. (1885). On the sensations of tone as a physiological basis for the theory of music. 2nd ed (A. J. Ellis, Trans). New York: Dover |
[52] |
Hoeschele, M., Cook, R. G., Guillette, L. M., Brooks, D. I., & Sturdy, C. B. (2012). Black-capped chickadee (Poecile atricapillus) and human (Homo sapiens) chord discrimination. Journal of Comparative Psychology, 126(1), 57-67.
doi: 10.1037/a0024627 pmid: 21942569 |
[53] | Hulse, S. H., Bernard, D. J., & Braaten, R. F. (1995). Auditory discrimination of chord-based spectral structures by European starlings (Sturnus vulgaris). Journal of Experimental Psychology. General, 124, 409-423. |
[54] |
Itoh, K., Suwazono, S., & Nakada, T. (2010). Central auditory processing of noncontextual consonance in music: An evoked potential study. The Journal of the Acoustical Society of America, 128(6), 3781-3787.
doi: 10.1121/1.3500685 URL |
[55] |
Izumi, A. (2000). Japanese monkeys perceive sensory consonance of chords. The Journal of the Acoustical Society of America, 108(6), 3073-3078.
doi: 10.1121/1.1323461 URL |
[56] |
Kennedy, D., & Norman, C. (2005). What don’t we know. Science, 309(5731), 75.
pmid: 15994521 |
[57] |
Kieffer, A. (2016). Riemann in France: Jean marnold and the “modern” music-theoretical ear. Music Theory Spectrum, 38(1), 1-15.
doi: 10.1093/mts/mtv038 URL |
[58] | Killin, A. (2018). The origins of music: Evidence, theory, and prospects. Music & Science, 1, 2059204317751971. |
[59] |
Kim, S. G., Lepsien, J., Fritz, T. H., Mildner, T., & Mueller, K. (2017). Dissonance encoding in human inferior colliculus covaries with individual differences in dislike of dissonant music. Scientific Reports, 7(1), 5726.
doi: 10.1038/s41598-017-06105-2 URL |
[60] |
Koda, H., Basile, M., Olivier, M., Remeuf, K., Nagumo, S., Blois-Heulin, C., & Lemasson, A. (2013). Validation of an auditory sensory reinforcement paradigm: Campbell’s monkeys (Cercopithecus campbelli) do not prefer consonant over dissonant sounds. Journal of Comparative Psychology, 127(3), 265-271.
doi: 10.1037/a0031237 URL |
[61] |
Kohlrausch, A., Fassel, R., & Dau, T. (2000). The influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriers. The Journal of the Acoustical Society of America, 108(2), 723-734.
doi: 10.1121/1.429605 URL |
[62] |
Konoval, B. (2018). Pythagorean pipe dreams? Vincenzo galilei, marin mersenne, and the pneumatic mysteries of the pipe organ. Perspectives on Science, 26(1), 1-51.
doi: 10.1162/POSC_a_00266 URL |
[63] |
Masataka, N. (2006). Preference for consonance over dissonance by hearing newborns of deaf parents and of hearing parents. Developmental Science, 9(1), 46-50.
pmid: 16445395 |
[64] |
Masataka, N., & Perlovsky, L. (2013). Cognitive interference can be mitigated by consonant music and facilitated by dissonant music. Scientific Reports, 3, 2028.
doi: 10.1038/srep02028 pmid: 23778307 |
[65] |
McDermott, J. H., Lehr, A. J., & Oxenham, A. J. (2010). Individual differences reveal the basis of consonance. Current Biology, 20(11), 1035-1041.
doi: 10.1016/j.cub.2010.04.019 pmid: 20493704 |
[66] |
McDermott, J. H., & Oxenham, A. J. (2008). Music perception, pitch, and the auditory system. Current Opinion in Neurobiology, 18(4), 452-463.
doi: 10.1016/j.conb.2008.09.005 pmid: 18824100 |
[67] |
McDermott, J. H., Schultz, A. F., Undurraga, E. A., & Godoy, R. A. (2016). Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature, 535(7613), 547-550.
doi: 10.1038/nature18635 URL |
[68] | McKinney, M., Tramo, M., & Delgutte, B. (2001). Neural correlates of musical dissonance in the inferior colliculus. In D. J. Breebaart, A. J. M. Houtsma, A. Kohlrausch, V. F. Prijs, & R. Schoonhoven, (Eds.), Physiological and psychophysical bases of auditory function (pp.83-89). Maastricht, the Netherlands: Shaker Publishing. |
[69] |
McLachlan, N., Marco, D., Light, M., & Wilson, S. (2013). Consonance and pitch. Journal of Experimental Psychology: General, 142(4), 1142-1158.
doi: 10.1037/a0030830 URL |
[70] |
McPherson, M. J., Dolan, S. E., Durango, A., Ossandon, T., Valdés, J., Undurraga, E. A., ... McDermott, J. H. (2020). Perceptual fusion of musical notes by native Amazonians suggests universal representations of musical intervals. Nature Communications, 11(1), 2786.
doi: 10.1038/s41467-020-16448-6 pmid: 32493923 |
[71] | Mehr, S. A., Singh, M., Knox, D., Ketter, D. M., Pickens-Jones, D., Atwood, S., ... Glowacki, L. (2019). Universality and diversity in human song. Science, 366(6468). |
[72] |
Meyer, M. (1903). Experimental studies in the psychology of music. The American Journal of Psychology, 14(3/4), 192-214.
doi: 10.2307/1412315 URL |
[73] |
Milne, A. J., Laney, R., & Sharp, D. B. (2016). Testing a spectral model of tonal affinity with microtonal melodies and inharmonic spectra. Musicae Scientiae, 20(4), 465-494.
doi: 10.1177/1029864915622682 URL |
[74] |
Minati, L., Rosazza, C., D'Incerti, L., Pietrocini, E., Valentini, L., Scaioli, V., ... Bruzzone, M. G. (2009). Functional MRI/event-related potential study of sensory consonance and dissonance in musicians and nonmusicians. Neuroreport, 20(1), 87-92.
doi: 10.1097/WNR.0b013e32831af235 URL |
[75] |
Montoya, R. M., Horton, R. S., Vevea, J. L., Citkowicz, M., & Lauber, E. A. (2017). A re-examination of the mere exposure effect: The influence of repeated exposure on recognition, familiarity, and liking. Psychological Bulletin, 143(5), 459-498
doi: 10.1037/bul0000085 URL |
[76] |
Norman-Haignere, S. V., Kanwisher, N., McDermott, J. H., & Conway, B. R. (2019). Divergence in the functional organization of human and macaque auditory cortex revealed by fMRI responses to harmonic tones. Nature Neuroscience, 22(7), 1057-1060.
doi: 10.1038/s41593-019-0410-7 pmid: 31182868 |
[77] |
Oxenham, A. J. (2018). How we hear: The perception and neural coding of sound. Annual Review of Psychology, 69, 27-50.
doi: 10.1146/annurev-psych-122216-011635 pmid: 29035691 |
[78] | Pagès‐Portabella, C., & Toro, J. M. (2020). Dissonant endings of chord progressions elicit a larger ERAN than ambiguous endings in musicians. Psychophysiology, 57(2), e13476. |
[79] | Palisca, C. V. (1961). Scientific empiricism in musical thought. In H. H. Rhys (Eds.), Seventheenth century science and the arts Princeton (Vol. 2361, pp. 91-137). Princeton University Press. |
[80] | Parncutt, R., & Hair, G. (2011). Consonance and dissonance in music theory and psychology: Disentangling dissonant dichotomies. Journal of Interdisciplinary Music Studies, 5(2), 119-166. |
[81] |
Parncutt, R., Reisinger, D., Fuchs, A., & Kaiser, F. (2019). Consonance and prevalence of sonorities in Western polyphony: Roughness, harmonicity, familiarity, evenness, diatonicity. Journal of New Music Research, 48(1), 1-20.
doi: 10.1080/09298215.2018.1477804 |
[82] | Pear, T. H. (1911). The experimental examination of some differences between the major and the minor chord. British Journal of Psychology, 4(1), 56-88. |
[83] |
Perani, D., Saccuman, M. C., Scifo, P., Spada, D., Andreolli, G., Rovelli, R., ... Koelsch, S. (2010). Functional specializations for music processing in the human newborn brain. Proceedings of the National Academy of Sciences, 107(10), 4758-4763.
doi: 10.1073/pnas.0909074107 URL |
[84] | Pesic, P. (2014). Music and the making of modern science. Cambridge, Massachusetts: MIT Press. |
[85] | Pisanski, K., & Feinberg, D. R. (2019). Vocal attractiveness. In S. Frühholz & P. Belin (Eds.), Oxford handbook of voice perception (pp.607-625). New York: Oxford University Press. |
[86] |
Plack, C. J. (2010). Musical consonance: The importance of harmonicity. Current Biology, 20(11), R476-R478.
doi: 10.1016/j.cub.2010.03.044 URL |
[87] |
Plantinga, J., & Trehub, S. E. (2014). Revisiting the Innate Preference for Consonance. Journal of Experimental Psychology: Human Perception and Performance, 40(1), 40-49.
doi: 10.1037/a0033471 URL |
[88] |
Plomp, R., & Levelt, W. J. M. (1965). Tonal consonance and critical bandwidth. The Journal of the Acoustical Society of America, 38(4), 548-560.
doi: 10.1121/1.1909741 URL |
[89] | Popescu, T., Neuser, M. P., Neuwirth, M., Bravo, F., Mende, W., Boneh, O., ... Rohrmeier, M. (2019). The pleasantness of sensory dissonance is mediated by musical style and expertise. Scientific Reports, 9(1), 1-11. |
[90] |
Popham, S., Boebinger, D., Ellis, D. P. W., Kawahara, H., & McDermott, J. H. (2018). Inharmonic speech reveals the role of harmonicity in the cocktail party problem. Nature Communications, 9(1), 2122
doi: 10.1038/s41467-018-04551-8 pmid: 29844313 |
[91] |
Postal, O., Dupont, T., Bakay, W., Dominique, N., Petit, C., Michalski, N., & Gourévitch, B. (2020). Spontaneous mouse behavior in presence of dissonance and acoustic roughness. Frontiers in Behavioral Neuroscience, 14, 588834.
doi: 10.3389/fnbeh.2020.588834 URL |
[92] |
Prete, G., Bondi, D., Verratti, V., Aloisi, A. M., Rai, P., & Tommasi, L. (2020). Universality vs experience: A cross-cultural pilot study on the consonance effect in music at different altitudes. PeerJ, 8, e9344.
doi: 10.7717/peerj.9344 URL |
[93] | Primavesi, O. (2016). Empedocles’ cosmic cycle and the pythagorean tetractys. Rhizomata, 4(1), 5-29. |
[94] |
Proverbio, A. M., Orlandi, A., & Pisanu, F. (2016). Brain processing of consonance/dissonance in musicians and controls: A hemispheric asymmetry revisited. European Journal of Neuroscience, 44(6), 2340-2356.
doi: 10.1111/ejn.13330 pmid: 27421883 |
[95] | Purves, D. (2017). Music as biology: the tones we like and why. Cambridge: Harvard University Press. |
[96] |
Scharinger, M., Idsardi, W. J., & Poe, S. (2011). A comprehensive three-dimensional cortical map of vowel space. Journal of Cognitive Neuroscience, 23(12), 3972-3982.
doi: 10.1162/jocn_a_00056 pmid: 21568638 |
[97] | Schneider, A. (2018). Pitch and pitch perception. In R. Bader (Eds.), Springer handbook of systematic musicology (pp.605-685). Berlin, Heidelberg: Springer. |
[98] |
Schwartz, D. A., Howe, C. Q., & Purves, D. (2003). The statistical structure of human speech sounds predicts musical universals. Journal of Neuroscience, 23(18), 7160-7168.
pmid: 12904476 |
[99] |
Seror, G. A., & Neill, W. T. (2015). Context dependent pitch perception in consonant and dissonant harmonic intervals. Music Perception, 32(5), 460-469.
doi: 10.1525/mp.2015.32.5.460 URL |
[100] |
Shapira, L. I., & Stone, L. (2008). Perception of musical consonance and dissonance: An outcome of neural synchronization. Journal of the Royal Society Interface, 5(29), 1429-1434.
doi: 10.1098/rsif.2008.0143 pmid: 18547910 |
[101] |
Stolzenburg, F. (2015). Harmony perception by periodicity detection. Journal of Mathematics and Music, 9(3), 215-238.
doi: 10.1080/17459737.2015.1033024 URL |
[102] | Stumpf, C. (1989). Konsonanz and dissonanz. Beitr. Akust. Musikwiss. 1, 91-107. |
[103] |
Sugimoto, T., Kobayashi, H., Nobuyoshi, N., Kiriyama, Y., Takeshita, H., Nakamura, T., & Hashiya, K. (2010). Preference for consonant music over dissonant music by an infant chimpanzee. Primates, 51(1), 7-12.
doi: 10.1007/s10329-009-0160-3 pmid: 19626392 |
[104] |
Sukljan, N. (2020). Renaissance music between science and art. Musicological Annual, 56(2), 183-206.
doi: 10.4312/mz.56.2 URL |
[105] |
Tabas, A., Andermann, M., Schuberth, V., Riedel, H., Balaguer-Ballester, E., & Rupp, A. (2019). Modeling and MEG evidence of early consonance processing in auditory cortex. PLoS Computational Biology, 15(2), e1006820.
doi: 10.1371/journal.pcbi.1006820 URL |
[106] | Tenney, J. (1988). A history of consonance and dissonance. New York: Excelsior Music Publishing. |
[107] | Toro, J. M., & Crespo-Bojorque, P. (2017). Consonance processing in the absence of relevant experience: Evidence from nonhuman animals. Comparative Cognition & Behavior Reviews, 12, 33-44. |
[108] | Trainor, L. J., & Heinmiller, B. M. (1998). The development of evaluative responses to music:: Infants prefer to listen to consonance over dissonance. Infant Behavior and Development, 21(1), 77-88. |
[109] |
Trainor, L. J., Tsang, C. D., & Cheung, V. H. (2002). Preference for sensory consonance in 2-and 4-month-old infants. Music Perception, 20(2), 187-194.
doi: 10.1525/mp.2002.20.2.187 URL |
[110] | Tramo, M. J., Cariani, P. A., Delgutte, B., & Braida, L. D. (2001). Neurobiological foundations for the theory of harmony in western tonal music. Annals of the New York Academy of Sciences, 930(1), 92-116. |
[111] | Valentine, C. W. (1914). The method of comparison in experiments with musical intervals and the effect of practice on the appreciation of discords. British Journal of Psychology, 7(1), 118-135. |
[112] | Vassilakis, P. N. (2005). Auditory roughness as a means of musical expression. Selected Reports in Ethnomusicology, 12, 119-144. |
[113] |
Vencovskỳ, V. (2016). Roughness prediction based on a model of cochlear hydrodynamics. Archives of Acoustics, 41(2), 189-201.
doi: 10.1515/aoa-2016-0019 URL |
[114] |
Virtala, P., Huotilainen, M., Partanen, E., Fellman, V., & Tervaniemi, M. (2013). Newborn infants' auditory system is sensitive to Western music chord categories. Frontiers in Psychology, 4, 492.
doi: 10.3389/fpsyg.2013.00492 pmid: 23966962 |
[115] |
Virtala, P., & Tervaniemi, M. (2017). Neurocognition of major-minor and consonance-dissonance. Music Perception, 34(4), 387-404.
doi: 10.1525/mp.2017.34.4.387 URL |
[116] | von Békésy, G. (1960). Experiments in hearing. New York: McGraw Hill. |
[117] |
Watanabe, S., Uozumi, M., & Tanaka, N. (2005). Discrimination of consonance and dissonance in Java sparrows. Behavioural Processes, 70(2), 203-208.
pmid: 16043306 |
[118] |
Weiss, M. W., Cirelli, L. K., McDermott, J. H., & Trehub, S. E. (2020). Development of consonance preferences in Western listeners. Journal of Experimental Psychology: General, 149(4), 634-649.
doi: 10.1037/xge0000680 URL |
[119] |
Werker, J. F., & Hensch, T. K. (2015). Critical periods in speech perception: New directions. Annual Review of Psychology, 66, 173-196.
doi: 10.1146/annurev-psych-010814-015104 pmid: 25251488 |
[120] |
Zatorre, R. J., & Salimpoor, V. N. (2013). From perception to pleasure: Music and its neural substrates. Proceedings of the National Academy of Sciences, 110(Suppl. 2), 10430-10437.
doi: 10.1073/pnas.1301228110 URL |
[121] | Zentner, M. R., & Kagan, J. (1996). Perception of music by infants. Nature, 383(6595), 29-29. |
[122] |
Zhou, L., Liu, F., Jiang, J., & Jiang, C. (2019). Impaired emotional processing of chords in congenital amusia: Electrophysiological and behavioral evidence. Brain and Cognition, 135, 103577.
doi: 10.1016/j.bandc.2019.06.001 URL |
[1] | 邹迪, 李红, 王福顺. 唤醒定义探析及其认知神经生理基础[J]. 心理科学进展, 2022, 30(9): 2020-2033. |
[2] | 张琳琳, 魏坤琳, 李晶. 儿童的人际运动同步[J]. 心理科学进展, 2022, 30(3): 623-634. |
[3] | 隋雪, 史汉文, 李雨桐. 语言加工过程中的观点采择及其认知机制[J]. 心理科学进展, 2021, 29(6): 990-999. |
[4] | 张晶晶, 梁啸岳, 陈伊笛, 陈庆荣. 音乐句法加工的认知机制与音乐结构的影响模式[J]. 心理科学进展, 2020, 28(6): 883-892. |
[5] | 陈琳, 田晓明, 段锦云. 建议采纳的认知机制[J]. 心理科学进展, 2019, 27(1): 149-159. |
[6] | 黄欢, 刘博, 周晨琛, 姬鸣. 前瞻记忆意图后效中执行错误的机制[J]. 心理科学进展, 2018, 26(9): 1600-1607. |
[7] | 杜玮玮, 宋婷, 李富洪. 双价效应及其认知机制[J]. 心理科学进展, 2018, 26(11): 1969-1975. |
[8] | 范伟, 杨博, 刘娟, 傅小兰. 自我欺骗:为了调节个体心理状态[J]. 心理科学进展, 2017, 25(8): 1349-1359. |
[9] | 杨营凯; 刘衍玲;. 抑郁反刍的认知神经机制[J]. 心理科学进展, 2016, 24(7): 1042-1049. |
[10] | 李爱梅;孙海龙;熊冠星;王笑天;李斌. “时间贫穷”对跨期决策和前瞻行为的影响及其认知机制[J]. 心理科学进展, 2016, 24(6): 874-884. |
[11] | 刘雷;苏缇;彭娟;郭逸群;冯廷勇. 延迟折扣的认知与神经机制:特质性与状态性研究取向[J]. 心理科学进展, 2014, 22(7): 1047-1061. |
[12] | 徐同洁;温芳芳;浮东琴;佐斌;肖任飞. 人际沟通中的语言偏向及影响因素[J]. 心理科学进展, 2014, 22(7): 1188-1197. |
[13] | 滕召军;刘衍玲;刘勇;翟瑞. 乐观偏差的认知神经机制[J]. 心理科学进展, 2014, 22(1): 57-66. |
[14] | 李爱梅;鹿凡凡. 幸福的体验效用与非理性决策行为的偏差机制[J]. 心理科学进展, 2013, 21(6): 1059-1070. |
[15] | 冉光明;赵乐;陈旭;丁毅;潘彦谷;刘燕;邹文谦. 发展性面孔失认的认知机制及其神经基础[J]. 心理科学进展, 2013, 21(5): 808-816. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||