心理科学进展 ›› 2020, Vol. 28 ›› Issue (6): 883-892.doi: 10.3724/SP.J.1042.2020.00883
收稿日期:
2019-09-03
出版日期:
2020-06-15
发布日期:
2020-04-22
通讯作者:
陈庆荣
E-mail:jscqr80@sina.com
基金资助:
ZHANG Jingjing1, LIANG Xiaoyue2, CHEN Yidi2, CHEN Qingrong1()
Received:
2019-09-03
Online:
2020-06-15
Published:
2020-04-22
Contact:
CHEN Qingrong
E-mail:jscqr80@sina.com
摘要:
音乐和语言是人类最重要的两种交流系统。与语言一样, 音符的排列和组织也是建立在一定的句法规则之上。尽管现有研究发现听众具有感知音乐句法的能力, 音乐句法加工的认知机制以及影响因素仍不清楚。基于此, 拟深入探究预期和整合在音乐音高句法加工中的作用, 以及音乐层级结构和时间结构对音高句法加工的影响。以期进一步揭示音乐句法加工的本质, 为音乐和语言的比较以及探索人类更一般的交流机制提供实证依据。
中图分类号:
张晶晶, 梁啸岳, 陈伊笛, 陈庆荣. (2020). 音乐句法加工的认知机制与音乐结构的影响模式. 心理科学进展 , 28(6), 883-892.
ZHANG Jingjing, LIANG Xiaoyue, CHEN Yidi, CHEN Qingrong. (2020). The cognitive mechanism of music syntactic processing and the influence of music structure on its processing. Advances in Psychological Science, 28(6), 883-892.
[1] |
江俊, 王梓梦, 万璇, 蒋存梅 . (2014). 音乐时间加工的影响因素. 心理科学进展, 22(4), 650-658.
doi: 10.3724/SP.J.1042.2014.00650 URL |
[2] | 马谐, 杨玉芳, 张秋月 . (2016). 音乐句法的加工. 科学通报, 61(10), 1099-1111. |
[3] | 叶铮, 周晓林 . (2006). 音乐之脑. 心理科学进展, 14(5), 641-647. |
[4] | 张晶晶, 杨玉芳 . (2017). 音乐句法加工的影响因素. 心理科学进展, 25(11), 1823-1830. |
[5] | 周临舒, 蒋存梅, 杨玉芳 . (2012). 音乐和语言句法认知的比较. 科学通报, 57(28), 2674-2685. |
[6] |
Arai, M., & Keller, F . (2013). The use of verb-specific information for prediction in sentence processing. Language and Cognitive Processes, 28(4), 525-560.
doi: 10.1080/01690965.2012.658072 URL |
[7] |
Bengtsson, S. L., & Ullén, F . (2006). Dissociation between melodic and rhythmic processing during piano performance from musical scores. NeuroImage, 30(1), 272-284.
doi: 10.1016/j.neuroimage.2005.09.019 URL |
[8] | Bharucha, J. J., & Stoeckig, K . (1987). Priming of chords: Spreading activation or overlapping frequency spectra? Perception & Psychophysics, 41(6), 519-524. |
[9] | Bigand, E., & Pineau, M . (1997). Global context effects on musical expectancy. Perception & Psychophysics, 59(7), 1098-1107. |
[10] | Bigand, E., Tillmann, B., Poulin, B., D'Adamo, D. A., & Madurell, F . (2001). The effect of harmonic context on phoneme monitoring in vocal music. Cognition, 81(1), B11-B20. |
[11] | Brown, R. M., Chen, J. L., Hollinger, A., Penhune, V. B., Palmer, C., & Zatorre, R. J . (2013). Repetition suppression in auditory-motor regions to pitch and temporal structure in music. Journal of Cognitive Neuroscience, 25(2), 313-328. |
[12] | Carey, D., Rosen, S., Krishnan, S., Pearce, M. T., Shepherd, A., Aydelott, J., & Dick, F . (2015). Generality and specificity in the effects of musical expertise on perception and cognition. Cognition, 137, 81-105. |
[13] |
Chen, Q., Zhang, J., Xu, X., Scheepers, C., Yang, Y., & Tanenhaus, M. K . (2016). Prosodic expectations in silent reading: ERP evidence from rhyme scheme and semantic congruence in classic Chinese poems. Cognition, 154, 11-21.
doi: 10.1016/j.cognition.2016.05.007 URL |
[14] | Christiansen, M. H., & Chater, N . (2016). The now-or-never bottleneck: A fundamental constraint on language. Behavioral and Brain Sciences, 39, 1-72. |
[15] |
DeLong, K. A., Urbach, T. P., & Kutas, M . (2005). Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. Nature Neuroscience, 8(8), 1117-1121.
doi: 10.1038/nn1504 URL |
[16] |
Du, Y., & Zatorre, R. J . (2017). Musical training sharpens and bonds ears and tongue to hear speech better. Proceedings of the National Academy of Sciences, 114(51), 13579-13584.
doi: 10.1073/pnas.1712223114 URL |
[17] |
Eitan, Z., & Granot, R. Y . (2008). Growing oranges on Mozart's apple tree: "Inner form" and aesthetic judgment. Music Perception, 25(5), 397-418.
doi: 10.1525/mp.2008.25.issue-5 URL |
[18] | Farbood, M. M., Heeger, D. J., Marcus, G., Hasson, U., & Lerner, Y . (2015). The neural processing of hierarchical structure in music and speech at different timescales. Frontiers in Neuroscience, 9, 157. |
[19] | Fitch, W. T . (2013). Rhythmic cognition in humans and animals: Distinguishing meter and pulse perception. Frontiers in systems neuroscience, 7, 68. |
[20] | Friston, K., & Buzsáki, G . (2016). The functional anatomy of time: What and when in the brain. Trends in Cognitive Sciences, 20(7), 500-511. |
[21] |
Geiser, E., Ziegler, E., Jancke, L., & Meyer, M . (2009). Early electrophysiological correlates of meter and rhythm processing in music perception. Cortex, 45(1), 93-102.
doi: 10.1016/j.cortex.2007.09.010 URL |
[22] |
Granot, R. Y., & Jacoby, N . (2011). Musically puzzling I: Sensitivity to overall structure in the sonata form? Musicae Scientiae, 15(3), 365-386.
doi: 10.1177/1029864911409508 URL |
[23] | Hasson, U., Chen, J., & Honey, C. J . (2015). Hierarchical process memory: Memory as an integral component of information processing. Trends in Cognitive Sciences, 19(6), 304-313. |
[24] | Huron, D. B . (2006). Sweet anticipation: Music and the psychology of expectation. Cambridge, MA: MIT press. |
[25] |
Ito, A., Corley, M., Pickering, M. J., Martin, A. E., & Nieuwland, M. S . (2016). Predicting form and meaning: Evidence from brain potentials. Journal of Memory and Language, 86, 157-171.
doi: 10.1016/j.jml.2015.10.007 URL |
[26] |
Ito, A., Pickering, M. J., & Corley, M . (2018). Investigating the time-course of phonological prediction in native and non-native speakers of English: A visual world eye-t racking study. Journal of Memory and Language, 98, 1-11.
doi: 10.1016/j.jml.2017.09.002 URL |
[27] |
Jentschke, S., Friederici, A. D., & Koelsch, S . (2014). Neural correlates of music-syntactic processing in two-year old children. Developmental Cognitive Neuroscience, 9, 200-208.
doi: 10.1016/j.dcn.2014.04.005 URL |
[28] | Jones, M. R., & Boltz, M . (1989). Dynamic attending and responses to time. Psychological Review, 96(3), 459-491. |
[29] | Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J . (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13(4), 313-319. |
[30] | Kamide, Y . (2012). Learning individual talkers’ structural preferences. Cognition, 124(1), 66-71. |
[31] |
Kintsch, W . (1988). The role of knowledge in discourse comprehension: A construction-integration model. Psychological Review, 95(2), 163-182.
doi: 10.1037/0033-295X.95.2.163 URL |
[32] |
Koelsch, S . (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), 170-180.
doi: 10.1038/nrn3666 URL |
[33] |
Koelsch, S., Gunter, T., Friederici, A. D., & Schröger, E . (2000). Brain indices of music processing: “nonmusicians” are musical. Journal of Cognitive Neuroscience, 12(3), 520-541.
doi: 10.1162/089892900562183 URL |
[34] |
Koelsch, S., Jentschke, S., Sammler, D., & Mietchen, D . (2007). Untangling syntactic and sensory processing: An ERP study of music perception. Psychophysiology, 44(3), 476-490.
doi: 10.1111/psyp.2007.44.issue-3 URL |
[35] |
Koelsch, S., Rohrmeier, M., Torrecuso, R., & Jentschke, S . (2013). Processing of hierarchical syntactic structure in music. Proceedings of the National Academy of Sciences, 110(38), 15443-15448.
doi: 10.1073/pnas.1300272110 URL |
[36] |
Koelsch, S., Schmidt, B.-H., & Kansok, J . (2002). Effects of musical expertise on the early right anterior negativity: An event-related brain potential study. Psychophysiology, 39(5), 657-663.
doi: 10.1111/psyp.2002.39.issue-5 URL |
[37] |
Koelsch, S., Vuust, P., & Friston, K . (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 63-77.
doi: 10.1016/j.tics.2018.10.006 URL |
[38] |
Kuperberg, G. R., & Jaeger, T. F . (2016). What do we mean by prediction in language comprehension? Language, Cognition and Neuroscience, 31(1), 32-59.
doi: 10.1080/23273798.2015.1102299 URL |
[39] |
Lagrois, M.-É., Peretz, I., & Zendel, B. R . (2018). Neurophysiological and behavioral differences between older and younger adults when processing violations of tonal structure in music. Frontiers in Neuroscience, 12, 54.
doi: 10.3389/fnins.2018.00054 URL |
[40] |
Lau, E., Stroud, C., Plesch, S., & Phillips, C . (2006). The role of structural prediction in rapid syntactic analysis. Brain and language, 98(1), 74-88.
doi: 10.1016/j.bandl.2006.02.003 URL |
[41] |
Lebrun-Guillaud, G., Tillmann, B., & Justus, T . (2008). Perception of tonal and temporal structures in chord sequences by patients with cerebellar damage. Music Perception, 25(4), 271-283.
doi: 10.1525/mp.2008.25.4.271 URL |
[42] | Lerdahl, F., & Jackendoff, R. S . (1983). A generative theory of tonal music. Cambridge, MA: MIT press. |
[43] |
Lerner, Y., Honey, C. J., Silbert, L. J., & Hasson, U . (2011). Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. Journal of Neuroscience, 31(8), 2906-2915.
doi: 10.1523/JNEUROSCI.3684-10.2011 URL |
[44] |
Li, X., Zhang, Y., Xia, J., & Swaab, T. Y . (2017). Internal mechanisms underlying anticipatory language processing: Evidence from event-related-potentials and neural oscillations. Neuropsychologia, 102, 70-81.
doi: 10.1016/j.neuropsychologia.2017.05.017 URL |
[45] |
Ma, X., Ding, N., Tao, Y., & Yang, Y. F . (2018a). Differences in neurocognitive mechanisms underlying the processing of center-embedded and non-embedded musical structures. Frontiers in Human Neuroscience, 12, 425.
doi: 10.3389/fnhum.2018.00425 URL |
[46] |
Ma, X., Ding, N., Tao, Y., & Yang, Y. F . (2018b). Syntactic complexity and musical proficiency modulate neural processing of non-native music. Neuropsychologia, 121, 164-174.
doi: 10.1016/j.neuropsychologia.2018.10.005 URL |
[47] |
Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D . (2001). Musical syntax is processed in Broca's area: An MEG study. Nature Neuroscience, 4(5), 540-545.
doi: 10.1038/87502 URL |
[48] | Maess, B., Mamashli, F., Obleser, J., Helle, L., & Friederici, A. D . (2016). Prediction signatures in the brain: Semantic pre-activation during language comprehension. Frontiers in Human Neuroscience, 10, 591. |
[49] |
Margulis, E. H . (2005). A model of melodic expectation. Music Perception, 22(4), 663-714.
doi: 10.1525/mp.2005.22.4.663 URL |
[50] | Meyer, L. B. (2008). Emotion and meaning in music. Chicago, IL: University of chicago Press. |
[51] |
Müller, M., Höfel, L., Brattico, E., & Jacobsen, T . (2010). Aesthetic judgments of music in experts and laypersons— An ERP study. International Journal of Psychophysiology, 76(1), 40-51.
doi: 10.1016/j.ijpsycho.2010.02.002 URL |
[52] |
Nan, Y., Liu, L., Geiser, E., Shu, H., Gong, C. C., Dong, Q., ... & Desimone, R . (2018). Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children. Proceedings of the National Academy of Sciences, 115(28), E6630-E6639.
doi: 10.1073/pnas.1808412115 URL |
[53] |
Otten, M., Nieuwland, M. S., & van Berkum, J. J . (2007). Great expectations: Specific lexical anticipation influences the processing of spoken language. BMC neuroscience, 8(1), 89.
doi: 10.1186/1471-2202-8-89 URL |
[54] |
Otten, M., & van Berkum, J. J . (2008). Discourse-based word anticipation during language processing: Prediction or priming? Discourse Processes, 45(6), 464-496.
doi: 10.1080/01638530802356463 URL |
[55] |
Palmer, C., & Krumhansl, C. L . (1987). Independent temporal and pitch structures in determination of musical phrases. Journal of Experimental Psychology: Human Perception and Performance, 13(1), 116-126.
doi: 10.1037/0096-1523.13.1.116 URL |
[56] | Patel, A. D . (2010). Music, language, and the brain. Oxford: Oxford university press. |
[57] | Patel, A. D., Gibson, E., Ratner, J., Besson, M., & Holcomb, P. J . (1998). Processing syntactic relations in language and music: An event-related potential study. Journal of Cognitive Neuroscience, 10(6), 717-733. |
[58] | Peretz, I . (1990). Processing of local and global musical information by unilateral brain-damaged patients. Brain, 113(4), 1185-1205. |
[59] | Peretz, I . (1996). Can we lose memory for music? A case of music agnosia in a nonmusician. Journal of Cognitive Neuroscience, 8(6), 481-496. |
[60] |
Peretz, I., & Coltheart, M . (2003). Modularity of music processing. Nature Neuroscience, 6(7), 688-691.
doi: 10.1038/nn1083 URL |
[61] | Peretz, I., & Kolinsky, R . (1993). Boundaries of separability between melody and rhythm in music discrimination: A neuropsychological perspective. The Quarterly Journal of Experimental Psychology, 46(2), 301-325. |
[62] |
Poulin-Charronnat, B., Bigand, E., & Koelsch, S . (2006). Processing of musical syntax tonic versus subdominant: An event-related potential study. Journal of Cognitive Neuroscience, 18(9), 1545-1554.
doi: 10.1162/jocn.2006.18.9.1545 URL |
[63] | Ruiz, M. H., Koelsch, S., & Bhattacharya, J . (2009). Decrease in early right alpha band phase synchronization and late gamma band oscillations in processing syntax in music. Human Brain Mapping, 30(4), 1207-1225. |
[64] | Schmuckler, M. A., & Boltz, M. G . (1994). Harmonic and rhythmic influences on musical expectancy. Perception & Psychophysics, 56(3), 313-325. |
[65] |
Sun, L., Liu, F., Zhou, L., & Jiang, C . (2018). Musical training modulates the early but not the late stage of rhythmic syntactic processing. Psychophysiology, 55(2), e12983.
doi: 10.1111/psyp.2018.55.issue-2 URL |
[66] |
Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C . (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268(5217), 1632-1634.
doi: 10.1126/science.7777863 URL |
[67] | Tillmann, B., & Bigand, E . (1998). Influence of global structure on musical target detection and recognition. International Journal of Psychology, 33(2), 107-122. |
[68] |
Tillmann, B., Bigand, E., & Pineau, M . (1998). Effects of global and local contexts on harmonic expectancy. Music Perception, 16(1), 99-117.
doi: 10.2307/40285780 URL |
[69] |
Tillmann, B., Janata, P., & Bharucha, J. J . (2003). Activation of the inferior frontal cortex in musical priming. Cognitive Brain Research, 16(2), 145-161.
doi: 10.1016/S0926-6410(02)00245-8 URL |
[70] |
Tillmann, B., & Lebrun-Guillaud, G . (2006). Influence of tonal and temporal expectations on chord processing and on completion judgments of chord sequences. Psychological Research, 70(5), 345-358.
doi: 10.1007/s00426-005-0222-0 URL |
[71] | Treisman, A. M., & Gelade, G . (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97-136. |
[72] | van Berkum,, J. J. A., Brown, C. M., Zwitserlood, P., Kooijman, V., & Hagoort, P . (2005). Anticipating upcoming words in discourse: Evidence from ERPs and reading times. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(3), 443-467. |
[73] |
van Petten, C., & Luka, B. J . (2012). Prediction during language comprehension: Benefits, costs, and ERP components. International Journal of Psychophysiology, 83(2), 176-190.
doi: 10.1016/j.ijpsycho.2011.09.015 URL |
[74] |
Zhang, J., Che, X., & Yang, Y . (2019). Event-related brain potentials suggest a late interaction of pitch and time in music perception. Neuropsychologia, 132, 107118.
doi: 10.1016/j.neuropsychologia.2019.107118 URL |
[75] |
Zhang, J., Jiang, C., Zhou, L., & Yang, Y . (2016). Perception of hierarchical boundaries in music and its modulation by expertise. Neuropsychologia, 91, 490-498.
doi: 10.1016/j.neuropsychologia.2016.09.013 URL |
[76] | Zhang, J., Zhou, X., Chang, R., & Yang, Y . (2018). Effects of global and local contexts on chord processing: An ERP study. Neuropsychologia, 109, 149-154. |
[77] | Zhou, L., Liu, F., Jiang, J., Jiang, H., & Jiang, C . (2019). Abnormal neural responses to harmonic syntactic structures in congenital amusia. Psychophysiology, e13394. |
[1] | 王勇丽, 葛胜男, Lancy Lantin Huang, 万勤, 卢海丹. 言语想象的神经机制[J]. 心理科学进展, 2023, 31(4): 608-621. |
[2] | 孔祥祯, 张凤翔, 蒲艺. 空间导航的脑网络基础和调控机制[J]. 心理科学进展, 2023, 31(3): 330-337. |
[3] | 张明霞, 李雨欣, 李瑾, 刘勋. 内外动机对青少年记忆的影响及其神经机制[J]. 心理科学进展, 2023, 31(1): 1-9. |
[4] | 王松雪, 程思, 蒋挺, 刘勋, 张明霞. 外在奖赏对陈述性记忆的影响[J]. 心理科学进展, 2023, 31(1): 78-86. |
[5] | 邹迪, 李红, 王福顺. 唤醒定义探析及其认知神经生理基础[J]. 心理科学进展, 2022, 30(9): 2020-2033. |
[6] | 邓尧, 王梦梦, 饶恒毅. 风险决策研究中的仿真气球冒险任务[J]. 心理科学进展, 2022, 30(6): 1377-1392. |
[7] | 李亮, 李红. 人们为什么会羞怯:认知机制及神经基础[J]. 心理科学进展, 2022, 30(5): 1038-1049. |
[8] | 张航, 孟乐, 张积家. 为什么和声能诱发音乐情感?——音乐协和性的作用及其认知机制[J]. 心理科学进展, 2022, 30(4): 817-833. |
[9] | 武晓菲, 肖风, 罗劲. 创造性认知重评在情绪调节中的迁移效应及其神经基础[J]. 心理科学进展, 2022, 30(3): 477-485. |
[10] | 张琳琳, 魏坤琳, 李晶. 儿童的人际运动同步[J]. 心理科学进展, 2022, 30(3): 623-634. |
[11] | 章丽娜, 宣宾. 语言产生中词频效应老化的神经基础与时间进程[J]. 心理科学进展, 2022, 30(2): 333-342. |
[12] | 李何慧, 黄慧雅, 董琳, 罗跃嘉, 陶伍海. 发展性阅读障碍与小脑异常:小脑的功能和两者的因果关系[J]. 心理科学进展, 2022, 30(2): 343-353. |
[13] | 胡佳宝, 雷扬, 定险峰, 程晓荣, 范炤. 大众与个人审美品位的认知与神经机制[J]. 心理科学进展, 2022, 30(2): 354-364. |
[14] | 陈群林, 丁珂. 发散思维的序列位置效应:创新想法动态产生机制的新视角[J]. 心理科学进展, 2022, 30(11): 2507-2517. |
[15] | 黄建平, 许婧娴, 宛小昂. 联想学习对消费行为的影响:基于产品搜索经验的视角[J]. 心理科学进展, 2022, 30(11): 2414-2423. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||