心理科学进展 ›› 2022, Vol. 30 ›› Issue (4): 851-862.doi: 10.3724/SP.J.1042.2022.00851
收稿日期:
2021-05-06
出版日期:
2022-04-15
发布日期:
2022-02-22
通讯作者:
郭静
E-mail:jing624218@163.com
基金资助:
LIU Xiaohan, CHEN Minglong, GUO Jing()
Received:
2021-05-06
Online:
2022-04-15
Published:
2022-02-22
Contact:
GUO Jing
E-mail:jing624218@163.com
摘要:
创伤后应激障碍(PTSD)会给儿童发展带来负面效应, 其影响甚至延续至成年期。然而传统诊断方式难以做到快速、客观、准确的识别和诊断儿童PTSD, 机器学习作为一种处理大量变量和数据的新兴方法, 逐渐被应用到儿童PTSD的早期预测、识别及辅助诊断等研究中。机器学习凭借其性能、原理等方面的优势, 可被应用在儿童PTSD的识别与转归领域。相比自我报告式的诊断, 通过机器学习辅助识别和诊断儿童PTSD的过程具有效率高、客观准确、节约资源等独特优势。然而, 机器学习也在硬件成本、算法选择和预测准确度等方面存在局限性。未来研究人员需要进一步提高机器学习诊断识别儿童PTSD的准确率, 并将机器学习算法同传统诊断方法结合进行更多的探索和应用。
中图分类号:
刘笑晗, 陈明隆, 郭静. (2022). 机器学习在儿童创伤后应激障碍识别及转归预测中的应用. 心理科学进展 , 30(4), 851-862.
LIU Xiaohan, CHEN Minglong, GUO Jing. (2022). Application of machine learning in prognosis and trajectory of post-traumatic stress disorder in children. Advances in Psychological Science, 30(4), 851-862.
时间 | 国家 | 文献 | 样本量 | 年龄 | 主要变量 | 变量数量 | 因变量测量 | 分类器 | 训练方法 | 评价指标 |
---|---|---|---|---|---|---|---|---|---|---|
2017 | 美国 | Saxe et al., | 165 | 7~18 | 儿童发展、人口统计学信息、父母症状、压力、基因、神经内分泌和心理生理反应、受伤程度、儿童症状和功能 | 105个 | 加州大学洛杉矶分校创伤后应激障碍反应指数 | SVM;RF; Lasso回归 | 5折交 叉验证 | AUC = 0.75 |
2020 | 中国 | Ge et al., | 2099 | 8~19 | 人口统计学信息、地震经历、睡眠、心情、躯体症状和日常功能 | 5个方面 | 修订版儿童事件影响量表 | CART | 5折交 叉验证 | AUC = 0.66 ~ 0.80 |
2020 | 中国 | Li et al., | 46 | 11~16 | 静息态功能磁共振成像:海马亚区——CA1、CA2、CA3、CA4、齿状回、下托及海马伞等 | 1个方面 | 创伤后应激障碍评估表 | RF | 5折交 叉验证 | AUC = 0.65 |
2020 | 土耳其 | Ucuz et al., | 170 | 5~17 | 年龄等人口统计学信息、虐待类型、虐待次数等虐待相关信息、事件报告者 | 10个 | 精神障碍诊断和统计手册 | ANNs | 3折交 叉验证 | 准确度:99.2% |
2020 | 土耳其 | Gokten & Uyulan, | 372 | 均数13.77 | 性别年龄等人口统计学信息、吸烟饮酒等生活习惯信息、被虐待的经历程度信息、精神状态 | 20个 | 精神障碍诊断和统计手册 | RF | 10折交叉验证 | AUC = 0.76 |
表1 机器学习在儿童PTSD诊断和识别中的应用
时间 | 国家 | 文献 | 样本量 | 年龄 | 主要变量 | 变量数量 | 因变量测量 | 分类器 | 训练方法 | 评价指标 |
---|---|---|---|---|---|---|---|---|---|---|
2017 | 美国 | Saxe et al., | 165 | 7~18 | 儿童发展、人口统计学信息、父母症状、压力、基因、神经内分泌和心理生理反应、受伤程度、儿童症状和功能 | 105个 | 加州大学洛杉矶分校创伤后应激障碍反应指数 | SVM;RF; Lasso回归 | 5折交 叉验证 | AUC = 0.75 |
2020 | 中国 | Ge et al., | 2099 | 8~19 | 人口统计学信息、地震经历、睡眠、心情、躯体症状和日常功能 | 5个方面 | 修订版儿童事件影响量表 | CART | 5折交 叉验证 | AUC = 0.66 ~ 0.80 |
2020 | 中国 | Li et al., | 46 | 11~16 | 静息态功能磁共振成像:海马亚区——CA1、CA2、CA3、CA4、齿状回、下托及海马伞等 | 1个方面 | 创伤后应激障碍评估表 | RF | 5折交 叉验证 | AUC = 0.65 |
2020 | 土耳其 | Ucuz et al., | 170 | 5~17 | 年龄等人口统计学信息、虐待类型、虐待次数等虐待相关信息、事件报告者 | 10个 | 精神障碍诊断和统计手册 | ANNs | 3折交 叉验证 | 准确度:99.2% |
2020 | 土耳其 | Gokten & Uyulan, | 372 | 均数13.77 | 性别年龄等人口统计学信息、吸烟饮酒等生活习惯信息、被虐待的经历程度信息、精神状态 | 20个 | 精神障碍诊断和统计手册 | RF | 10折交叉验证 | AUC = 0.76 |
[1] | 周志华. (2018). 机器学习. 清华大学出版社. |
[2] |
Alisic, E., Zalta, A. K., van Wesel, F., Larsen, S. E., Hafstad, G. S., Hassanpour, K., & Smid, G. E. (2014). Rates of post-traumatic stress disorder in trauma-exposed children and adolescents: Meta-analysis. British Journal of Psychiatry, 204(5), 335-340. https://doi.org/10.1192/bjp.bp.113.131227
doi: 10.1192/bjp.bp.113.131227 URL |
[3] |
Al-Sahaf, H., Bi, Y., Chen, Q., Lensen, A., Mei, Y., Sun, Y., Tran, B., Xue, B., & Zhang, M. (2019). A survey on evolutionary machine learning. Journal of the Royal Society of New Zealand, 49(2), 205-228. https://doi.org/10.1080/03036758.2019.1609052
doi: 10.1080/03036758.2019.1609052 URL |
[4] |
Altman, D. G., Vergouwe, Y., Royston, P., & Moons, K. G. M. (2009). Prognosis and prognostic research: Validating a prognostic model. British Medical Journal, 338, b605. https://doi.org/10.1136/bmj.b605
doi: 10.1136/bmj.b605 URL |
[5] | Bedi, G., Carrillo, F., Cecchi, G. A., Slezak, D. F., Sigman, M., Mota, N. B., ... Corcoran, C. M. (2015). Automated analysis of free speech predicts psychosis onset in high-risk youths. Nature Partner Journals Schizophrenia, 15030, 1-7. |
[6] |
Bonanno, G. A. (2004). Loss, trauma, and human resilience: Have we underestimated the human capacity to thrive after extremely aversive events? American Psychologist, 59(1), 20-28. https://doi.org/10.1037/0003-066X.59.1.20
doi: 10.1037/0003-066X.59.1.20 URL pmid: 14736317 |
[7] | Bonanno, G. A., & Diminich, E. D. (2013). Annual research review: Positive adjustment to adversity-Trajectories of minimal-impact resilience and emergent resilience. Journal of Child Psychology and Psychiatry and Allied Disciplines, 54(4), 378-401. https://doi.org/10.1111/jcpp.12021 |
[8] |
Bonanno, G. A., Westphal, M., & Mancini, A. D. (2011). Resilience to loss and potential trauma. Annual Review of Clinical Psychology, 7, 511-535. https://doi.org/10.1146/annurev-clinpsy-032210-104526
doi: 10.1146/annurev-clinpsy-032210-104526 URL pmid: 21091190 |
[9] |
Breiman, L. (2001). Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author). Statistical Science, 16(3), 199-231. https://doi.org/10.1214/ss/1009213726
doi: 10.1214/ss/1009213725 URL |
[10] | Brownlee, J. (2016). Master machine learning algorithms: Discover how they work and implement them from scratch. https://max.book118.com/html/2018/0818/8042001075001120.shtm |
[11] |
Bryant, R. A., Nickerson, A., Creamer, M., O’Donnell, M., Forbes, D., Galatzer-Levy, I., McFarlane, A. C., & Silove, D. (2015). Trajectory of post-traumatic stress following traumatic injury: 6-year follow-up. British Journal of Psychiatry, 206(5), 417-423. https://doi.org/10.1192/bjp.bp.114.145516
doi: 10.1192/bjp.bp.114.145516 URL |
[12] | Cancilliere, M. K., Kavanaugh, B., Bodzy, M., & Holler, K. (2021). Psychiatric outcomes of childhood maltreatment: A retrospective chart review from a children’s psychiatric inpatient program. Child Psychiatry & Human Development, https://doi.org/10.1007/s10578-021-01209-3 |
[13] |
Chekroud, A. M., Bondar, J., Delgadillo, J., Doherty, G., Wasil, A., Fokkema, M., ... Choi, K. (2021). The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry, 20(2), 154-170. https://doi.org/10.1002/wps.20882
doi: 10.1002/wps.v20.2 URL |
[14] |
Cheng, J., Liang, Y. M., Zhou, Y. Y., Eli, B., & Liu, Z. K. (2019). Trajectories of PTSD symptoms among children who survived the Lushan earthquake: A four-year longitudinal study. Journal of Affective Disorders, 252(1), 421-427. https://doi.org/10.1016/j.jad.2019.04.047
doi: 10.1016/j.jad.2019.04.047 URL |
[15] |
de Young, A. C., & Landolt, M. A. (2018). PTSD in children below the age of 6 years. Current Psychiatry Reports, 20(11), 97. https://doi.org/10.1007/s11920-018-0966-z
doi: 10.1007/s11920-018-0966-z URL |
[16] |
Galatzer-Levy, I. R., & Bryant, R. A. (2013). 636, 120 ways to have posttraumatic stress disorder. Perspectives on Psychological Science, 8(6), 651-662. https://doi.org/10.1177/1745691613504115
doi: 10.1177/1745691613504115 URL pmid: 26173229 |
[17] |
Galatzer-Levy, I. R., Huang, S. H., & Bonanno, G. A. (2018). Trajectories of resilience and dysfunction following potential trauma: A review and statistical evaluation. Clinical Psychology Review, 63, 41-55. https://doi.org/10.1016/j.cpr.2018.05.008
doi: S0272-7358(18)30053-9 URL pmid: 29902711 |
[18] |
Galatzer-Levy, I. R., Karstoft, K.-I., Statnikov, A., & Shalev, A. Y. (2014). Quantitative forecasting of PTSD from early trauma responses: A machine learning application. Journal of Psychiatric Research, 59, 68-76. https://doi.org/10.1016/j.jpsychires.2014.08.017
doi: 10.1016/j.jpsychires.2014.08.017 URL pmid: 25260752 |
[19] |
Galatzer-Levy, I. R., Ma, S., Statnikov, A., Yehuda, R., & Shalev, A. Y. (2017). Utilization of machine learning for prediction of post-traumatic stress: A re-examination of cortisol in the prediction and pathways to non-remitting PTSD. Translational Psychiatry, 7(3), e1070. https://doi. org/10.1038/tp.2017.38
doi: 10.1038/tp.2017.38 URL |
[20] |
Ge, F., Li, Y., Yuan, M., Zhang, J., & Zhang, W. (2020). Identifying predictors of probable posttraumatic stress disorder in children and adolescents with earthquake exposure: A longitudinal study using a machine learning approach. Journal of Affective Disorders, 264, 483-493. https://doi.org/10.1016/j.jad.2019.11.079
doi: 10.1016/j.jad.2019.11.079 URL |
[21] |
Gokten, E. S., & Uyulan, C. (2021). Prediction of the development of depression and post-traumatic stress disorder in sexually abused children using a random forest classifier. Journal of Affective Disorders, 279, 256-265. https://doi.org/10.1016/j.jad.2020.10.006
doi: 10.1016/j.jad.2020.10.006 URL pmid: 33074145 |
[22] |
Hagan, M. J., Gentry, M., Ippen, C. G., & Lieberman, A. F. (2018). PTSD with and without dissociation in young children exposed to interpersonal trauma. Journal of Affective Disorders, 227, 536-541. https://doi.org/10.1016/j.jad.2017.11.070
doi: 10.1016/j.jad.2017.11.070 URL |
[23] | Hiller, R. M., Meiser-Stedman, R., Fearon, P., Lobo, S., McKinnon, A., Fraser, A., & Halligan, S. L. (2016). Research Review: Changes in the prevalence and symptom severity of child post-traumatic stress disorder in the year following trauma - A meta-analytic study. Journal of Child Psychology and Psychiatry and Allied Disciplines, 57(8), 884-898. https://doi.org/10.1111/jcpp.12566 |
[24] | Hinrichs, R., van Rooij, S. J. H., Michopoulos, V., Schultebraucks, K., Winters, S., Maples-Keller, J., ... Jovanovic, T. (2019). Increased skin conductance response in the immediate aftermath of trauma predicts PTSD risk. Chronic Stress, 3. https://doi.org/10.1177/2470547019844441 |
[25] |
Jensen, T. K., Skar, A. M. S., Andersson, E. S., & Birkeland, M. S. (2019). Long-term mental health in unaccompanied refugee minors: Pre- and post-flight predictors. European Child and Adolescent Psychiatry, 28(12), 1671-1682. https://doi.org/10.1007/s00787-019-01340-6
doi: 10.1007/s00787-019-01340-6 URL pmid: 31004294 |
[26] |
Jensen, T. K., Skårdalsmo, E. B. M., & Fjermestad, K. W. (2014). Development of mental health problems-A follow-up study of unaccompanied refugee minors. Child and Adolescent Psychiatry and Mental Health, 8(1), 29-39. https://doi.org/10.1186/1753-2000-8-29
doi: 10.1186/1753-2000-8-29 URL |
[27] |
Jones, D. T. (2019). Setting the standards for machine learning in biology. Nature Reviews Molecular Cell Biology, 20, 659-660. https://doi.org/10.1038/s41580-019-0176-5
doi: 10.1038/s41580-019-0176-5 URL |
[28] |
Karstoft, K.-I., Galatzer-Levy, I. R., Statnikov, A., Li, Z., & Shalev, A. Y. (2015). Bridging a translational gap: Using machine learning to improve the prediction of PTSD. BioMed Central Psychiatry, 15, 30. https://doi.org/10.1186/s12888-015-0399-8
doi: 10.1186/s12888-015-0399-8 URL |
[29] |
Kelly, J., Gooding, P., Pratt, D., Ainsworth, J., Welford, M., & Tarrier, N. (2012). Intelligent real-time therapy: Harnessing the power of machine learning to optimise the delivery of momentary cognitive-behavioural interventions. Journal of Mental Health, 21(4), 404-414. https://doi.org/10.3109/09638237.2011.638001
doi: 10.3109/09638237.2011.638001 URL |
[30] | Koprowski, R., & Foster, K. R. (2018). Machine learning and medicine: Book review and commentary. Biomedical Engineering Online, 17(1), 17. https://doi.org/10.1186/s12938-018-0449-9 |
[31] |
Lai, B. S., Lewis, R., Livings, M. S., La Greca, A. M., & Esnard, A.-M. (2017). Posttraumatic stress symptom trajectories among children after disaster exposure: A review. Journal of Traumatic Stress, 30(6), 571-582. https://doi.org/10.1002/jts.22242
doi: 10.1002/jts.2017.30.issue-6 URL |
[32] |
Li, L., Pan, N., Zhang, L., Lui, S., Huang, X., Xu, X., Wang, S., Lei, D., Li, L., Kemp, G. J., & Gong, Q. (2020). Hippocampal subfield alterations in pediatric patients with post-traumatic stress disorder. Social Cognitive and Affective Neuroscience, 16(3), 334-344. https://doi.org/10.1093/scan/nsaa162
doi: 10.1093/scan/nsaa162 URL pmid: 33315100 |
[33] |
Love, J., & Zatzick, D. (2014). Screening and intervention for comorbid substance disorders, PTSD, depression, and suicide: A trauma center survey. Psychiatric Services, 65(7), 918-923. https://doi.org/10.1176/appi.ps.201300399
doi: 10.1176/appi.ps.201300399 URL |
[34] |
Masten, A. S., & Narayan, A. J. (2012). Child development in the context of disaster, war, and terrorism: Pathways of risk and resilience. Annual Review of Psychology, 63, 227-257. https://doi.org/10.1146/annurev-psych-120710-100356
doi: 10.1146/annurev-psych-120710-100356 URL pmid: 21943168 |
[35] |
Michopoulos, V., Powers, A., Gillespie, C. F., Ressler, K. J., & Jovanovic, T. (2017). Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology, 42(1), 254-270. https://doi. org/10.1038/npp.2016.146
doi: 10.1038/npp.2016.146 pmid: 27510423 |
[36] |
Mueller, A., Candrian, G., Kropotov, J. D., Ponomarev, V. A., & Baschera, G.-M. (2010). Classification of ADHD patients on the basis of independent ERP components using a machine learning system. Nonlinear Biomedical Physics, 4(S1), 1-12. https://doi.org/10.1186/1753-4631-4-s1-s1
doi: 10.1186/1753-4631-4-1 URL |
[37] |
Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. The New England Journal of Medicine, 380(14), 1347-1358.
doi: 10.1056/NEJMra1814259 pmid: 30943338 |
[38] |
Ramos-Lima, L. F., Waikamp, V., Antonelli-Salgado, T., Passos, I. C., & Freitas, L. H. M. (2020). The use of machine learning techniques in trauma-related disorders: A systematic review. Journal of Psychiatric Research, 121, 159-172. https://doi.org/10.1016/j.jpsychires.2019.12.001
doi: S0022-3956(19)31102-1 URL pmid: 31830722 |
[39] |
Rangaprakash, D., Dretsch, M. N., Venkataraman, A., Katz, J. S., Denney, T. S. J., & Deshpande, G. (2018). Identifying disease foci from static and dynamic effective connectivity networks: Illustration in soldiers with trauma. Human Brain Mapping, 39(1), 264-287. https://doi.org/10.1002/hbm.23841
doi: 10.1002/hbm.23841 URL pmid: 29058357 |
[40] |
Saxe, G. N., Ma, S., Ren, J., & Aliferis, C. (2017). Machine learning methods to predict child posttraumatic stress: A proof of concept study. BioMed Central Psychiatry, 17(1), 223. https://doi.org/10.1186/s12888-017-1384-1
doi: 10.1186/s12888-017-1384-1 URL |
[41] |
Scheeringa, M. S., Wright, M. J., Hunt, J. P., & Zeanah, C. H. (2006). Factors affecting the diagnosis and prediction of PTSD symptomatology in children and adolescents. American Journal of Psychiatry, 163(4), 644-651. https://doi.org/10.1176/ajp.2006.163.4.644
URL pmid: 16585439 |
[42] |
Schultebrauck, K., & Galatzer-Levy, I. R. (2019). Machine learning for prediction of posttraumatic stress and resilience following trauma: An overview of basic concepts and recent advances. Journal of Traumatic Stress, 32(2), 215-225. https://doi.org/10.1002/jts.22384
doi: 10.1002/jts.2019.32.issue-2 URL |
[43] |
Schultebraucks, K., Rombold-Bruehl, F., Wingenfeld, K., Hellmann-Regen, J., Otte, C., & Roepke, S. (2019). Heightened biological stress response during exposure to a trauma film predicts an increase in intrusive memories. Journal of Abnormal Psychology, 128(7), 645-657. https://doi.org/10.1037/abn0000440
doi: 10.1037/abn0000440 URL pmid: 31282686 |
[44] |
Schultebraucks, K., Shalev, A. Y., Michopoulos, V., Grudzen, C. R., Shin, S.-M., Stevens, J. S., ... Galatzer-Levy, I. R. (2020). A validated predictive algorithm of post- traumatic stress course following emergency department admission after a traumatic stressor. Nature Medicine, 26(7), 1084-1088. https://doi.org/10.1038/s41591-020-0951-z
doi: 10.1038/s41591-020-0951-z URL pmid: 32632194 |
[45] | Schultebraucks, K., Yadav, V., Shalev, A. Y., Bonanno, G. A., & Galatzer-Levy, I. R. (2020). Deep learning-based classification of posttraumatic stress disorder and depression following trauma utilizing visual and auditory markers of arousal and mood. Psychological Medicine, 1-11. https://doi.org/10.1017/S0033291720002718 |
[46] |
Shalev, A., Liberzon, I., & Marmar, C. (2017). Post-traumatic stress disorder. New England Journal of Medicine, 376(25), 2459-2469. https://doi.org/10.1056/NEJMra1612499
doi: 10.1056/NEJMra1612499 URL |
[47] | Sumathi, M., & Poorna, D. B. (2016). Prediction of mental health problems among children using machine learning techniques. International Journal of Advanced Computer Science and Applications, 7(1), 552-557. https://doi.org/10.14569/ijacsa.2016.070176 |
[48] |
Takahashi, Y., Yoshizoe, K., Ueki, M., Tamiya, G., Zhiqian, Y., Utsumi, Y., ... Tomita, H. (2020). Machine learning to reveal hidden risk combinations for the trajectory of posttraumatic stress disorder symptoms. Scientific Reports, 10(1), 21726. https://doi.org/10.1038/s41598-020-78966-z
doi: 10.1038/s41598-020-78966-z URL pmid: 33303893 |
[49] |
Trickey, D., Siddaway, A. P., Meiser-Stedman, R., Serpell, L., & Field, A. P. (2012). A meta-analysis of risk factors for post-traumatic stress disorder in children and adolescents. Clinical Psychology Review, 32(2), 122-138. https://doi.org/10.1016/j.cpr.2011.12.001
doi: 10.1016/j.cpr.2011.12.001 URL pmid: 22245560 |
[50] | Ucuz, I., Ari, A., Ozcan, O. O., Topaktas, O., Sarraf, M., & Dogan, O. (2020). Estimation of the development of depression and PTSD in children exposed to sexual abuse and development of decision support systems by using artificial intelligence. Journal of Child Sexual Abuse, 1-13. https://doi.org/10.1080/10538712.2020.1841350 |
[51] | Weathers, F. W., Litz, B. T., Keane, T. M., Palmieri, P. A., Marx, B. P., & Schnurr, P. P. (2013). The PTSD Checklist for DSM-5 (PCL-5). National Center for PTSD, 5(August), 2002. https://www.ptsd.va.gov/professional/assessment/documents/PCL-5_LEC_criterionA. |
[52] |
Worthington, M. A., Mandavia, A., & Richardson-Vejlgaard, R. (2020). Prospective prediction of PTSD diagnosis in a nationally representative sample using machine learning. BioMed Central Psychiatry, 20(1), 532. https://doi.org/10.1186/s12888-020-02933-1
doi: 10.1186/s12888-020-02933-1 URL |
[53] |
Yehuda, R., Halligan, S. L., & Grossman, R. (2001). Childhood trauma and risk for PTSD: Relationship to intergenerational effects of trauma, parental PTSD, and cortisol excretion. Development and Psychopathology, 13(3), 733-753. https://doi.org/10.1017/S0954579401003170
URL pmid: 11523857 |
[54] |
Zandvakili, A., Philip, N. S., Jones, S. R., Tyrka, A. R., Greenberg, B. D., & Carpenter, L. L. (2019). Use of machine learning in predicting clinical response to transcranial magnetic stimulation in comorbid posttraumatic stress disorder and major depression: A resting state electroencephalography study. Journal of Affective Disorders, 252(1), 47-54. https://doi.org/10.1016/j.jad.2019.03.077
doi: 10.1016/j.jad.2019.03.077 URL |
[55] | Zhang, Q., Wu, Q., Zhu, H., He, L., Huang, H., Zhang, J., & Zhang, W. (2016). Multimodal MRI-based classification of trauma survivors with and without post-traumatic stress disorder. Frontiers in Neuroscience, 10(JUN),1-9. https://doi.org/10.3389/fnins.2016.00292 |
[1] | 张李斌, 张其文, 王晨旭, 张云运. 社会网络视角下儿童青少年同伴关系网络与欺凌相关行为的共同变化关系[J]. 心理科学进展, 2023, 31(3): 416-427. |
[2] | 陈新文, 李鸿杰, 丁玉珑. 探究事件相关脑电/脑磁信号中的神经表征模式:基于分类解码和表征相似性分析的方法[J]. 心理科学进展, 2023, 31(2): 173-195. |
[3] | 江丹莹, 杨运梅, 李晶. 群体情境下儿童的分配公平性[J]. 心理科学进展, 2022, 30(9): 2004-2019. |
[4] | 蒋涵. 注意缺陷多动障碍儿童教育康复线上模式的构建[J]. 心理科学进展, 2022, 30(8): 1747-1758. |
[5] | 康丹, 李佳佳, 蔡术. 学前儿童睡眠问题与语言障碍的关系[J]. 心理科学进展, 2022, 30(6): 1270-1281. |
[6] | 曹馨允, 童钰, 王福兴, 李卉. 来自屏幕的纽带:视频聊天与儿童发展[J]. 心理科学进展, 2022, 30(6): 1282-1293. |
[7] | 陈静, 冉光明, 张琪, 牛湘. 儿童和青少年同伴侵害与攻击行为关系的三水平元分析[J]. 心理科学进展, 2022, 30(2): 275-290. |
[8] | 郭静, 刘笑晗, 黄宁. 基于长尾效应的儿童创伤后应激障碍转归机制及干预策略[J]. 心理科学进展, 2022, 30(10): 2154-2163. |
[9] | 侯婷婷, 陈潇, 孔德彭, 邵秀筠, 林丰勋, 李开云. 机器学习在自闭症儿童早期识别和诊断领域的应用[J]. 心理科学进展, 2022, 30(10): 2321-2337. |
[10] | 张萦倩, 赵光义, 韩雨薇, 张静怡, 曹成琦, 王力, 张昆林. 创伤后应激障碍的组蛋白修饰机制[J]. 心理科学进展, 2022, 30(1): 98-114. |
[11] | 王辉, 李广政. 儿童手势及其与学习的关系[J]. 心理科学进展, 2021, 29(9): 1617-1627. |
[12] | 王琳, 王志丹, 王泓婧. 孤独症儿童动作发展障碍的神经机制[J]. 心理科学进展, 2021, 29(7): 1239-1250. |
[13] | 王学思, 李静雅, 王美芳. 父母婚姻冲突对儿童发展的影响及其机制[J]. 心理科学进展, 2021, 29(5): 875-884. |
[14] | 苏悦, 刘明明, 赵楠, 刘晓倩, 朱廷劭. 基于社交媒体数据的心理指标识别建模: 机器学习的方法[J]. 心理科学进展, 2021, 29(4): 571-585. |
[15] | 白玉, 杨海波. 创伤后应激障碍个体对威胁刺激的注意偏向:眼动研究的证据[J]. 心理科学进展, 2021, 29(4): 737-746. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||