心理科学进展 ›› 2020, Vol. 28 ›› Issue (8): 1273-1281.doi: 10.3724/SP.J.1042.2020.01273
收稿日期:
2020-04-22
出版日期:
2020-08-15
发布日期:
2020-06-28
通讯作者:
张丹丹
E-mail:zhangdd05@gmail.com
基金资助:
CHEN Yu, MO Licheng, BI Rong, ZHANG Dandan()
Received:
2020-04-22
Online:
2020-08-15
Published:
2020-06-28
Contact:
ZHANG Dandan
E-mail:zhangdd05@gmail.com
摘要:
语言习得能力是人类在进化中获得的重要能力之一。语言认知的核心功能是语音加工, 因此, 语音加工的脑机制是认知心理学研究的重要课题。我们采用元分析方法, 对使用近红外技术考察新生儿语音感知的结构检测、偏差检测和母语感知的研究进行系统的定量分析, 探究新生儿的典型语音感知脑机制以及这三类语音加工相关脑区的异同。结果显示, 左侧额下回是新生儿检测语音结构的关键脑区; 双侧颞叶在新生儿语音偏差刺激检测中发挥关键作用; 新生儿的母语语音加工存在左侧化优势。
中图分类号:
陈钰, 莫李澄, 毕蓉, 张丹丹. (2020). 新生儿语音感知的神经基础:元分析. 心理科学进展 , 28(8), 1273-1281.
CHEN Yu, MO Licheng, BI Rong, ZHANG Dandan. (2020). The brain mechanism of speech perception in newborns: A meta-analysis. Advances in Psychological Science, 28(8), 1273-1281.
文献 | N | 对比条件(contrast) | 主要激活位置 | 效应量 |
---|---|---|---|---|
32 | 特殊结构 > 一般结构 | 双侧颞-额 | 0.66 | |
22 | 特殊结构 > 一般结构 | 双侧颞-额(左额激活最大) | 0.33 | |
22 | 特殊结构 > 一般结构 | 双侧颞-额 | 0.34 | |
20 | 特殊结构 > 一般结构 | 双侧颞-额(左额激活最大) | 0.37 | |
24 | 特殊结构 > 一般结构 | 双侧颞-额 | 0.39 | |
24 | 特殊结构 > 一般结构 | 双侧颞-额 | 0.41 | |
18 | 特殊结构 > 一般结构 | 双侧颞-额(左额激活最大) | 0.54 |
表1 语音结构检测文献列表
文献 | N | 对比条件(contrast) | 主要激活位置 | 效应量 |
---|---|---|---|---|
32 | 特殊结构 > 一般结构 | 双侧颞-额 | 0.66 | |
22 | 特殊结构 > 一般结构 | 双侧颞-额(左额激活最大) | 0.33 | |
22 | 特殊结构 > 一般结构 | 双侧颞-额 | 0.34 | |
20 | 特殊结构 > 一般结构 | 双侧颞-额(左额激活最大) | 0.37 | |
24 | 特殊结构 > 一般结构 | 双侧颞-额 | 0.39 | |
24 | 特殊结构 > 一般结构 | 双侧颞-额 | 0.41 | |
18 | 特殊结构 > 一般结构 | 双侧颞-额(左额激活最大) | 0.54 |
文献 | N | 对比条件(contrast) | 主要激活位置 | 效应量 |
---|---|---|---|---|
14 | 偏差刺激 > 标准刺激 | 双颞 | 0.47 | |
13 | 偏差刺激 > 标准刺激 | 双颞 | 0.51 | |
13 | 偏差刺激 > 标准刺激 | 双颞 | 0.62 | |
6 | 偏差刺激 > 标准刺激 | 双颞 | 1.03 | |
19 | 偏差刺激 > 标准刺激 | 双颞 | 0.44 | |
10 | 偏差刺激 > 标准刺激 | 双颞 | 0.87 |
表2 语音偏差刺激检测文献列表
文献 | N | 对比条件(contrast) | 主要激活位置 | 效应量 |
---|---|---|---|---|
14 | 偏差刺激 > 标准刺激 | 双颞 | 0.47 | |
13 | 偏差刺激 > 标准刺激 | 双颞 | 0.51 | |
13 | 偏差刺激 > 标准刺激 | 双颞 | 0.62 | |
6 | 偏差刺激 > 标准刺激 | 双颞 | 1.03 | |
19 | 偏差刺激 > 标准刺激 | 双颞 | 0.44 | |
10 | 偏差刺激 > 标准刺激 | 双颞 | 0.87 |
文献 | N | 对比条件(contrast) | 主要激活位置 | 效应量 |
---|---|---|---|---|
12 | 左颞 > 右颞 | 左颞 | 0.65 | |
17 | 左颞 > 右颞 | 左颞 | 0.28 | |
27 | 左颞 > 右颞 | 左颞 | 2.73 |
表3 母语感知文献列表
文献 | N | 对比条件(contrast) | 主要激活位置 | 效应量 |
---|---|---|---|---|
12 | 左颞 > 右颞 | 左颞 | 0.65 | |
17 | 左颞 > 右颞 | 左颞 | 0.28 | |
27 | 左颞 > 右颞 | 左颞 | 2.73 |
*表示元分析用到的的文献 | |
[1] | 高晋健, 唐文渊. (1996). 近红外光谱仪在新生儿脑监测的临床应用. 国外医学(儿科学分册), 23(1), 7-10. |
[2] | 祁志强, 彭聃龄. (2010). 语音加工的脑机制研究: 现状、困惑及展望. 北京师范大学学报(社会科学版), (4), 40-47. |
[3] | 郑凤英, 彭少麟. (2001). Meta分析中几种常用效应值的介绍. 生态科学, 20(1, 2), 81-84. |
[4] |
Abboub, N., Nazzi, T., & Gervain, J. (2016). Prosodic grouping at birth. Brain and Language, 162, 46-59.
doi: 10.1016/j.bandl.2016.08.002 URL pmid: 27567401 |
[5] |
Alamia, A., Solopchuk, O., D'Ausilio, A., van Bever, V., Fadiga, L., Olivier, E., & Zénon, A. (2016). Disruption of Broca's area alters higher-order chunking processing during perceptual sequence learning. Journal of Cognitive Neuroscience, 28(3), 402-417.
doi: 10.1162/jocn_a_00911 URL pmid: 26765778 |
[6] |
*Arimitsu, T., Uchida-Ota, M., Yagihashi, T., Kojima, S., Watanabe, S., Hokuto, I., … Minagawa-Kawai, Y. (2011). Functional hemispheric specialization in processing phonemic and prosodic auditory changes in neonates. Frontiers in Psychology, 2, 202.
URL pmid: 21954386 |
[7] |
Benavides-Varela, S., & Mehler, J. (2015). Verbal positional memory in 7-month-olds. Child Development, 86(1), 209-223.
URL pmid: 25176617 |
[8] |
Bhat, M., Palaniswamy, H. P., Pichaimuthu, A. N., & Thomas, N. (2018). Cortical auditory evoked potentials and hemispheric specialization of speech in individuals with learning disability and healthy controls: A preliminary study. F1000Research, 7, 1939.
URL pmid: 31001413 |
[9] |
Binder, J. R. (2017). Current controversies on Wernicke's area and its role in language. Current Neurology and Neuroscience Reports, 17(8), 58.
URL pmid: 28656532 |
[10] | *Carlier-Torres, M. E. M., Harmony, T., Ricardo-garcell, J., Marroquin, J. L., & Colmenero, M. (2014). The hemodynamic response to acoustically modified syllables in premature and full term newborn infants acquired by near infrared spectroscopy. Acta Colombiana de Psicología, 17(2), 13-21. |
[11] |
Chen, S., Sun, Y., Ma, G., Yin, X., & Liang, L. (2019). The wedge insole for the treatment of knee osteoarthritis: A systematic review protocol. Medicine, 98(37), e17168.
URL pmid: 31517869 |
[12] |
Cheour, M., Martynova, O., Näätänen, R., Erkkola, R., Sillanpää, M., Kero, P., … Hämäläinen, H. (2002). Speech sounds learned by sleeping newborns. Nature, 415(6872), 599-600.
doi: 10.1038/415599a URL pmid: 11832929 |
[13] |
de Roever, I., Bale, G., Mitra, S., Meek, J., Robertson, N. J., & Tachtsidis, I. (2018). Investigation of the pattern of the hemodynamic response as measured by functional near-Infrared spectroscopy (fNIRS) studies in newborns, less than a month old: A systematic review. Frontiers in Human Neuroscience, 12, 371.
URL pmid: 30333736 |
[14] |
Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage, 63(2), 921-935.
doi: 10.1016/j.neuroimage.2012.03.049 URL pmid: 22510258 |
[15] | *Ferry, A. L., Fló, A., Brusini, P., Cattarossi, L., Macagno, F., Nespor, M. & Mehler, J. . (2016). On the edge of language acquisition: Inherent constraints on encoding multisyllabic sequences in the neonate brain. Developmental Science, 19(3), 488-503. |
[16] |
*Gervain, J., Berent, I., & Werker, J. F. (2012). Binding at birth: The newborn brain detects identity relations and sequential position in speech. Journal of Cognitive Neuroscience, 24(3), 564-574.
URL pmid: 22066581 |
[17] | *Gervain, J., Macagno, F., Cogoi, S., Peña, M., & Mehler, J. (2008). The neonate brain detects speech structure. Proceedings of the National Academy of Sciences, 105(37), 14222-14227. |
[18] | *Gómez, D. M., Berent, I., Benavides-Varela, S., Bion, R. A. H., Cattarossi, L., Nespor, M., & Mehler, J. (2014). Language universals at birth. Proceedings of the National Academy of Sciences, 111(16), 5837-5841. |
[19] |
*Kotilahti, K., Nissila, I., Nasi, T., Lipiainen, L., Noponen, T., Merilainen, P., … Fellman, V. (2010). Hemodynamic responses to speech and music in newborn infants. Human Brain Mapping, 31(4), 595-603.
URL pmid: 19790172 |
[20] |
Kudo, N., Nonaka, Y., Mizuno, N., Mizuno, K., & Okanoya, K. (2011). On-line statistical segmentation of a non-speech auditory stream in neonates as demonstrated by event-related brain potentials. Developmental Science, 14(5), 1100-1106.
URL pmid: 21884325 |
[21] |
Kujala, A., Huotilainen, M., Hotakainen, M., Lennes, M., Parkkonen, L., Fellman, V., & Näätänen, R. (2004). Speech-sound discrimination in neonates as measured with MEG. Neuroreport, 15(13), 2089-2092.
URL pmid: 15486487 |
[22] | *Mahmoudzadeh, M., Dehaene-Lambertz, G., Fournier, M., Kongolo, G., Goudjil, S., Dubois, J., … Wallois, F. (2013). Syllabic discrimination in premature human infants prior to complete formation of cortical layers. Proceedings of the National Academy of Sciences, 110(12), 4846-4851. |
[23] |
*Mahmoudzadeh, M., Wallois, F., Kongolo, G., Goudjil, S., & Dehaene-Lambertz, G. (2017). Functional maps at the onset of auditory inputs in very early preterm human neonates. Cerebral Cortex, 27(4), 2500-2512.
URL pmid: 27102655 |
[24] |
Marklund, E., Lacerda, F., & Schwarz, I.-C. (2018). Using rotated speech to approximate the acoustic mismatch negativity response to speech. Brain and Language, 176, 26-35.
URL pmid: 29172074 |
[25] |
May, L., Byers-Heinlein, K., Gervain, J., & Werker, J. F. (2011). Language and the newborn brain: does prenatal language experience shape the neonate neural response to speech? Frontiers in Psychology, 2, 222.
URL pmid: 21960980 |
[26] |
Minagawa-Kawai, Y., van der Lely, H., Ramus, F., Sato, Y., Mazuka, R., & Dupoux, E. (2011). Optical brain imaging reveals general auditory and language-specific processing in early infant development. Cerebral Cortex, 21(2), 254-261.
URL pmid: 20497946 |
[27] | Moon, C., Cooper, R. P., & Fifer, W. P. (1993). Two-day-olds prefer their native language. Infant Behavior and Development, 16(4), 495-500. |
[28] |
Paquette, N., Lassonde, M., Vannasing, P., Tremblay, J., González-Frankenberger, B., Florea, O., … Gallagher, A. (2015). Developmental patterns of expressive language hemispheric lateralization in children, adolescents and adults using functional near-infrared spectroscopy. Neuropsychologia, 68, 117-125.
URL pmid: 25576910 |
[29] | Partanen, E., Pakarinen, S., Kujala, T., & Huotilainen, M. (2013). Infants' brain responses for speech sound changes in fast multifeature MMN paradigm. Clinical Neurophysiology, 124(8), 1578-1585. |
[30] | *Peña, M., Maki, A., Kovacic, D., Dehaene-Lambertz, G., Koizumi, H., Bouquet, F., & Mehler, J. (2003). Sounds and silence: an optical topography study of language recognition at birth. Proceedings of the National Academy of Sciences, 100(20), 11702-11705. |
[31] | Peña, M., Pittaluga, E., & Mehler, J. (2010). Language acquisition in premature and full-term infants. Proceedings of the National Academy of Sciences, 107(8), 3823-3828. |
[32] | Perani, D., Saccuman, M. C., Scifo, P., Anwander, A., Spada, D., Baldoli, C., … Friederici, A. D. (2011). Neural language networks at birth. Proceedings of the National Academy of Sciences, 108(38), 16056-16061. |
[33] | Planton, S., Chanoine, V., Sein, J., Anton, J.-L., Nazarian, B., Pallier, C., & Pattamadilok, C. (2019). Top-down activation of the visuo-orthographic system during spoken sentence processing. Neuroimage, 202, 116-135. |
[34] | Saarikivi, K., Putkinen, V., Tervaniemi, M., & Huotilainen, M. (2016). Cognitive flexibility modulates maturation and music- training-related changes in neural sound discrimination. European Journal of Neuroscience, 44(2), 1815-1825. |
[35] | Saito, Y., Kondo, T., Aoyama, S., Fukumoto, R., Konishi., N., Nakamura, K., … Toshima, T. (2007). The function of the frontal lobe in neonates for response to a prosodic voice. Early Human Development, 83(4), 225-230. |
[36] | *Sambeth, A., Pakarinen, S., Ruohio, K., Fellman, V., van Zuijen, T. L., & Huotilainen, M. (2009). Change detection in newborns using a multiple deviant paradigm: A study using magnetoencephalography. Clinical Neurophysiology, 120(3), 530-538. |
[37] |
*Sato, H., Hirabayashi, Y., Tsubokura, H., Kanai, M., Ashida, T., Konishi, I., … Maki, A. (2012). Cerebral hemodynamics in newborn infants exposed to speech sounds: A whole-head optical topography study. Human Brain Mapping, 33(9), 2092-2103.
doi: 10.1002/hbm.21350 URL pmid: 21714036 |
[38] |
Schroeder, S. R., & Rembrandt, H. N. (2018). How effectively do people remember voice disordered speech? An investigation of the serial-position curve. Brain Sciences, 8( 2), 25.
doi: 10.3390/brainsci8120211 URL pmid: 30513678 |
[39] |
Telkemeyer, S., Rossi, S., Koch, S. P., Nierhaus, T., Steinbrink, J., Poeppel, D., … Wartenburger, I. (2009). Sensitivity of newborn auditory cortex to the temporal structure of sounds. Journal of Neuroscience, 29(47), 14726-14733.
doi: 10.1523/JNEUROSCI.1246-09.2009 URL pmid: 19940167 |
[40] |
Uddén, J., Ingvar, M., Hagoort, P., & Petersson, K. M. (2017). Broca's region: A causal role in implicit processing of grammars with crossed non-adjacent dependencies. Cognition, 164, 188-198.
doi: 10.1016/j.cognition.2017.03.010 URL pmid: 28453996 |
[41] |
*Vannasing, P., Florea, O., González-Frankenberger, B., Tremblay, J., Paquette, N., Safi, D., … Gallagher, A. (2016). Distinct hemispheric specializations for native and non-native languages in one-day-old newborns identified by fNIRS. Neuropsychologia, 84, 63-69.
doi: 10.1016/j.neuropsychologia.2016.01.038 URL pmid: 26851309 |
[42] | von Holzen, K., Nishibayashi, L. L., Nazzi, T. (2018). Consonant and vowel processing in word form segmentation: An infant ERP study. Brain Sciences, 8(2), 24. |
[43] |
Wenrich, K. A., Davidson, L. S., & Uchanski, R. M. (2017). Segmental and suprasegmental perception in children using hearing aids. Journal of the American Academy of Audiology, 28(10), 901-912.
doi: 10.3766/jaaa.16105 URL pmid: 29130438 |
[44] |
Zhang, D. D., Chen, Y., Hou, X. L., & Wu, Y. J. (2019). Near-infrared spectroscopy reveals neural perception of vocal emotions in human neonates. Human Brain Mapping, 40(8), 2434-2448.
URL pmid: 30697881 |
[45] |
Zhang, H. J., Dong, W. T., Dang, W. M., Quan, W. X., Tian, J., Chen, R., … Yu, X. (2015). Near-infrared spectroscopy for examination of prefrontal activation during cognitive tasks in patients with major depressive disorder: A meta- analysis of observational studies. Psychiatry and Clinical Neurosciences, 69(1), 22-33.
doi: 10.1111/pcn.12209 URL pmid: 24897940 |
[1] | 李亚丹, 杜颖, 谢聪, 刘春宇, 杨毅隆, 李阳萍, 邱江. 语义距离与创造性思维关系的元分析[J]. 心理科学进展, 2023, 31(4): 519-534. |
[2] | 曾润喜, 李游. 自我效能感与网络健康信息搜寻关系的元分析[J]. 心理科学进展, 2023, 31(4): 535-551. |
[3] | 吴佳桧, 傅海伦, 张玉环. 感知社会支持与学生学业成就关系的元分析:学习投入的中介作用[J]. 心理科学进展, 2023, 31(4): 552-569. |
[4] | 郭英, 田鑫, 胡东, 白书琳, 周蜀溪. 羞愧对亲社会行为影响的三水平元分析[J]. 心理科学进展, 2023, 31(3): 371-385. |
[5] | 陈必忠, 孙晓军. 中国内地大学生时间管理倾向的时代变迁:1999~2020[J]. 心理科学进展, 2022, 30(9): 1968-1980. |
[6] | 杜宇飞, 欧阳辉月, 余林. 隔代抚养与老年人抑郁水平:一项基于东西方文化背景的元分析[J]. 心理科学进展, 2022, 30(9): 1981-1992. |
[7] | 郭志华, 卢宏亮, 黄鹏, 朱霞. 经颅直流电刺激对健康人群反应抑制的影响[J]. 心理科学进展, 2022, 30(9): 2034-2052. |
[8] | 赵宁, 刘鑫, 李纾, 郑蕊. 默认选项设置的助推效果:来自元分析的证据[J]. 心理科学进展, 2022, 30(6): 1230-1241. |
[9] | 黄潇潇, 张亚利, 俞国良. 2010~2020中国内地小学生心理健康问题检出率的元分析[J]. 心理科学进展, 2022, 30(5): 953-964. |
[10] | 张亚利, 靳娟娟, 俞国良. 2010~2020中国内地初中生心理健康问题检出率的元分析[J]. 心理科学进展, 2022, 30(5): 965-977. |
[11] | 于晓琪, 张亚利, 俞国良. 2010~2020中国内地高中生心理健康问题检出率的元分析[J]. 心理科学进展, 2022, 30(5): 978-990. |
[12] | 陈雨濛, 张亚利, 俞国良. 2010~2020中国内地大学生心理健康问题检出率的元分析[J]. 心理科学进展, 2022, 30(5): 991-1004. |
[13] | 王佳燕, 蓝媛美, 李超平. 二元工作压力与员工创新关系的元分析[J]. 心理科学进展, 2022, 30(4): 761-780. |
[14] | 林新奇, 栾宇翔, 赵锴, 赵国龙. 领导风格与员工创新绩效关系的元分析:基于自我决定视角[J]. 心理科学进展, 2022, 30(4): 781-801. |
[15] | 刘俊材, 冉光明, 张琪. 不同情绪载体的神经活动及其异同——脑成像研究的ALE元分析[J]. 心理科学进展, 2022, 30(3): 536-555. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||