心理科学进展 ›› 2022, Vol. 30 ›› Issue (4): 834-850.doi: 10.3724/SP.J.1042.2022.00834
李俊娇1, 陈伟2,3,4, 石佩2,3,4, 董媛媛2,3,4, 郑希付2,3,4()
收稿日期:
2021-06-25
出版日期:
2022-04-15
发布日期:
2022-02-22
通讯作者:
郑希付
E-mail:zhengxifu@m.scnu.edu.cn
基金资助:
LI Junjiao1, CHEN Wei2,3,4, SHI Pei2,3,4, DONG Yuanyuan2,3,4, ZHENG Xifu2,3,4()
Received:
2021-06-25
Online:
2022-04-15
Published:
2022-02-22
Contact:
ZHENG Xifu
E-mail:zhengxifu@m.scnu.edu.cn
摘要:
依据错误驱动的学习理论, 行为预期结果与实际结果之间的不匹配即预期错误(Prediction error, PE)是学习产生的驱动因素。作为显著性信息中的一种, 预期错误和物理显著性、惊讶、新异性等存在信息加工阶段的不同, 与记忆更新的关系也有差异。近年来, 记忆再巩固干预范式(reconsolidation interference)被证明可用于人类条件性恐惧记忆的更新, 其中记忆提取激活阶段所包含的预期错误起到了引发记忆“去稳定”、开启记忆再巩固的关键作用。在促进恐惧记忆更新的行为机制上, PE被认为是记忆去稳定的必要非充分条件。记忆提取必须包含适量的PE, 但其引发的是记忆去稳定、消退还是中间状态, 还需结合记忆本身性质确定。在促进恐惧记忆更新的神经机制上, 杏仁核、导水管周围灰质(PAG)、海马均在PE探测和计算过程中具有重要作用; 前额叶皮层(PFC)及其亚区在PE开启记忆再巩固过程中扮演了重要角色。上述过程又受到神经系统中特定神经递质的重要调节, 尤其是多巴胺能和谷氨酸能。未来研究应进一步探索基于PE计算模型的量化研究, 整合PE与其他边界条件的交互作用, 考察不同类型显著性在记忆再巩固中的作用等; 并亟待使用多学科手段探索PE在恐惧记忆更新中作用的神经与分子机制。同时, 需进一步开展PE作用的个体差异研究, 促进研究结果向临床应用转化。
中图分类号:
李俊娇, 陈伟, 石佩, 董媛媛, 郑希付. (2022). 预期错误在恐惧记忆更新中的作用与机制. 心理科学进展 , 30(4), 834-850.
LI Junjiao, CHEN Wei, SHI Pei, DONG Yuanyuan, ZHENG Xifu. (2022). The function and mechanisms of prediction error in updating fear memories. Advances in Psychological Science, 30(4), 834-850.
图1 显著性相关概念关系示意图 注:显著性包括了刺激的新异性、效价评估、刺激稀有性和其他显著性。其中新异性又包括物理显著性、惊讶(即意外的新异性)和非意外的新异性, 而只有意外的新异性才会引发多巴胺的释放。如果仅有物理显著性而与结果无直接关系的话, 仅能引起多巴胺短暂增强, 不足以引起释放。而预期错误(包括UPE和SPE)则主要是涉及了识别与结果感知或效价评估过程。
图2 提取边界条件与记忆条件整合的记忆再巩固模型 注:恐惧记忆本身特性(如强度)与记忆提取的边界条件(如预期错误)存在交互作用, 在一般强度恐惧记忆中, 单个PE可以引起记忆激活进入再巩固, 进而采用干预手段进行记忆的改写; 而PE过大则会引起消退过程。然而在高强度恐惧记忆中, 单个PE无法激活原始记忆引发去稳定, 激活记忆进入再巩固状态需要的PE的量目前大部分是未知的。
图3 前额叶皮质及相关脑区在预期错误驱动记忆更新过程中的作用 注:在提取边界条件上, 提取阶段是否存在CS-US关系的新异性是进入再巩固的必要条件, 而仅有CS的新异性则引发新的消退学习。消退学习即传统消退与提取消退在激活脑区上存在显著差别, 集中体现在前额叶皮质尤其是背外侧前额叶(dlPFC)区域。提取消退过程中dlPFC和颞下回的激活显著降低, 同时dlPFC与前扣带回等脑区的功能联结显著下降。相反在传统消退过程中dlPFC有显著激活。
[1] |
曹杨婧文, 李俊娇, 陈伟, 杨勇, 胡琰健, 郑希付. (2019). 条件性恐惧记忆消退的提取干预范式及其作用的神经机制. 心理科学进展, 27(2), 268-277. doi: 10.3724/sp.J.1042.2019.00268
doi: 10.3724/sp.J.1042.2019.00268 |
[2] |
陈伟, 李俊娇, 曹杨婧文, 杨勇, 胡琰健, 郑希付. (2018). 预期错误在复合恐惧记忆提取消退中的作用. 心理学报, 50(7), 739-749. doi: 10.3724/sp.J.1041.2018.00739
doi: 10.3724/sp.J.1041.2018.00739 |
[3] |
陈伟, 李俊娇, 林小裔, 张晓霞, 郑希付. (2020). 行为干预情绪记忆再巩固:从实验室到临床转化. 心理科学进展, 28(2), 240-251. doi: 10.3724/sp.J.1042.2020.00240
doi: 10.3724/sp.J.1042.2020.00240 |
[4] | 李俊娇, 陈伟, 胡琰健, 曹杨婧文, 郑希付. (2021). 预期错误与急性应激对不同强度恐惧记忆提取消退的影响. 心理学报, 53(6), 587-602. https://doi.org/10.3724/SP.J.1041.2021.00587 |
[5] |
Admon, R., & Pizzagalli, D. A. (2015). Dysfunctional reward processing in depression. Current Opinion in Psychology, 4, 114-118. doi: 10.1016/j.copsyc.2014.12.011
doi: 10.1016/j.copsyc.2014.12.011 URL |
[6] |
Alberini, C. M., Milekic, M. H., & Tronel, S. (2006). Mechanisms of memory stabilization and de-stabilization. Cellular & Molecular Life Sciences, 63(9), 999-1008. doi: 10.1007/s00018-006-6025-7
doi: 10.1007/s00018-006-6025-7 |
[7] |
Amadi, U., Lim, S. H., Liu, E., Baratta, M. V., & Goosens, K. A. (2017). Hippocampal processing of ambiguity enhances fear memory. Psychological Science, 28(2), 143-161. doi: 10.1177/0956797616674055
doi: 10.1177/0956797616674055 URL |
[8] |
Barron, H. C., Auksztulewicz, R., & Friston, K. (2020). Prediction and memory: A predictive coding account. Progress in Neurobiology, 192, 101821. doi: 10.1016/j.pneurobio.2020.101821
doi: 10.1016/j.pneurobio.2020.101821 URL |
[9] |
Beckers, T., & Kindt, M. (2017). Memory reconsolidation interference as an emerging treatment for emotional disorders: Strengths, limitations, challenges, and opportunities. Annual Review of Clinical Psychology, 13, 99-121. doi: 10.1146/annurev-clinpsy-032816-045209
doi: 10.1146/annurev-clinpsy-032816-045209 pmid: 28375725 |
[10] |
Belova, M. A., Paton, J. J., Morrison, S. E., & Salzman, C. D. (2007). Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala. Neuron, 55(6), 970-984. doi: 10.1016/j.neuron.2007.08.004
doi: 10.1016/j.neuron.2007.08.004 URL |
[11] |
Borgomaneri, S., Battaglia, S., Sciamanna, G., Tortora, F., & Laricchiuta, D. (2021). Memories are not written in stone: Re-writing fear memories by means of non-invasive brain stimulation and optogenetic manipulations. Neuroscience and Biobehavioral Reviews, 127, 334-352. doi: 10.1016/j.neubiorev.2021.04.036
doi: 10.1016/j.neubiorev.2021.04.036 pmid: 33964307 |
[12] |
Bucci, D. J., & Macleod, J. E. (2007). Changes in neural activity associated with a surprising change in the predictive validity of a conditioned stimulus. European Journal of Neuroscience, 26(9), 2669-2676. doi: 10.1111/j.1460-9568.2007.05902.
doi: 10.1111/j.1460-9568.2007.05902 URL |
[13] |
Chen, W., Li, J., Xu, L., Zhao, S., Fan, M., & Zheng, X. (2020). Destabilizing different strengths of fear memories requires different degrees of prediction error during retrieval. Frontiers in Behavioral Neuroscience, 14, 598924. doi: 10.3389/fnbeh.2020.598924
doi: 10.3389/fnbeh.2020.598924 URL |
[14] |
Chen, W., Li, J., Zhang, X., Dong, Y., Shi, P., Luo, P., & Zheng, X. (2021). Retrieval-extinction as a reconsolidation-based treatment for emotional disorders:Evidence from an extinction retention test shortly after intervention. Behaviour Research and Therapy, 139, 103831. doi: 10.1016/j.brat.2021.103831
doi: 10.1016/j.brat.2021.103831 URL |
[15] |
Colombo, M. (2014). Deep and beautiful. The reward prediction error hypothesis of dopamine. Studies in History and Philosophy of Biological and Biomedical Sciences, 45, 57-67. doi: 10.1016/j.shpsc.2013.10.006
doi: 10.1016/j.shpsc.2013.10.006 pmid: 24252364 |
[16] |
Cowansage, K. K., Shuman, T., Dillingham, B. C., Chang, A., Golshani, P., & Mayford, M. (2014). Direct reactivation of a coherent neocortical memory of context. Neuron, 84(2), 432-441. doi: 10.1016/j.neuron.2014.09.022
doi: 10.1016/j.neuron.2014.09.022 pmid: 25308330 |
[17] |
Das, R. K., Gale, G., Hennessy, V., & Kamboj, S. K. (2018). A prediction error-driven retrieval procedure for destabilizing and rewriting maladaptive reward memories in hazardous drinkers. Journal of Visualized Experiments, (131), e56097. doi: 10.3791/56097
doi: 10.3791/56097 |
[18] |
de Solis, C. A., Gonzalez, C. U., Galdamez, M. A., Perish, J. M., Woodard, S. W., Salinas, C. E., ... Ploski, J. E. (2019). Increasing synaptic glun2b levels within the basal and lateral amygdala enables the modification of strong reconsolidation resistant fear memories. bioRxiv, 537142. doi: 10.1101/537142
doi: 10.1101/537142 |
[19] |
Diaz-Mataix, L., Ruiz Martinez, R. C., Schafe, G. E., LeDoux, J. E., & Doyere, V. (2013). Detection of a temporal error triggers reconsolidation of amygdala-dependent memories. Curre 72. doi: 10.1016/j.cub.2013.01.053
doi: 10.1016/j.cub.2013.01.053 |
[20] |
Diederen, K. M. J., & Fletcher, P. C. (2021). Dopamine, prediction error and beyond. The Neuroscientist, 27(1), 30-46. doi: 10.1177/1073858420907591
doi: 10.1177/1073858420907591 URL |
[21] |
Dillon, D. G., & Pizzagalli, D. A. (2018). Mechanisms of memory disruption in depression. Trends in Neurosciences, 41(3), 137-149. doi: 10.1016/j.tins.2017.12.006
doi: 10.1016/j.tins.2017.12.006 URL |
[22] |
Duncan, K., Curtis, C., & Davachi, L. (2009). Distinct memory signatures in the hippocampus: Intentional states distinguish match and mismatch enhancement signals. The Journal of Neuroscience, 29(1), 131-139. doi: 10.1523/JNEUROSCI.2998-08.2009
doi: 10.1523/JNEUROSCI.2998-08.2009 URL |
[23] |
Duvarci, S., & Nader, K. (2004). Characterization of fear memory reconsolidation. The Journal of Neuroscience, 24(42), 9269-9275. doi: 10.1523/JNEUROSCI.2971-04.2004
doi: 10.1523/JNEUROSCI.2971-04.2004 URL |
[24] |
Elsey, J. W. B., & Kindt, M. (2017). Tackling maladaptive memories through reconsolidation: From neural to clinical science. Neurobiology of Learning and Memory, 142(Pt A),108-117. doi: 10.1016/j.nlm.2017.03.007
doi: 10.1016/j.nlm.2017.03.007 URL |
[25] |
Ergo, K., de Loof, E., & Verguts, T. (2020). Reward prediction error and declarative memory. Trends in Cognitive Sciences, 24(5), 388-397. doi: 10.1016/j.tics.2020.02.009
doi: 10.1016/j.tics.2020.02.009 URL |
[26] |
Faliagkas, L., Rao-Ruiz, P., & Kindt, M. (2018). Emotional memory expression is misleading: Delineating transitions between memory processes. Current Opinion in Behavioral Sciences, 19, 116-122. doi: 10.1016/j.cobeha.2017.12.018
doi: 10.1016/j.cobeha.2017.12.018 URL |
[27] |
Fernandez, R. S., Bavassi, L., Forcato, C., & Pedreira, M. E. (2016). The dynamic nature of the reconsolidation process and its boundary conditions: Evidence based on human tests. Neurobiology of Learning and Memory, 130, 202-212. doi: 10.1016/j.nlm.2016.03.001
doi: 10.1016/j.nlm.2016.03.001 URL |
[28] |
Fernandez, R. S., Boccia, M. M., & Pedreira, M. E. (2016). The fate of memory: Reconsolidation and the case of prediction error. Neuroscience and Biobehavioral Reviews, 68, 423-441. doi: 10.1016/j.neubiorev.2016.06.004
doi: 10.1016/j.neubiorev.2016.06.004 URL |
[29] |
Forcato, C., Burgos, V. L., Argibay, P. F., Molina, V. A., Pedreira, M. E., & Maldonado, H. (2007). Reconsolidation of declarative memory in humans. Learning & Memory, 14(4), 295-303. doi: 10.1101/lm.486107
doi: 10.1101/lm.486107 |
[30] |
Furlong, T. M., Cole, S., Hamlin, A. S., & McNally, G. P. (2010). The role of prefrontal cortex in predictive fear learning. Behavioral Neuroscience, 124(5), 574-586. doi: 10.1037/a0020739
doi: 10.1037/a0020739 pmid: 20939658 |
[31] |
Gershman, S. J., Monfils, M. H., Norman, K. A., & Niv, Y. (2017). The computational nature of memory modification. Elife, 6. doi: 10.7554/eLife.23763
doi: 10.7554/eLife.23763 |
[32] |
Hernandez, X. I., Vogel, P., Betz, S., Kalisch, R., Sigurdsson, T., & Duvarci, S. (2018). Dopamine neurons drive fear extinction learning by signaling the omission of expected aversive outcomes. Elife, 7. doi: 10.7554/eLife.38818
doi: 10.7554/eLife.38818 |
[33] |
Kim, H. F., Ghazizadeh, A., & Hikosaka, O. (2014). Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories. Frontiers in Neuroanatomy, 8, 120. doi: 10.3389/fnana.2014.00120
doi: 10.3389/fnana.2014.00120 |
[34] |
Kumaran, D., & Maguire, E. A. (2006). The dynamics of hippocampal activation during encoding of overlapping sequences. Neuron, 49(4), 617-629. doi: 10.1016/j.neuron.2005.12.024
doi: 10.1016/j.neuron.2005.12.024 URL |
[35] |
Lapish, C. C., Seamans, J. K., & Chandler, L. J. (2006). Glutamate-dopamine cotransmission and reward processing in addiction. Alcoholism: Clinical and Experimental Research, 30(9), 1451-1465. doi: 10.1111/j.1530-0277.2006.00176.
doi: 10.1111/j.1530-0277.2006.00176 URL |
[36] |
Lee, J. L. (2009). Reconsolidation: Maintaining memory relevance. Trends in Neurosciences, 32(8), 413-420. doi: 10.1016/j.tins.2009.05.002
doi: 10.1016/j.tins.2009.05.002 URL |
[37] |
Lee, J. L., Milton, A. L., & Everitt, B. J. (2006). Reconsolidation and extinction of conditioned fear: Inhibition and potentiation. The Journal of Neuroscience, 26(39), 10051-10056. doi: 10.1523/JNEUROSCI.2466-06.2006
doi: 10.1523/JNEUROSCI.2466-06.2006 URL |
[38] |
Li, J., Chen, W., Caoyang, J., Hu, Y., Yang, Y., Xu, L., ... Zheng, X. (2019). Role of prediction error in destabilizing fear memories in retrieval extinction and its neural mechanisms. Cortex, 121, 292-307. doi: 10.1016/j.cortex.2019.09.003
doi: 10.1016/j.cortex.2019.09.003 URL |
[39] |
Li, J., Chen, W., Caoyang, J., Wu, W., Jie, J., Xu, L., & Zheng, X. (2017). Moderate partially reduplicated conditioned stimuli as retrieval cue can increase effect on preventing relapse of fear to compound stimuli. Frontiers in Human Neuroscience, 11, 575. doi: 10.3389/fnhum.2017.00575
doi: 10.3389/fnhum.2017.00575 URL |
[40] |
Long, N. M., Lee, H., & Kuhl, B. A. (2016). Hippocampal mismatch signals are modulated by the strength of neural predictions and their similarity to outcomes. The Journal of Neuroscience, 36(50), 12677-12687. doi: 10.1523/JNEUROSCI.1850-16.2016
doi: 10.1523/JNEUROSCI.1850-16.2016 URL |
[41] |
McNally, G. P., Johansen, J. P., & Blair, H. T. (2011). Placing prediction into the fear circuit. Trends in Neurosciences, 34(6), 283-292. doi: 10.1016/j.tins.2011.03.005
doi: 10.1016/j.tins.2011.03.005 pmid: 21549434 |
[42] |
Miller, R. R., & Matzel, L. D. (2006). Retrieval failure versus memory loss in experimental amnesia: Definitions and processes. Learning & Memory, 13(5), 491-497. doi: 10.1101/lm.241006
doi: 10.1101/lm.241006 |
[43] |
Milton, A. L., Merlo, E., Ratano, P., Gregory, B. L., Dumbreck, J. K., & Everitt, B. J. (2013). Double dissociation of the requirement for glun2b- and glun2a-containing nmda receptors in the destabilization and restabilization of a reconsolidating memory. The Journal of Neuroscience, 33(3), 1109-1115. doi: 10.1523/JNEUROSCI.3273-12.2013
doi: 10.1523/JNEUROSCI.3273-12.2013 URL |
[44] |
Monfils, M.-H., Cowansage, K. K., Klann, E., & LeDoux, J. E. (2009). Extinction-reconsolidation boundaries: Key to persistent attenuation of fear memories. Science, 324(951), 951-955. doi: 10.1126/science.1167975
doi: 10.1126/science.1167975 URL |
[45] |
Nader, K., Schafe, G. E., & Le Doux, J. E. (2000). Fearmemories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 406, 722-726.
doi: 10.1038/35021052 URL |
[46] |
Osan, R., Tort, A. B., & Amaral, O. B. (2011). A mismatch- based model for memory reconsolidation and extinction in attractor networks. Plos One, 6(8), e23113. doi: 10.1371/journal.pone.0023113
doi: 10.1371/journal.pone.0023113 URL |
[47] |
Papalini, S., Beckers, T., & Vervliet, B. (2020). Dopamine: From prediction error to psychotherapy. Translational Psychiatry, 10(1), 164. doi: 10.1038/s41398-020-0814-x
doi: 10.1038/s41398-020-0814-x pmid: 32451377 |
[48] |
Pearce, J. M., & Hall, G. (1980). A model for pavlovian learning:Variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87(6), 532-552.
pmid: 7443916 |
[49] |
Pine, A., Sadeh, N., Ben-Yakov, A., Dudai, Y., & Mendelsohn, A. (2018). Knowledge acquisition is governed by striatal prediction errors. Nature Communications, 9(1), 1673. doi: 10.1038/s41467-018-03992-5
doi: 10.1038/s41467-018-03992-5 URL |
[50] |
Raczka, K. A., Mechias, M. L., Gartmann, N., Reif, A., Deckert, J., Pessiglione, M., & Kalisch, R. (2011). Empirical support for an involvement of the mesostriatal dopamine system in human fear extinction. Translational Psychiatry, 1, e12. doi: 10.1038/tp.2011.10
doi: 10.1038/tp.2011.10 URL |
[51] |
Radiske, A., Gonzalez, M. C., Conde-Ocazionez, S. A., Feitosa, A., Kohler, C. A., Bevilaqua, L. R., & Cammarota, M. (2017). Prior learning of relevant nonaversive information is a boundary condition for avoidance memory reconsolidation in the rat hippocampus. The Journal of Neuroscience, 37(40), 9675-9685. doi: 10.1523/JNEUROSCI.1372-17.2017
doi: 10.1523/JNEUROSCI.1372-17.2017 URL |
[52] | Ramirez, S., Liu, X., Lin, P. A., Suh, J., Pignatelli, M., Redondo, R. L., ... Tonegawa, S. (2013). Creating a false memory in the hippocampus. Science, 341(6144), 387. Retrieved from http://science.sciencemag.org/content/341/6144/387.abstract |
[53] | Rescorla, R. A., and Wagner, A. R. (1972). A theory of Pavlovian conditioning:Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black and W. F. Prokasy (Eds.), Classical Conditioning. II. Current Research and Theory (pp.64-69). NY: Appleton-Century-Crofts. |
[54] |
Rouhani, N., & Niv, Y. (2019). Depressive symptoms bias the prediction-error enhancement of memory towards negative events in reinforcement learning. Psychopharmacology, 236(8), 2425-2435. doi: 10.1007/s00213-019-05322-z
doi: 10.1007/s00213-019-05322-z pmid: 31346654 |
[55] |
Roy, M., Shohamy, D., Daw, N., Jepma, M., Wimmer, G. E., & Wager, T. D. (2014). Representation of aversive prediction errors in the human periaqueductal gray. Nature Neuroscience, 17(11), 1607-1612. doi: 10.1038/nn.3832
doi: 10.1038/nn.3832 URL |
[56] |
Schiller, D., Kanen, J. W., LeDoux, J. E., Monfils, M. H., & Phelps, E. A. (2013). Extinction during reconsolidation of threat memory diminishes prefrontal cortex involvement. Proceedings of the National Academy of Sciences of the United States of America, 110(50), 20040-20045. doi: 10.1073/pnas.1320322110
doi: 10.1073/pnas.1320322110 pmid: 24277809 |
[57] |
Schiller, D., Monfils, M. H., Raio, C. M., Johnson, D. C., Ledoux, J. E., & Phelps, E. A. (2010). Preventing the return of fear in humans using reconsolidation update mechanisms. Nature, 463(7277), 49-53. doi: 10.1038/nature08637
doi: 10.1038/nature08637 URL |
[58] |
Schmack, K., Bosc, M., Ott, T., Sturgill, J. F., & Kepecs, A. (2021). Striatal dopamine mediates hallucination-like perception in mice. Science, 372(6537), eabf4740. doi: 10.1126/science.abf4740
doi: 10.1126/science.abf4740 URL |
[59] |
Schultz, W. (2000). Multiple reward signals in the brain. Nature Reviews Neuroscience, 1, 199-207. https://doi.org/10.1038/35044563
URL pmid: 11257908 |
[60] |
Schultz, W. (2016). Dopamine reward prediction-error signalling: A two-component response. Nature Reviews Neuroscience, 17(3), 183-195. doi: 10.1038/nrn.2015.26
doi: 10.1038/nrn.2015.26 URL |
[61] |
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593-1599.
pmid: 9054347 |
[62] |
Sevenster, D., Beckers, T., & Kindt, M. (2012). Retrieval per se is not sufficient to trigger reconsolidation of human fear memory. Neurobiology of Learning and Memory, 97(3), 338-345. doi: 10.1016/j.nlm.2012.01.009
doi: 10.1016/j.nlm.2012.01.009 pmid: 22406658 |
[63] |
Sevenster, D., Beckers, T., & Kindt, M. (2013). Prediction error governs pharmacologically induced amnesia for learned fear. Science, 339, 830-833. doi: 10.1126/science.1231357
doi: 10.1126/science.1231357 pmid: 23413355 |
[64] |
Sevenster, D., Beckers, T., & Kindt, M. (2014). Prediction error demarcates the transition from retrieval, to reconsolidation, to new learning. Learning & Memory, 21(11), 580-584. doi: 10.1101/lm.035493.114
doi: 10.1101/lm.035493.114 |
[65] |
Sevenster, D., Visser, R. M., & D'Hooge, R. (2018). A translational perspective on neural circuits of fear extinction: Current promises and challenges. Neurobiology of Learning and Memory, 155, 113-126. doi: 10.1016/j.nlm.2018.07.002
doi: S1074-7427(18)30153-9 pmid: 29981423 |
[66] |
Shipton, O. A., & Paulsen, O. (2014). Glun2a and glun2b subunit-containing nmda receptors in hippocampal plasticity. Philosophical Transactions of the Royal Society B. , 369(1633), 20130163. doi: 10.1098/rstb.2013.0163
doi: 10.1098/rstb.2013.0163 |
[67] |
Sinclair, & Barense. (2019). Prediction error and memory reactivation: How incomplete reminders drive reconsolidation. Trends in Neurosciences, 42(10), 727-739. doi: 10.1016/j.tins.2019.08.007
doi: S0166-2236(19)30151-1 pmid: 31506189 |
[68] |
Sinclair, A. H., & Barense, M. D. (2018). Surprise and destabilize: Prediction error influences episodic memory reconsolidation. Learning and Memory, 25. doi: 10.1101/lm.046912.117
doi: 10.1101/lm.046912.117 |
[69] |
Spoormaker, V. I., Andrade, K. C., Schroter, M. S., Sturm, A., Goya-Maldonado, R., Samann, P. G., & Czisch, M. (2011). The neural correlates of negative prediction error signaling in human fear conditioning. Neuroimage, 54(3), 2250-2256. doi: 10.1016/j.neuroimage.2010.09.042
doi: 10.1016/j.neuroimage.2010.09.042 pmid: 20869454 |
[70] |
Starkweather, C. K., Babayan, B. M., Uchida, N., & Gershman, S. J. (2017). Dopamine reward prediction errors reflect hidden-state inference across time. Nature Neuroscience, 20(4), 581-589. doi: 10.1038/nn.4520
doi: 10.1038/nn.4520 pmid: 28263301 |
[71] |
Thiele, M., Yuen, K. S. L., Gerlicher, A. V. M., & Kalisch, R. (2021). A ventral striatal prediction error signal in human fear extinction learning. NeuroImage, 229, 117709. doi: 10.1016/j.neuroimage.2020.117709
doi: 10.1016/j.neuroimage.2020.117709 URL |
[72] |
Vinogradova, O. S. (2001). Hippocampus as comparator: Role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus, 11(5), 578-598. doi: 10.1002/hipo.1073
doi: 10.1002/hipo.1073 pmid: 11732710 |
[73] |
Walker, R. A., Wright, K. M., Jhou, T. C., & McDannald, M. A. (2020). The ventrolateral periaqueductal grey updates fear via positive prediction error. European Journal of Neuroscience, 51(3), 866-880. doi: 10.1111/ejn.14536
doi: 10.1111/ejn.14536 URL |
[74] |
Waung, M. W., Margolis, E. B., Charbit, A. R., & Fields, H. L. (2019). A midbrain circuit that mediates headache aversiveness in rats. Cell Reports, 28(11), 2739-2747 e2734. doi: 10.1016/j.celrep.2019.08.009
doi: 10.1016/j.celrep.2019.08.009 URL |
[75] |
Wideman, C. E., Jardine, K. H., & Winters, B. D. (2018). Involvement of classical neurotransmitter systems in memory reconsolidation: Focus on destabilization. Neurobiology of Learning and Memory, 156, 68-79. doi: 10.1016/j.nlm.2018.11.001
doi: 10.1016/j.nlm.2018.11.001 URL |
[76] |
Yaple, Z. A., Tolomeo, S., & Yu, R. (2021). Abnormal prediction error processing in schizophrenia and depression. Human Brain Mapping. doi: 10.1002/hbm.25453
doi: 10.1002/hbm.25453 |
[77] |
Zuccolo, P. F., & Hunziker, M. H. L. (2019). A review of boundary conditions and variables involved in the prevention of return of fear after post-retrieval extinction. Behavioural Processes, 162, 39-54. doi: 10.1016/j.beproc.2019.01.011
doi: 10.1016/j.beproc.2019.01.011 URL |
[1] | 朱俊萍. 如何克服边界条件:来自记忆强度影响记忆去稳定的分子机制的启示[J]. 心理科学进展, 2021, 29(8): 1450-1461. |
[2] | 王红波, 关旭旭, 李梓萌. 即刻消退缺损的原因分析及其神经生物学机制[J]. 心理科学进展, 2021, 29(1): 150-159. |
[3] | 陈伟, 李俊娇, 林小裔, 张晓霞, 郑希付. 行为干预情绪记忆再巩固:从实验室到临床转化[J]. 心理科学进展, 2020, 28(2): 240-251. |
[4] | 刘鹏, 申鸿魁. 对人类不良记忆的修饰:来自记忆再巩固的证据[J]. 心理科学进展, 2019, 27(8): 1417-1426. |
[5] | 曹杨婧文, 李俊娇, 陈伟, 杨勇, 胡琰健, 郑希付. 条件性恐惧记忆消退的提取干预范式及其作用的神经机制[J]. 心理科学进展, 2019, 27(2): 268-277. |
[6] | 王红波; 朱湘茹. 调控去甲肾上腺素能系统对防治创伤后应激障碍的影响[J]. 心理科学进展, 2016, 24(6): 923-933. |
[7] | 曾祥星;杜娟;王凯欣;郑希付. 记忆再巩固的时间动态性及其生物学机制[J]. 心理科学进展, 2015, 23(4): 582-590. |
[8] | 曾祥星;向燕辉;杜娟;郑希付. 条件性恐惧记忆提取消退干预范式[J]. 心理科学进展, 2014, 22(3): 431-438. |
[9] | 王红波; 安献丽; 李幼虹; 郑希耕. 干预条件性恐惧记忆表达的相关影响因素分析[J]. 心理科学进展, 2010, 18(5): 718-724. |
[10] | 吴艳;李勇辉;隋南. 记忆再巩固现象及其生物学机制[J]. 心理科学进展, 2009, 17(4): 699-705. |
[11] | 安献丽;王文忠;郑希耕. 阻碍条件性恐惧记忆消退的原因分析[J]. 心理科学进展, 2009, 17(1): 126-131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||