心理科学进展 ›› 2022, Vol. 30 ›› Issue (4): 802-816.doi: 10.3724/SP.J.1042.2022.00802
收稿日期:
2020-12-10
出版日期:
2022-04-15
发布日期:
2022-02-22
通讯作者:
杨平
E-mail:yangp@m.scnu.edu.cn
基金资助:
WANG Xinlin, QIU Xiaoyue, WENG Xuchu, YANG Ping()
Received:
2020-12-10
Online:
2022-04-15
Published:
2022-02-22
Contact:
YANG Ping
E-mail:yangp@m.scnu.edu.cn
摘要:
工作记忆的神经振荡机制研究是当前记忆领域的研究热点之一。那么, 神经振荡仅仅是工作记忆过程的伴随现象, 还是直接参与并调控了工作记忆的加工过程?已有研究发现, 大脑内部的神经振荡活动在外界节律性刺激的驱动下, 逐步与外界刺激节律相位同步化, 这一现象被称为“神经振荡夹带”。重复经颅磁刺激(repetitive Transcranial Magnetic Stimulation, rTMS)和经颅交流电刺激(transcranial Alternating Current Stimulation, tACS)干预研究基于此现象, 对大脑局部脑区施加节律性磁、电刺激, 进而调控工作记忆过程中特定频段的神经振荡活动、跨频段的神经振荡耦合或跨脑区的神经振荡相位同步, 为神经振荡参与工作记忆加工提供较为直接的因果证据。未来研究需考虑从脑网络的角度出发, 调控多个脑区之间的神经振荡活动, 进一步考察神经振荡对工作记忆的影响。此外, 还需注意探索和优化rTMS/tACS调控工作记忆的刺激方案, 并辅以客观的脑电记录, 提高该类研究的有效性和可重复性, 最终达到提高工作记忆能力的目的。
中图分类号:
王鑫麟, 邱晓悦, 翁旭初, 杨平. (2022). 工作记忆的神经振荡调控:基于神经振荡夹带现象. 心理科学进展 , 30(4), 802-816.
WANG Xinlin, QIU Xiaoyue, WENG Xuchu, YANG Ping. (2022). Modulating working memory related-oscillation via entrainment of neural oscillation. Advances in Psychological Science, 30(4), 802-816.
研究 | 方法 | 刺激部位 | 刺激时间 | 刺激频率 | 实验范式 | 神经振荡 夹带监测 | 神经振荡 夹带结果 |
---|---|---|---|---|---|---|---|
Beynel et al., | rTMS | 左侧DLPFC | 记忆编码之前/延迟期间25个脉冲/试次 | 5 Hz | 延迟匹配字母排序任务 | 无 | 无 |
Riddle et al., | rTMS | 左侧DLPFC | 工作记忆维持期4个脉冲/试次 | 5 Hz | 回溯线索工作记忆任务 | 无 | 无 |
Jaušovec et al., | tACS | F3, P3电极 | 15min(offline) | theta | 数字广度测验; 空间工作记忆任务 | 无 | 无 |
Albouy et al., | rTMS | 左侧IPS | 工作记忆维持期5个脉冲/试次 | 5 Hz | 听觉工作记忆任务 | EEG | IPS的theta振荡能量增强; 额顶脑区theta相位同步增强 |
Li et al., | rTMS | 顶上小叶 | 工作记忆维持期15个脉冲/试次 | 5 Hz | Sternberg任务 | EEG | 顶叶脑区theta振荡能量增强; 额顶脑区theta相位同步增强 |
Polanía et al., | tACS | F3, P3电极 | 12.5~15.5 min (online) | 6 Hz, 35 Hz同相/反相 | 延迟字母识别任务 | 无 | 无 |
Alekseichuk et al., | tACS | AF3, AF4, P3, P4电极 | 17~19 min (on line) | 6 Hz同相/反相 | 视觉空间工作记忆任务 | EEG | 额顶脑区theta相位同步减弱 |
Reinhart & Nguyen, | HD-tACS | 左侧前额叶与颞叶 | 25 min(online+offline) | 8 Hz (同相) | 变化检测任务 | EEG | 额颞脑区theta相位同步增强 |
Sauseng et al., | rTMS | P4电极 | 工作记忆维持期9个脉冲/试次 | 10 Hz | 双侧视野变化探测任务 | 无 | 无 |
Borghini et al., | tACS | 双侧顶叶 | 20 min (on line) | 10 Hz | 回溯线索工作记忆任务 | 无 | 无 |
Emrich et al., | rTMS | 左侧IPS | 工作记忆维持期10个脉冲/试次 | 10 Hz | 延迟匹配任务 | EEG | 顶叶alpha振荡能量增强及其与工作记忆行为呈正相关 |
Riddle et al., | rTMS | 左侧IPS | 工作记忆维持期4个脉冲/试次 | 10 Hz | 回溯线索工作记忆任务 | 无 | 无 |
Hamidi et al., | rTMS | 左侧SPL | 30个脉冲/试次 | 10 Hz | 延迟匹配任务 | EEG | 顶叶alpha振荡能量增强与工作记忆行为呈负相关 |
Hoy et al., | tACS | F3电极 | 20 min (online+offline) | 40 Hz | n-back任务 | 无 | 无 |
Tseng et al., | tACS | CP1, T5电极 | 20min (online+offline) | 40 Hz (反相) | 变化检测任务 | 无 | 无 |
Vosskuhl et al., | tACS | FCz, Pz电极 | 18 min (off line) | 低于个体theta频率 | 数字广度测验 | EEG | 顶叶theta振荡能量增强 |
Bender et al., Wolinski et al., | tACS | P4电极 | 实验全程 (on line) | 4 Hz | 视觉空间工作记忆任务 | 无 | 无 |
Alekseichuk et al., | tACS | 左侧PFC | 10 min (off line) | 耦合节律 (theta 6 Hz的波峰/波谷分别与gamma 40 Hz、80 Hz、100 Hz、140 Hz、200 Hz耦合) | 视觉空间工作记忆任务 | EEG | 大脑全局theta相位网络的增强及其与工作记忆行为呈正相关 |
表1 节律性NIBS调控工作记忆研究证据汇总
研究 | 方法 | 刺激部位 | 刺激时间 | 刺激频率 | 实验范式 | 神经振荡 夹带监测 | 神经振荡 夹带结果 |
---|---|---|---|---|---|---|---|
Beynel et al., | rTMS | 左侧DLPFC | 记忆编码之前/延迟期间25个脉冲/试次 | 5 Hz | 延迟匹配字母排序任务 | 无 | 无 |
Riddle et al., | rTMS | 左侧DLPFC | 工作记忆维持期4个脉冲/试次 | 5 Hz | 回溯线索工作记忆任务 | 无 | 无 |
Jaušovec et al., | tACS | F3, P3电极 | 15min(offline) | theta | 数字广度测验; 空间工作记忆任务 | 无 | 无 |
Albouy et al., | rTMS | 左侧IPS | 工作记忆维持期5个脉冲/试次 | 5 Hz | 听觉工作记忆任务 | EEG | IPS的theta振荡能量增强; 额顶脑区theta相位同步增强 |
Li et al., | rTMS | 顶上小叶 | 工作记忆维持期15个脉冲/试次 | 5 Hz | Sternberg任务 | EEG | 顶叶脑区theta振荡能量增强; 额顶脑区theta相位同步增强 |
Polanía et al., | tACS | F3, P3电极 | 12.5~15.5 min (online) | 6 Hz, 35 Hz同相/反相 | 延迟字母识别任务 | 无 | 无 |
Alekseichuk et al., | tACS | AF3, AF4, P3, P4电极 | 17~19 min (on line) | 6 Hz同相/反相 | 视觉空间工作记忆任务 | EEG | 额顶脑区theta相位同步减弱 |
Reinhart & Nguyen, | HD-tACS | 左侧前额叶与颞叶 | 25 min(online+offline) | 8 Hz (同相) | 变化检测任务 | EEG | 额颞脑区theta相位同步增强 |
Sauseng et al., | rTMS | P4电极 | 工作记忆维持期9个脉冲/试次 | 10 Hz | 双侧视野变化探测任务 | 无 | 无 |
Borghini et al., | tACS | 双侧顶叶 | 20 min (on line) | 10 Hz | 回溯线索工作记忆任务 | 无 | 无 |
Emrich et al., | rTMS | 左侧IPS | 工作记忆维持期10个脉冲/试次 | 10 Hz | 延迟匹配任务 | EEG | 顶叶alpha振荡能量增强及其与工作记忆行为呈正相关 |
Riddle et al., | rTMS | 左侧IPS | 工作记忆维持期4个脉冲/试次 | 10 Hz | 回溯线索工作记忆任务 | 无 | 无 |
Hamidi et al., | rTMS | 左侧SPL | 30个脉冲/试次 | 10 Hz | 延迟匹配任务 | EEG | 顶叶alpha振荡能量增强与工作记忆行为呈负相关 |
Hoy et al., | tACS | F3电极 | 20 min (online+offline) | 40 Hz | n-back任务 | 无 | 无 |
Tseng et al., | tACS | CP1, T5电极 | 20min (online+offline) | 40 Hz (反相) | 变化检测任务 | 无 | 无 |
Vosskuhl et al., | tACS | FCz, Pz电极 | 18 min (off line) | 低于个体theta频率 | 数字广度测验 | EEG | 顶叶theta振荡能量增强 |
Bender et al., Wolinski et al., | tACS | P4电极 | 实验全程 (on line) | 4 Hz | 视觉空间工作记忆任务 | 无 | 无 |
Alekseichuk et al., | tACS | 左侧PFC | 10 min (off line) | 耦合节律 (theta 6 Hz的波峰/波谷分别与gamma 40 Hz、80 Hz、100 Hz、140 Hz、200 Hz耦合) | 视觉空间工作记忆任务 | EEG | 大脑全局theta相位网络的增强及其与工作记忆行为呈正相关 |
[1] |
Albouy, P., Weiss, A., Baillet, S., & Zatorre, R. J. (2017). Selective entrainment of theta oscillations in the dorsal stream causally enhances auditory working memory performance. Neuron, 94(1), 193-206.e5. https://doi.org/10.1016/j.neuron.2017.03.015
doi: 10.1016/j.neuron.2017.03.015 URL |
[2] |
Alekseichuk, I., Pabel, S. C., Antal, A., & Paulus, W. (2017). Intrahemispheric theta rhythm desynchronization impairs working memory. Restorative Neurology and Neuroscience, 35(2), 147-158. https://doi.org/10.3233/RNN-160714
doi: 10.3233/RNN-160714 URL pmid: 28059806 |
[3] |
Alekseichuk, I., Turi, Z., Amador de Lara, G., Antal, A., & Paulus, W. (2016). Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Current Biology, 26(12), 1513-1521. https://doi.org/10.1016/j.cub.2016.04.035
doi: S0960-9822(16)30358-X URL pmid: 27238283 |
[4] | Ambrose, J. P., Wijeakumar, S., Buss, A. T., & Spencer, J. P. (2016). Feature-based change detection reveals inconsistent individual differences in visual working memory capacity. Frontiers in Systems Neuroscience, 10(4), 1-10. https://doi.org/10.3389/fnsys.2016.00033 |
[5] |
Antal, A., Alekseichuk, I., Bikson, M., Brockmöller, J., Brunoni, A. R., Chen, R., ... Paulus, W. (2017). Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clinical Neurophysiology, 128(9), 1774-1809. https://doi.org/10.1016/j.clinph.2017.06.001
doi: S1388-2457(17)30212-2 URL pmid: 28709880 |
[6] | Antal, A., & Paulus, W. (2013). Transcranial Alternating Current Stimulation (tACS). Frontiers in Human Neuroscience, 7(6), 1-4. https://doi.org/10.3389/fnhum.2013.00317 |
[7] |
Arciniega, H., Gözenman, F., Jones, K. T., Stephens, J. A., & Berryhill, M. E. (2018). Frontoparietal tDCS benefits visual working memory in older adults with low working memory capacity. Frontiers in Aging Neuroscience, 10(2), 1-12. https://doi.org/10.3389/fnagi.2018.00057
doi: 10.3389/fnagi.2018.00001 URL |
[8] |
Baddeley, A. (2010). Working memory. Current Biology, 20(4), 136-140. https://doi.org/10.1016/j.cub.2009.12.014
doi: 10.1016/j.cub.2009.12.014 URL pmid: 20178752 |
[9] |
Barr, M. S., Farzan, F., Rajji, T. K., Voineskos, A. N., Blumberger, D. M., Arenovich, T., ... Daskalakis, Z. J. (2013). Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial. Biological Psychiatry, 73(6), 510-517. https://doi.org/10.1016/j.biopsych.2012.08.020
doi: 10.1016/j.biopsych.2012.08.020 URL |
[10] |
Bastos, A. M., Loonis, R., Kornblith, S., Lundqvist, M., & Miller, E. K. (2018). Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory. Proceedings of the National Academy of Sciences of the United States of America, 115(5), 1117-1122. https://doi.org/10.1073/pnas.1710323115
doi: 10.1073/pnas.1710323115 URL pmid: 29339471 |
[11] |
Bender, M., Romei, V., & Sauseng, P. (2019). Slow theta tACS of the right parietal cortex enhances contralateral visual working memory capacity. Brain Topography, 32(3), 477-481. https://doi.org/10.1007/s10548-019-00702-2
doi: 10.1007/s10548-019-00702-2 URL |
[12] | Berryhill, M., Arciniega, H., Jones, K., Stephens, J., & Gozenman, F. (2019). Who, what, where and how much: tDCS and training effects on working memory. Brain Stimulation, 12(2), 460. https://doi.org/10.1016/j.brs.2018.12.496 |
[13] | Beynel, L., Davis, S., Crowell, C., Hilbig, S., Palmer, H., Brito, A., ... Appelbaum, L. (2019). Site-specifics effects of online repetitive Transcranial Magnetic Stimulation (rTMS) on Working Memory (WM). Brain Stimulation, 12(2), 564. https://doi.org/10.1016/j.brs.2018.12.867 |
[14] |
Bonnefond, M., & Jensen, O. (2012). Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Current Biology, 22(20), 1969-1974. https://doi.org/10.1016/j.cub.2012.08.029
doi: 10.1016/j.cub.2012.08.029 URL pmid: 23041197 |
[15] | Bonnefond, M., & Jensen, O. (2013). The role of gamma and alpha oscillations for blocking out distraction. Communicative and Integrative Biology, 6(1), 20-22. https://doi.org/10.4161/cib.22702 |
[16] | Bonnefond, M., & Jensen, O. (2015). Gamma activity coupled to alpha phase as a mechanism for top-down controlled gating. Plos One, 10(6), 1-11. https://doi.org/10.1371/journal.pone.0128667 |
[17] |
Borghini, G., Candini, M., Filannino, C., Hussain, M., Walsh, V., Romei, V., ... Cappelletti, M. (2018). Alpha oscillations are causally linked to inhibitory abilities in ageing. Journal of Neuroscience, 38(18), 4418-4429. https://doi.org/10.1523/JNEUROSCI.1285-17.2018
doi: 10.1523/JNEUROSCI.1285-17.2018 URL pmid: 29615485 |
[18] |
Bosman, C. A., Schoffelen, J. M., Brunet, N., Oostenveld, R., Bastos, A. M., ... Fries, P. (2012). Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron, 75(5), 875-888. https://doi.org/10.1016/j.neuron.2012.06.037
doi: 10.1016/j.neuron.2012.06.037 URL |
[19] |
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186-198. https://doi.org/10.1038/nrn2575
doi: 10.1038/nrn2575 URL pmid: 19190637 |
[20] |
Buzsáki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience, 13(6), 407-420. https://doi.org/10.1038/nrn3241
doi: 10.1038/nrn3241 URL pmid: 22595786 |
[21] | Chander, B. S., Witkowski, M., Braun, C., Robinson, S. E., Born, J., Cohen, L. G., ... Soekadar, S. R. (2016). tACS phase locking of frontal midline theta oscillations disrupts working memory performance. Frontiers in Cellular Neuroscience, 10(5), 1-10. https://doi.org/10.3389/fncel.2016.00120 |
[22] |
Christophel, T. B., Iamshchinina, P., Yan, C., Allefeld, C., & Haynes, J. D. (2018). Cortical specialization for attended versus unattended working memory. Nature Neuroscience, 21(4), 494-496. https://doi.org/10.1038/s41593-018-0094-4
doi: 10.1038/s41593-018-0094-4 URL pmid: 29507410 |
[23] |
Corrigan, J. D., & Hammond, F. M. (2013). Traumatic brain injury as a chronic health condition. Archives of Physical Medicine and Rehabilitation, 94(6), 1199-1201. https://doi.org/10.1016/j.apmr.2013.01.023
doi: 10.1016/j.apmr.2013.01.023 URL pmid: 23402722 |
[24] |
Daume, J., Gruber, T., Engel, A. K., & Friese, U. (2017). Phase- amplitude coupling and long-range phase synchronization reveal frontotemporal interactions during visual working memory. Journal of Neuroscience, 37(2), 313-322. https://doi.org/10.1523/JNEUROSCI.2130-16.2016
doi: 10.1523/JNEUROSCI.2130-16.2016 URL |
[25] |
Emrich, S. M., Johnson, J. S., Sutterer, D. W., & Postle, B. R. (2017). Comparing the effects of 10-Hz repetitive TMS on tasks of visual STM and attention. Journal of Cognitive Neuroscience, 29(2), 286-297. https://doi.org/10.1162/jocn
doi: 10.1162/jocn_a_01043 URL |
[26] |
Ester, E. F., Serences, J. T., & Awh, E. (2009). Spatially global representations in human primary visual cortex during working memory maintenance. Journal of Neuroscience, 29(48), 15258-15265. https://doi.org/10.1523/JNEUROSCI.4388-09.2009
doi: 10.1523/JNEUROSCI.4388-09.2009 URL |
[27] |
Ester, E. F., Sprague, T. C., & Serences, J. T. (2015). Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory. Neuron, 87(4), 893-905. https://doi.org/10.1016/j.neuron.2015.07.013
doi: 10.1016/j.neuron.2015.07.013 URL |
[28] |
Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12(2), 105-118. https://doi.org/10.1038/nrn2979
doi: 10.1038/nrn2979 URL |
[29] |
Fries, P. (2015). Rhythms for cognition: Communication through coherence. Neuron, 88(1), 220-235. https://doi.org/10.1016/j.neuron.2015.09.034
doi: 10.1016/j.neuron.2015.09.034 URL |
[30] |
Fuentemilla, L., Penny, W. D., Cashdollar, N., Bunzeck, N., & Düzel, E. (2010). Theta-coupled periodic replay in working memory. Current Biology, 20(7), 606-612. https://doi.org/10.1016/j.cub.2010.01.057
doi: 10.1016/j.cub.2010.01.057 URL pmid: 20303266 |
[31] | Gamboa, O. L., Antal, A., Moliadze, V., & Paulus, W. (2010). Simply longer is not better: Reversal of theta burst after-effect with prolonged stimulation. Experimental Brain Research, 204(2), 181-187. https://doi.org/10.1007/s00221-010-2293-4 |
[32] |
Garcia, M., Miguel, A., & José, A. S. (2017). Binaural auditory beats affect long-term memory. Psychological Research, 83(1), 1124-1136. https://doi.org/10.1007/s00426-017-0959-2
doi: 10.1007/s00426-017-0959-2 URL |
[33] |
Gayet, S., Guggenmos, M., Christophel, T. B., Haynes, J. D., Paffen, C. L. E., van der Stigchel, S., & Sterzer, P. (2017). Visual working memory enhances the neural response to matching visual input. Journal of Neuroscience, 37(28), 6638-6647. https://doi.org/10.1523/JNEUROSCI.3418-16.2017
doi: 10.1523/JNEUROSCI.3418-16.2017 URL |
[34] | Grande, G., Golemme, M., Tatti, E., Chiesa, S., Velzen, J., van Bernardi, Luft., ... Cappelletti, M. (2017). P127 A combined EEG and alpha tACS study on visual working memory in healthy ageing. Clinical Neurophysiology, 128(3), e77-e78. https://doi.org/10.1016/j.clinph.2016.10.248 |
[35] |
Griesmayr, B., Gruber, W. R., Klimesch, W., & Sauseng, P. (2010). Human frontal midline theta and its synchronization to gamma during a verbal delayed match to sample task. Neurobiology of Learning and Memory, 93(2), 208-215. https://doi.org/10.1016/j.nlm.2009.09.013
doi: 10.1016/j.nlm.2009.09.013 URL pmid: 19808098 |
[36] |
Griffiths, T. D., & Kumar, S. (2017). Driving working memory. Neuron, 94(1), 5-6. https://doi.org/10.1016/j.neuron.2017.03.031
doi: S0896-6273(17)30243-X URL pmid: 28384475 |
[37] |
Grimault, S., Robitaille, N., Grova, C., Lina, J. M., Dubarry, A. S., & Jolicoeur, P. (2009). Oscillatory activity in parietal and dorsolateral prefrontal cortex during retention in visual short-term memory: Additive effects of spatial attention and memory load. Human Brain Mapping, 30(10), 3378-3392. https://doi.org/10.1002/hbm.20759
doi: 10.1002/hbm.20759 URL pmid: 19384891 |
[38] | Hamidi, M., Slagter, H. A., Tononi, G., & Postle, B. R. (2009). Repetitive transcranial magnetic stimulation affects behavior by biasing endogenous cortical oscillations. Frontiers in Integrative Neuroscience, 3(6), 1-12. https://doi.org/10.3389/neuro.07.014.2009 |
[39] |
Hanslmayr, S., Axmacher, N., & Inman, C. S. (2019). Modulating human memory via entrainment of brain oscillations. Trends in Neurosciences, 42(7), 485-499. https://doi.org/10.1016/j.tins.2019.04.004
doi: S0166-2236(19)30059-1 URL pmid: 31178076 |
[40] |
Hanslmayr, S., Matuschek, J., & Fellner, M. C. (2014). Entrainment of prefrontal beta oscillations induces an endogenous echo and impairs memory formation. Current Biology, 24(8), 904-909. https://doi.org/10.1016/j.cub.2014.03.007
doi: 10.1016/j.cub.2014.03.007 URL pmid: 24684933 |
[41] |
Hanslmayr, S., Volberg, G., Wimber, M., Raabe, M., Greenlee, M. W., & Bäuml, K. H. T. (2011). The relationship between brain oscillations and BOLD signal during memory formation: A combined EEG-fMRI study. Journal of Neuroscience, 31(44), 15674-15680. https://doi.org/10.1523/JNEUROSCI.3140-11.2011
doi: 10.1523/JNEUROSCI.3140-11.2011 URL pmid: 22049410 |
[42] |
Helfrich, R. F., Schneider, T. R., Rach, S., Trautmann- Lengsfeld, S. A., Engel, A. K., & Herrmann, C. S. (2014). Entrainment of brain oscillations by transcranial alternating current stimulation. Current Biology, 24(3), 333-339. https://doi.org/10.1016/j.cub.2013.12.041
doi: 10.1016/j.cub.2013.12.041 URL |
[43] | Herrmann, C. S., Rach, S., Neuling, T., & Strüber, D. (2013). Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes. Frontiers in Human Neuroscience, 7(5), 1-13. https://doi.org/10.3389/fnhum.2013.00279 |
[44] |
Honkanen, R., Rouhinen, S., Wang, S. H., Palva, J. M., & Palva, S. (2015). Gamma oscillations underlie the maintenance of feature-specific information and the contents of visual working memory. Cerebral Cortex, 25(10), 3788-3801. https://doi.org/10.1093/cercor/bhu263
doi: 10.1093/cercor/bhu263 URL |
[45] |
Howard, M. W., Rizzuto, D. S., Caplan, J. B., Madsen, J. R., Lisman, J., Aschenbrenner-Scheibe, R., ... Kahana, M. J. (2003). Gamma oscillations correlate with working memory load in humans. Cerebral Cortex, 13(12), 1369-1374. https://doi.org/10.1093/cercor/bhg084
URL pmid: 14615302 |
[46] |
Hoy, K. E., Bailey, N., Arnold, S., Windsor, K., John, J., Daskalakis, Z. J., & Fitzgerald, P. B. (2015). The effect of γ-tACS on working memory performance in healthy controls. Brain and Cognition, 101, 51-56. https://doi.org/10.1016/j.bandc.2015.11.002
doi: 10.1016/j.bandc.2015.11.002 URL |
[47] |
Hsu, T. Y., Tseng, P., Liang, W. K., Cheng, S. K., & Juan, C. H. (2014). Transcranial direct current stimulation over right posterior parietal cortex changes prestimulus alpha oscillation in visual short-term memory task. NeuroImage, 98, 306-313. https://doi.org/10.1016/j.neuroimage.2014.04.069
doi: 10.1016/j.neuroimage.2014.04.069 URL |
[48] |
Jaušovec, N., & Jaušovec, K. (2014). Increasing working memory capacity with theta transcranial Alternating Current Stimulation (tACS). Biological Psychology, 96(1), 42-47. https://doi.org/10.1016/j.biopsycho.2013.11.006
doi: 10.1016/j.biopsycho.2013.11.006 URL |
[49] |
Jaušovec, N., Jaušovec, K., & Pahor, A. (2014). The influence of theta transcranial Alternating Current Stimulation (tACS) on working memory storage and processing functions. Acta Psychologica, 146(1), 1-6. https://doi.org/10.1016/j.actpsy.2013.11.011
doi: 10.1016/j.actpsy.2013.11.011 URL |
[50] |
Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9-12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12(8), 877-882.
URL pmid: 12122036 |
[51] |
Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30(7), 317-324. https://doi.org/10.1016/j.tins.2007.05.001
URL pmid: 17499860 |
[52] |
Jensen, O., & Tesche, C. D. (2002). Short communication frontal theta activity in human increases with memory load in a working memory task. European Journal of Neuroscience, 15(8), 1395-1399. https://doi.org/10.1046/j.1460-9568.2002.
URL pmid: 11994134 |
[53] |
Jokisch, D., & Jensen, O. (2007). Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. Journal of Neuroscience, 27(12), 3244-3251. https://doi.org/10.1523/jneurosci.5399-06.2007
doi: 10.1523/JNEUROSCI.5399-06.2007 URL pmid: 17376984 |
[54] |
Klimesch, W., Sauseng, P., & Gerloff, C. (2003). Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. European Journal of Neuroscience, 17(5), 1129-1133. https://doi.org/10.1046/j.1460-9568.2003.02517.
doi: 10.1046/j.1460-9568.2003.02517.x URL |
[55] |
Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63-88. https://doi.org/10.1016/j.brainresrev.2006.06.003
doi: 10.1016/j.brainresrev.2006.06.003 URL |
[56] |
Kopp, F., Schröger, E., & Lipka, S. (2006). Synchronized brain activity during rehearsal and short-term memory disruption by irrelevant speech is affected by recall mode. International Journal of Psychophysiology, 61(2), 188-203. https://doi.org/10.1016/j.ijpsycho.2005.10.001
doi: 10.1016/j.ijpsycho.2005.10.001 URL |
[57] |
Lakatos, P., Gross, J., & Thut, G. (2019). A new unifying account of the roles of neuronal entrainment. Current Biology, 29(18), R890-R905. https://doi.org/10.1016/j.cub.2019.07.075
doi: 10.1016/j.cub.2019.07.075 URL |
[58] | Liang, T., Hu, Z., & Liu, Q. (2017). Frontal theta activity supports detecting mismatched information in visual working memory. Frontiers in Psychology, 8(10), 1-8. https://doi.org/10.3389/fpsyg.2017.01821 |
[59] | Li, S., Jin, J. N., Wang, X., Qi, H. Z., Liu, Z. P., & Yin, T. (2017). Theta and alpha oscillations during the retention period of working memory by rTMS stimulating the parietal lobe. Frontiers in Behavioral Neuroscience, 11(9), 1-12. https://doi.org/10.3389/fnbeh.2017.00170 |
[60] |
Lisman, J. E., & Jensen, O. (2013). The theta-gamma neural code. Neuron, 77(6), 1002-1016. https://doi.org/10.1016/j.neuron.2013.03.007
doi: 10.1016/j.neuron.2013.03.007 URL pmid: 23522038 |
[61] |
Lundqvist, M., Herman, P., & Lansner, A. (2011). Theta and gamma power increases and alpha/beta power decreases with memory load in an attractor network model. Journal of Cognitive Neuroscience, 23(10), 3008-3020. https://doi.org/10.1162/jocn_a_00029
doi: 10.1162/jocn_a_00029 URL pmid: 21452933 |
[62] |
Miller, E. K., Lundqvist, M., & Bastos, A. M. (2018). Working Memory 2.0. Neuron, 100(2), 463-475. https://doi.org/10.1016/j.neuron.2018.09.023
doi: S0896-6273(18)30825-0 URL pmid: 30359609 |
[63] |
Milner, P. M. (1974). A model for visual shape recognition. Psychological Review, 81(6), 521-535. https://doi.org/10.1037/h0037149
URL pmid: 4445414 |
[64] | Pahor, A., & Jaušovec, N. (2018). The effects of theta and gamma tacs on working memory and electrophysiology. Frontiers in Human Neuroscience, 11(1), 1-16. https://doi.org/10.3389/fnhum.2017.00651 |
[65] |
Palva, J. M., Palvaa, Monto, S., Kulashekhar, S., & Palva, S. (2010). Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proceedings of the National Academy of Sciences, 107(16), 7580-7585. https://doi.org/10.1073/pnas.0913113107
doi: 10.1073/pnas.0913113107 URL |
[66] | Palva, S., & Palva, J. M. (2011). Functional roles of alpha- band phase synchronization in local and large-scale cortical networks. Frontiers in Psychology, 2(9), 1-15. https://doi.org/10.3389/fpsyg.2011.00204 |
[67] |
Payne, L., & Kounios, J. (2009). Coherent oscillatory networks supporting short-term memory retention. Brain Research, 1247, 126-132. https://doi.org/10.1016/j.brainres.2008.09.095
doi: 10.1016/j.brainres.2008.09.095 URL pmid: 18976639 |
[68] |
Polanía, R., Nitsche, M. A., Korman, C., Batsikadze, G., & Paulus, W. (2012). The importance of timing in segregated theta phase-coupling for cognitive performance. Current Biology, 22(14), 1314-1318. https://doi.org/10.1016/j.cub.2012.05.021
doi: 10.1016/j.cub.2012.05.021 URL pmid: 22683259 |
[69] | Proskovec, A. L., Wiesman, A. I., Heinrichs-Graham, E., & Wilson, T. W. (2018). Beta oscillatory dynamics in the prefrontal and superior temporal cortices predict spatial working memory performance. Scientific Reports, 8(1), 1-13. https://doi.org/10.1038/s41598-018-26863-x |
[70] |
Reinhart, R. M. G., & Nguyen, J. A. (2019). Working memory revived in older adults by synchronizing rhythmic brain circuits. Nature Neuroscience, 22(5), 820-827. https://doi.org/10.1038/s41593-019-0371-x
doi: 10.1038/s41593-019-0371-x URL pmid: 30962628 |
[71] |
Riddle, J., Scimeca, J. M., Cellier, D., Dhanani, S., & D’Esposito, M. (2020). Causal evidence for a role of theta and alpha oscillations in the control of working memory. Current Biology, 30(9), 1748-1754.e4. https://doi.org/10.1016/j.cub.2020.02.065
doi: 10.1016/j.cub.2020.02.065 URL |
[72] |
Rihs, T. A., Michel, C. M., & Thut, G. (2007). Mechanisms of selective inhibition in visual spatial attention are indexed by α-band EEG synchronization. European Journal of Neuroscience, 25(2), 603-610. https://doi.org/10.1111/j.1460-9568.2007.
doi: 10.1111/ejn.2007.25.issue-2 URL |
[73] |
Röhner, F., Breitling, C., Rufener, K. S., Heinze, H.-J., Hinrichs, H., Krauel, K., & Sweeney-Reed, C. M. (2018). Modulation of working memory using transcranial electrical stimulation: A direct comparison between TACS and TDCS. Frontiers in Neuroscience, 12(10), 1-10. https://doi.org/10.3389/fnins.2018.00761
doi: 10.3389/fnins.2018.00001 URL |
[74] |
Roux, F., & Uhlhaas, P. J. (2014). Working memory and neural oscillations: Alpha-gamma versus theta-gamma codes for distinct WM information? Trends in Cognitive Sciences, 18(1), 16-25. https://doi.org/10.1016/j.tics.2013.10.010
doi: 10.1016/j.tics.2013.10.010 URL |
[75] |
Rutishauser, U., Ross, I. B., Mamelak, A. N., & Schuman, E. M. (2010). Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature, 464(7290), 903-907. https://doi.org/10.1038/nature08860
doi: 10.1038/nature08860 URL |
[76] |
Sack, A. T., Kadosh, R. C., Schuhmann, T., Moerel, M., Walsh, V., & Goebel, R. (2008). Optimizing functional accuracy of TMS in cognitive studies : A comparison of methods. Journal of Cognitive Neuroscience, 21(2), 207-221. https://doi.org/doi:10.1162/jocn.2009.21126
doi: 10.1162/jocn.2009.21126 URL |
[77] |
Santarnecchi, E., Muller, T., Rossi, S., Sarkar, A., Polizzotto, N. R., Rossi, A., & Cohen Kadosh, R. (2016). Individual differences and specificity of prefrontal gamma frequency- tACS on fluid intelligence capabilities. Cortex, 75, 33-43. https://doi.org/10.1016/j.cortex.2015.11.003
doi: S0010-9452(15)00381-0 URL pmid: 26707084 |
[78] |
Sauseng, P., Griesmayr, B., Freunberger, R., & Klimesch, W. (2010). Control mechanisms in working memory: A possible function of EEG theta oscillations. Neuroscience and Biobehavioral Reviews, 34(7), 1015-1022. https://doi.org/10.1016/j.neubiorev.2009.12.006
doi: 10.1016/j.neubiorev.2009.12.006 URL pmid: 20006645 |
[79] |
Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., & Hanslmayr, S. (2005). EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Human Brain Mapping, 26(2), 148-155. https://doi.org/10.1002/hbm.20150
URL pmid: 15929084 |
[80] |
Sauseng, P., Klimesch, W., Heise, K. F., Gruber, W. R., Holz, E., Karim, A. A., ... Hummel, F. C. (2009). Brain oscillatory substrates of visual short-term memory capacity. Current Biology, 19(21), 1846-1852. https://doi.org/10.1016/j.cub.2009.08.062
doi: 10.1016/j.cub.2009.08.062 URL pmid: 19913428 |
[81] |
Sauseng, P., Tschentscher, N., & Biel, A. L. (2019). Be prepared: Tune to FM-theta for cognitive control. Trends in Neurosciences, 42(5), 307-309. https://doi.org/10.1016/j.tins.2019.02.006
doi: S0166-2236(19)30023-2 URL pmid: 30871730 |
[82] | Siebenhühner, F., Wang, S. H., Palva, J. M., & Palva, S. (2016). Cross-frequency synchronization connects networks of fast and slow oscillations during visual working memory maintenance. ELife, 5(9), 15-30. https://doi.org/10.7554/eLife.13451 |
[83] |
Silvanto, J., & Soto, D. (2012). Causal evidence for subliminal percept-to-memory interference in early visual cortex. NeuroImage, 59(1), 840-845. https://doi.org/10.1016/j.neuroimage.2011.07.062
doi: 10.1016/j.neuroimage.2011.07.062 URL pmid: 21839180 |
[84] |
Sligte, I. G., Wokke, M. E., Tesselaar, J. P., Steven Scholte, H., & Lamme, V. A. F. (2011). Magnetic stimulation of the dorsolateral prefrontal cortex dissociates fragile visual short- term memory from visual working memory. Neuropsychologia, 49(6), 1578-1588. https://doi.org/10.1016/j.neuropsychologia.2010.12.010
doi: 10.1016/j.neuropsychologia.2010.12.010 URL pmid: 21168424 |
[85] |
Spaak, E., de Lange, F. P., & Jensen, O. (2014). Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. Journal of Neuroscience, 34(10), 3536-3544. https://doi.org/10.1523/JNEUROSCI.4385-13.2014
doi: 10.1523/JNEUROSCI.4385-13.2014 URL |
[86] | These, M., & Thus, V. (2004). Capacity limit of visual short- term memory in human posterior parietal cortex. Nature, 166(2003), 751-754. https://doi.org/10.1038/nature02466 |
[87] |
Thut, G., Veniero, D., Romei, V., Miniussi, C., Schyns, P., & Gross, J. (2011). Rhythmic TMS causes local entrainment of natural oscillatory signatures. Current Biology, 21(14), 1176-1185. https://doi.org/10.1016/j.cub.2011.05.049
doi: 10.1016/j.cub.2011.05.049 URL |
[88] |
Todd, J. J., & Marois, R. (2005). Posterior parietal cortex activity predicts individual differences in visual short- term memory capacity. Cognitive, Affective and Behavioral Neuroscience, 5(2), 144-155. https://doi.org/10.3758/CABN.5.2.144
URL pmid: 16180621 |
[89] |
Tseng, P., Chang, Y. T., Chang, C. F., Liang, W. K., & Juan, C. H. (2016). The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory. Scientific Reports, 6(3), 1-15. https://doi.org/10.1038/srep32138
doi: 10.1038/s41598-016-0001-8 URL |
[90] | Tseng, P., Iu, K. C., & Juan, C. H. (2018). The critical role of phase difference in theta oscillation between bilateral parietal cortices for visuospatial working memory. Scientific Reports, 8(1), 1-9. https://doi.org/10.1038/s41598-017-18449-w |
[91] |
Tzvi, E., Bauhaus, L. J., Kessler, T. U., Liebrand, M., Wöstmann, M., & Krämer, U. M. (2018). Alpha-gamma phase amplitude coupling subserves information transfer during perceptual sequence learning. Neurobiology of Learning and Memory, 149(2), 107-117. https://doi.org/10.1016/j.nlm.2018.02.019
doi: 10.1016/j.nlm.2018.02.019 URL |
[92] | van Dijk, H., van Der Werf, J., Mazaheri, A., Medendorp, W. P., & Jensen, O. (2010). Modulations in oscillatory activity with amplitude asymmetry can produce cognitively relevant event-related responses. Proceedings of the National Academy of Sciences of the United States of America, 107(2), 900-905. https://doi.org/10.1073/pnas.0908821107 |
[93] | Violante, I. R., Li, L. M., Carmichael, D. W., Lorenz, R., Leech, R., Hampshire, A., ... Sharp, D. J. (2017). Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. ELife, 6, 1-22. https://doi.org/10.7554/eLife.22001 |
[94] | Vosskuhl, J., Huster, R. J., & Herrmann, C. S. (2015). Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation. Frontiers in Human Neuroscience, 9(5), 1-10. https://doi.org/10.3389/fnhum.2015.00257 |
[95] |
Vosskuhl, J., Strüber, D., & Herrmann, C. S. (2018). Non- invasive brain stimulation: A paradigm shift in understanding brain oscillations. Frontiers in Human Neuroscience, 12(5), 1-19. https://doi.org/10.3389/fnhum.2018.00211
doi: 10.3389/fnhum.2018.00001 URL |
[96] |
Voss, U., Holzmann, R., Hobson, A., Paulus, W., Koppehele- Gossel, J., Klimke, A., & Nitsche, M. A. (2014). Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nature Neuroscience, 17(6), 810-812. https://doi.org/10.1038/nn.3719
doi: 10.1038/nn.3719 URL |
[97] |
Watrous, A. J., Tandon, N., Conner, C. R., Pieters, T., & Ekstrom, A. D. (2013). Frequency-specific network connectivity increases underlie accurate spatiotemporal memory retrieval. Nature Neuroscience, 16(3), 349-356. https://doi.org/10.1038/nn.3315
doi: 10.1038/nn.3315 URL pmid: 23354333 |
[98] |
Winocur, G., & Moscovitch, M. (2011). Memory transformation and systems consolidation. Journal of the International Neuropsychological Society, 17(5), 766-780. https://doi.org/10.1017/S1355617711000683
doi: 10.1017/S1355617711000683 URL |
[99] |
Witkowski, M., Garcia-Cossio, E., Chander, B. S., Braun, C., Birbaumer, N., Robinson, S. E., & Soekadar, S. R. (2016). Mapping entrained brain oscillations during transcranial Alternating Current Stimulation (tACS). NeuroImage, 140, 89-98. https://doi.org/10.1016/j.neuroimage.2015.10.024
doi: 10.1016/j.neuroimage.2015.10.024 URL pmid: 26481671 |
[100] | Wolinski, N., Cooper, N. R., Sauseng, P., & Romei, V. (2018). The speed of parietal theta frequency drives visuospatial working memory capacity. Plos Biology, 16(3), 1-17. https://doi.org/10.1371/journal.pbio.2005348 |
[101] |
Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440(7080), 91-95. https://doi.org/10.1038/nature04262
doi: 10.1038/nature04262 URL |
[1] | 张思源, 李雪冰. 不同频率经颅交流电刺激在精神疾病中的应用[J]. 心理科学进展, 2022, 30(9): 2053-2066. |
[2] | 陈幸明, 付彤, 刘昌, 张宾, 伏云发, 李恩泽, ZHANG Jian, 陈盛强, 党彩萍. 工作记忆训练诱发的神经可塑性——基于系列fMRI实验的脑区分布递减时空模型[J]. 心理科学进展, 2022, 30(2): 255-274. |
[3] | 陈玉田, 陈睿, 李鹏. 工作记忆中“组块”概念的演化及理论模型[J]. 心理科学进展, 2022, 30(12): 2708-2717. |
[4] | 王春地, 王大辉. 振动触觉频率信息的工作记忆容量及存储机制[J]. 心理科学进展, 2021, 29(7): 1141-1148. |
[5] | 张照, 张力为, 龚然. 视觉工作记忆的过滤效能[J]. 心理科学进展, 2021, 29(4): 635-651. |
[6] | 丁琳洁, 李旭, 尹述飞. 工作记忆中的积极效应:情绪效价与任务相关性的影响[J]. 心理科学进展, 2021, 29(4): 652-664. |
[7] | 黄挚靖, 李旭. 抑郁症患者工作记忆内情绪刺激加工的特点及其机制[J]. 心理科学进展, 2021, 29(2): 252-267. |
[8] | 谢婷婷, 王丽娟, 王天泽. 肢体运动信息如何在工作记忆中存储?[J]. 心理科学进展, 2021, 29(1): 93-101. |
[9] | 李婉如, 库逸轩. 急性应激影响工作记忆的生理心理机制[J]. 心理科学进展, 2020, 28(9): 1508-1524. |
[10] | 冉光明, 李睿, 张琪. 高社交焦虑者识别动态情绪面孔的神经机制[J]. 心理科学进展, 2020, 28(12): 1979-1988. |
[11] | 乔鸿颖, 李凌, 张俊俊. 基于TMS研究拓扑效应字母的工作记忆[J]. 心理科学进展, 2019, 27(suppl.): 75-75. |
[12] | 龙芳芳, 李昱辰, 陈晓宇, 李子媛, 梁腾飞, 刘强. 视觉工作记忆的巩固加工:时程、模式及机制[J]. 心理科学进展, 2019, 27(8): 1404-1416. |
[13] | 郭丽月, 严超, 邓赐平. 数学能力的改善:针对工作记忆训练的元分析[J]. 心理科学进展, 2018, 26(9): 1576-1589. |
[14] | 李杨卓, 杨旭成, 高虹, 高湘萍. 工作记忆表征对视觉注意的影响:基于非目标模板的视角[J]. 心理科学进展, 2018, 26(9): 1608-1616. |
[15] | 林博荣, 何勍, 赵金, 杨佳, 石迎珍, 闫芳芳, 席洁, 黄昌兵. 经颅电刺激与视功能调控[J]. 心理科学进展, 2018, 26(9): 1632-1641. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||