心理科学进展 ›› 2023, Vol. 31 ›› Issue (2): 173-195.doi: 10.3724/SP.J.1042.2023.00173
收稿日期:
2021-12-16
出版日期:
2023-02-15
发布日期:
2022-11-10
通讯作者:
丁玉珑
E-mail:dingyulong@m.scnu.edu.cn
基金资助:
CHEN Xinwen, LI Hongjie, DING Yulong()
Received:
2021-12-16
Online:
2023-02-15
Published:
2022-11-10
Contact:
DING Yulong
E-mail:dingyulong@m.scnu.edu.cn
摘要:
探究不同心智活动下的神经表征差异, 是认知神经科学关注的核心问题之一。早期的脑电/脑磁分析方法主要关注组平均后的神经响应水平, 这要求在关注的时间进程上, 各个被试在相同刺激条件下事件相关电位/事件相关磁场的振幅大小和方向、以及地形图分布和极性均要有较高的一致性。近些年来, 研究者们将功能性磁共振成像研究中常用到的两种技术——机器学习中的分类算法(即基于分类的解码)和表征相似性分析——引入到了脑电/脑磁数据分析中。这两种新技术可以克服传统脑电/脑磁数据基于具体电压/磁感应强度波形平均分析的缺点, 具有在个体水平上探究神经表征编码的特点, 为人们探究大脑在不同时间进程上如何对特定的神经表征信息进行动态编码提供了新的思路。两种技术基于不同的方法学原理来抽提个体间一致的脑认知加工机制, 还为脑电/脑磁研究开展跨时域、跨任务、跨模态、跨群体比较不同认知过程中的表征差异提供了更多新颖的途径。我们首先通过与传统的脑电/脑磁分析方法进行比较, 系统性介绍了基于分类的解码和表征相似性分析的原理和操作流程, 之后对两种方法的应用场景进行了梳理, 并在最后对未来可供研究的方向提出了我们的见解。
中图分类号:
陈新文, 李鸿杰, 丁玉珑. (2023). 探究事件相关脑电/脑磁信号中的神经表征模式:基于分类解码和表征相似性分析的方法. 心理科学进展 , 31(2), 173-195.
CHEN Xinwen, LI Hongjie, DING Yulong. (2023). Exploring the neural representation patterns in event-related EEG/MEG signals: The methods based on classification decoding and representation similarity analysis. Advances in Psychological Science, 31(2), 173-195.
图1 传统ERP研究示例。(A)假设在某一特定通道上对不同条件诱发的ERPs成分进行分析, 能够观测到不同的被试在不同刺激条件间均存在明显的ERPs差异, 这提示了两种刺激可能具有不同的神经表征, 使得每名被试都能区分这两种刺激。由于受到个体差异的影响, 不同被试在刺激条件间的ERPs差异方向可能是不一致的, 这将导致在对所有被试的数据进行组平均处理后, 可能会使得研究者不能从组平均ERPs上区分两种刺激, 从而做出两种刺激具有相似神经表征的错误推论。(B)由于被试间存在着个体差异, 假设对于相同的刺激条件, 在某一时刻下不同的被试均能诱发出较为明显的大脑活动模式, 但在不同的通道上激活水平的极性不同, 可能使得不同被试的地形图映射情况差别很大, 导致人们同样可能对所有被试进行组平均后得到的结果做出错误的解释。
图2 以不同的刺激类型为例, (A)不同刺激信息的神经表征不同, 具体在神经表征空间中会表现出同类刺激信息相聚、异类刺激信息相离的特点。(B)当大脑未对特定刺激信息进行编码的情况下, 神经表征将处于随机不可分的状态。(C)解码分析可以使用决策边界对不同类型的刺激进行区分。(D)RSA通过计算不同刺激之间的距离来说明它们之间的相似程度。
图3 以基于时域ERP信号进行的解码分析(可以对特定时间点的单个通道或多个通道数据进行解码)为例, 在每个时间点上对ERPs/ERMFs数据进行解码, 能够得到一条随着时间变化的解码正确率曲线, 从而可以在时间进程上探究神经表征信息的动态编码情况。由于解码分析只关注不同的刺激条件之间是否存在着差异, 而不关心这个差异的振幅极性和地形分布等具体信息, 相比于图1A的情况, 此处不仅保留了每名被试对不同刺激条件的区分情况, 且他们在时程上的一致性可以在平均结果中保留。
图4 RSA方法示意图。(A)根据不同个体的神经活动、行为表现、类别属性等来对不同刺激条件之间的差异进行量化, 得到的不相似度可以记录在RDM中(此处神经RDM的数据来源为某时间点的EEG数据, 不相似度以1-相似度(刺激M, 刺激N) 来计算; 行为RDM的数据来源为行为评分, 不相似度以相对距离(刺激M, 刺激N)来计算; 具体算法以及其它评估方式见4.2.1节)。由于个体差异的存在, 对于一组刺激以及这组刺激内不同刺激条件之间的差异, 在不同被试的神经活动和行为表现上可能是不一样的; 如果被试内部对不同刺激条件的加工存在稳定的规律, 那么通过计算得到的RDM在个体之间可能是类似的。(B)对于EEG/MEG数据, 可以在每个时间点上计算不同刺激条件之间的不相似度并构建对应的神经RDM, 再分别与其它来源的RDM进行比较得到相似度曲线。例如, 本图显示在刺激呈现约200 ms后出现了区分动植物类别概念的神经表征, 这种分类机制在不同个体之间是一致的(尽管具体的神经表征活动模式在不同被试间可能存在较大差异)。将构建的模型RDM与逐时间点构建的神经RDMs进行比较, 可以在一定程度上说明根据理论假设构建的模型能够在什么时程上对不同刺激类型之间的差异做出解释。
图5 解码分析流程示意图。(A)采用标准的EEG/MEG记录方法对呈现不同类型刺激信息时被试的大脑活动信号进行采集。由于每种类型的刺激都与一种特定的大脑活动模式有关, 因此可以寻找大脑与不同刺激条件之间的神经相关性。(B)解码分析的基本模型。将已有数据划分为训练集和测试集(其中色块表示用于解码分析的特征信息), 使用已标记训练标签的数据来训练分类器, 并使用测试集对训练好的分类器进行测试; 通过计算分类模型预测的结果和真实结果之间的差异, 便可以得到用于评估分类性能的解码正确率。
图6 基于解码分析的衍生方法示意图。(A)利用时间泛化方法能够直观地在时间跨度上对刺激呈现后相应的神经表征稳定性进行观察。其中, 对角线为常规逐时间点解码分析的结果, 非对角线为信息编码模式随时间变化的情况。(B)原始权重投影如左图, 由于直接使用各个通道的原始权重值不利于对解码信息的来源做出合理的解释, 因此需要使用Haufe等人(2014)提供的方法对原始特征权重进行变换。如右图所示, 变换后的权重投影解释性更强, 体现为枕区对于区分不同条件的贡献最大。(C)采用探照灯分析能够在时间、频率、通道维度上对感兴趣的多变量效应进行研究。如左图、中图所示, 当以某一时间点、频率或者通道为中心, 联合该中心邻域内的其它信息共同构建分类特征, 可以帮助人们从时间、功率、空间上探索特定频率下在不同时刻每个通道对分类结果的贡献情况, 其结果如右图所示。
图7 (A)RDM的来源广泛, 它可以在一个公共的表征空间内桥接不同类型的数据, 如, 跨类别的数据(左上):根据数据来源的不同, 可以从脑活动记录、行为测量、计算建模甚至人工神经网络(artificial neural networks, ANN)中获得的数据来构建对应的神经RDM、行为RDM、模型RDM; 跨模态的数据(右上):根据神经活动记录方式(如fMRI、fNIRS、EEG和MEG等)的不同, 可以构建不同特点的神经RDM; 跨群体的数据(左下):构建RDM的数据可以从正常人群(年轻人、婴幼儿、老年人)、疾病人群(孤独症、阿尔兹海默症等)甚至非人类物种(小白鼠、猴子等)这些不同类别的群体中获取; 跨脑区的数据(右下):还可以根据研究者所关注的问题来构建不同脑区所对应的神经RDM。(B)将逐时间点构建的EEG/MEG n-RDMs与其它来源的RDM进行比较, 可以根据RDM的来源在时程上从不同的角度对刺激条件之间的神经表征相似性进行探讨。例如, 将不同刺激条件下根据人类EEG活动构建的逐时间点n-RDMs分别与根据行为表现和猴子特定脑区BOLD响应信号构建的b-RDM、fMRI n-RDM进行比较, 能够得到(C)所示的相似度曲线, 可以直观地展现神经活动与行为表现之间的一致性, 以及不同物种之间对于相同刺激信息编码的一致性。
[1] |
Alilović J., Timmermans B., Reteig L. C., van Gaal S., & Slagter H. A. (2019). No evidence that predictions and attention modulate the first feedforward sweep of cortical information processing. Cerebral Cortex, 29(5), 2261-2278.
doi: 10.1093/cercor/bhz038 URL |
[2] |
Allefeld C., Görgen K., & Haynes J. D. (2016). Valid population inference for information-based imaging: From the second-level t-test to prevalence inference. Neuroimage, 141, 378-392.
doi: S1053-8119(16)30347-0 pmid: 27450073 |
[3] |
Bae G. Y., & Luck S. J. (2018). Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained potentials. Journal of Neuroscience, 38(2), 409-422.
doi: 10.1523/JNEUROSCI.2860-17.2017 URL |
[4] |
Bae G. Y., & Luck S. J. (2019b). Decoding motion direction using the topography of sustained ERPs and alpha oscillations. NeuroImage, 184, 242-255.
doi: 10.1016/j.neuroimage.2018.09.029 URL |
[5] |
Bae G. Y., & Luck S. J. (2019a). Reactivation of previous experiences in a working memory task. Psychological Science, 30(4), 587-595.
doi: 10.1177/0956797619830398 URL |
[6] | Barchiesi G., Demarchi G., Wilhelm F. H., Hauswald A., Sanchez G., & Weisz N. (2020). Head magnetomyography (hMMG): A novel approach to monitor face and whole head muscular activity. Psychophysiology, 57(3), e13507. |
[7] | Benjamini Y., & Yekutieli D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29(4), 1165-1188. |
[8] |
Blom T., Feuerriegel D., Johnson P., Bode S., & Hogendoorn H. (2020). Predictions drive neural representations of visual events ahead of incoming sensory information. Proceedings of the National Academy of Sciences, 117(13), 7510-7515.
doi: 10.1073/pnas.1917777117 URL |
[9] |
Bode S., Feuerriegel D., Bennett D., & Alday P. M. (2019). The Decision Decoding ToolBOX (DDTBOX)-A multivariate pattern analysis toolbox for event-related potentials. Neuroinformatics, 17(1), 27-42.
doi: 10.1007/s12021-018-9375-z URL |
[10] | Carlson T. A., Grootswagers T., & Robinson A. K. (2019). An introduction to time-resolved decoding analysis for M/EEG. arXiv preprint arXiv:1905.04820. |
[11] | Carlson T. A., Hogendoorn H., Kanai R., Mesik J., & Turret J. (2011). High temporal resolution decoding of object position and category. Journal of Vision, 11(10), 9. |
[12] | Carlson T. A., Tovar D. A., Alink A., & Kriegeskorte N. (2013). Representational dynamics of object vision: The first 1000 ms. Journal of Vision, 13(10), 1. |
[13] |
Charles L., King J. R., & Dehaene S. (2014). Decoding the dynamics of action, intention, and error detection for conscious and subliminal stimuli. Journal of Neuroscience, 34(4), 1158-1170.
doi: 10.1523/JNEUROSCI.2465-13.2014 pmid: 24453309 |
[14] |
Cichy R. M., Khosla A., Pantazis D., & Oliva A. (2017). Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks. NeuroImage, 153, 346-358.
doi: S1053-8119(16)30007-6 pmid: 27039703 |
[15] |
Cichy R. M., Khosla A., Pantazis D., Torralba A., & Oliva A. (2016). Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Scientific Reports, 6(1), 1-13.
doi: 10.1038/s41598-016-0001-8 URL |
[16] | Cichy R. M., Kriegeskorte N., Jozwik K. M., van den Bosch J. J., & Charest I. (2017). Neural dynamics of real-world object vision that guide behaviour. bioRxiv, 147298. |
[17] |
Cichy R. M., & Pantazis D. (2017). Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space. NeuroImage, 158, 441-454.
doi: S1053-8119(17)30591-8 pmid: 28716718 |
[18] |
Cichy R. M., Pantazis D., & Oliva A. (2014). Resolving human object recognition in space and time. Nature Neuroscience, 17(3), 455-462.
doi: 10.1038/nn.3635 pmid: 24464044 |
[19] |
Cichy R. M., Pantazis D., & Oliva A. (2016). Similarity- based fusion of MEG and fMRI reveals spatio-temporal dynamics in human cortex during visual object recognition. Cerebral Cortex, 26(8), 3563-3579.
doi: 10.1093/cercor/bhw135 URL |
[20] |
Collins E., Robinson A. K., & Behrmann M. (2018). Distinct neural processes for the perception of familiar versus unfamiliar faces along the visual hierarchy revealed by EEG. NeuroImage, 181, 120-131.
doi: S1053-8119(18)30587-1 pmid: 29966716 |
[21] |
Contini E. W., Wardle S. G., & Carlson T. A. (2017). Decoding the time-course of object recognition in the human brain: From visual features to categorical decisions. Neuropsychologia, 105, 165-176.
doi: S0028-3932(17)30059-3 pmid: 28215698 |
[22] |
Correia J. M., Jansma B., Hausfeld L., Kikkert S., & Bonte M. (2015). EEG decoding of spoken words in bilingual listeners: From words to language invariant semantic- conceptual representations. Frontiers in Psychology, 6, 71.
doi: 10.3389/fpsyg.2015.00071 pmid: 25705197 |
[23] |
Cox D. D., & Savoy R. L. (2003). Functional magnetic resonance imaging (fMRI)“brain reading”: Detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage, 19(2), 261-270.
doi: 10.1016/S1053-8119(03)00049-1 URL |
[24] |
Croce P., Zappasodi F., Marzetti L., Merla A., Pizzella V., & Chiarelli A. M. (2018). Deep Convolutional Neural Networks for feature-less automatic classification of Independent Components in multi-channel electrophysiological brain recordings. IEEE Transactions on Biomedical Engineering, 66(8), 2372-2380.
doi: 10.1109/TBME.2018.2889512 URL |
[25] |
Crosse M. J., di Liberto G. M., Bednar A., & Lalor E. C. (2016). The multivariate temporal response function (mTRF) toolbox: A MATLAB toolbox for relating neural signals to continuous stimuli. Frontiers in Human Neuroscience, 10, 604.
pmid: 27965557 |
[26] |
de Martino F., Valente G., Staeren N., Ashburner J., Goebel R., & Formisano E. (2008). Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. Neuroimage, 43(1), 44-58.
doi: 10.1016/j.neuroimage.2008.06.037 pmid: 18672070 |
[27] |
Dienes Z. (2016). How Bayes factors change scientific practice. Journal of Mathematical Psychology, 72, 78-89.
doi: 10.1016/j.jmp.2015.10.003 URL |
[28] | Dijkstra N., Mostert P., de Lange F. P., Bosch S., & van Gerven M. A. (2018). Differential temporal dynamics during visual imagery and perception. Elife, 7, e33904. |
[29] |
Ding Y., Martinez A., Qu Z., & Hillyard S. A. (2014). Earliest stages of visual cortical processing are not modified by attentional load. Human Brain Mapping, 35(7), 3008-3024.
pmid: 25050422 |
[30] |
Dobs K., Isik L., Pantazis D., & Kanwisher N. (2019). How face perception unfolds over time. Nature Communications, 10(1), 1-10.
doi: 10.1038/s41467-018-07882-8 URL |
[31] |
Dumoulin S. O., & Wandell B. A. (2008). Population receptive field estimates in human visual cortex. Neuroimage, 39(2), 647-660.
doi: 10.1016/j.neuroimage.2007.09.034 pmid: 17977024 |
[32] |
Fahrenfort J. J., Grubert A., Olivers C. N., & Eimer M. (2017). Multivariate EEG analyses support high-resolution tracking of feature-based attentional selection. Scientific Reports, 7(1), 1-15.
doi: 10.1038/s41598-016-0028-x URL |
[33] |
Fahrenfort J. J., van Driel J., van Gaal S., & Olivers C. N. (2018). From ERPs to MVPA using the Amsterdam decoding and modeling toolbox (ADAM). Frontiers in Neuroscience, 12, 368.
doi: 10.3389/fnins.2018.00368 pmid: 30018529 |
[34] |
Fahrenfort J. J., van Leeuwen J., Olivers C. N., & Hogendoorn H. (2017). Perceptual integration without conscious access. Proceedings of the National Academy of Sciences, 114(14), 3744-3749.
doi: 10.1073/pnas.1617268114 URL |
[35] |
Freund M. C., Etzel J. A., & Braver T. S. (2021). Neural coding of cognitive control: The representational similarity analysis approach. Trends in Cognitive Sciences, 25(7), 622-638.
doi: 10.1016/j.tics.2021.03.011 pmid: 33895065 |
[36] |
Furl N., Lohse M., & Pizzorni-Ferrarese F. (2017). Low-frequency oscillations employ a general coding of the spatio-temporal similarity of dynamic faces. Neuroimage, 157, 486-499.
doi: S1053-8119(17)30492-5 pmid: 28619657 |
[37] |
Giari G., Leonardelli E., Tao Y., Machado M., & Fairhall S. L. (2020). Spatiotemporal properties of the neural representation of conceptual content for words and pictures-An MEG study. Neuroimage, 219, 116913.
doi: 10.1016/j.neuroimage.2020.116913 URL |
[38] |
Gramfort A., Luessi M., Larson E., Engemann D. A., Strohmeier D., Brodbeck C.,... Hämäläinen M. (2013). MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7, 267.
doi: 10.3389/fnins.2013.00267 pmid: 24431986 |
[39] | Greene M. R., & Hansen B. C. (2018). Shared spatiotemporal category representations in biological and artificial deep neural networks. PLoS Computational Biology, 14(7), e1006327. |
[40] |
Grootswagers T., Robinson A. K., & Carlson T. A. (2019). The representational dynamics of visual objects in rapid serial visual processing streams. NeuroImage, 188, 668-679.
doi: S1053-8119(18)32190-6 pmid: 30593903 |
[41] |
Grootswagers T., Wardle S. G., & Carlson T. A. (2017). Decoding dynamic brain patterns from evoked responses: A tutorial on multivariate pattern analysis applied to time series neuroimaging data. Journal of Cognitive Neuroscience, 29(4), 677-697.
doi: 10.1162/jocn_a_01068 pmid: 27779910 |
[42] |
Guggenmos M., Sterzer P., & Cichy R. M. (2018). Multivariate pattern analysis for MEG: A comparison of dissimilarity measures. NeuroImage, 173, 434-447.
doi: S1053-8119(18)30141-1 pmid: 29499313 |
[43] |
Güven A., Altınkaynak M., Dolu N., İzzetoğlu M., Pektaş F., Özmen S.,... Batbat T. (2020). Combining functional near-infrared spectroscopy and EEG measurements for the diagnosis of attention-deficit hyperactivity disorder. Neural Computing and Applications, 32(12), 8367-8380.
doi: 10.1007/s00521-019-04294-7 URL |
[44] |
Hanke M., Halchenko Y. O., Sederberg P. B., Olivetti E., Fründ I., Rieger J. W.,... Pollmann S. (2009). PyMVPA: A unifying approach to the analysis of neuroscientific data. Frontiers in Neuroinformatics, 3, 3.
doi: 10.3389/neuro.11.003.2009 pmid: 19212459 |
[45] |
Haufe S., Meinecke F., Görgen K., Dähne S., Haynes J. D., Blankertz B., & Bießmann F. (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage, 87, 96-110.
doi: 10.1016/j.neuroimage.2013.10.067 pmid: 24239590 |
[46] |
Haxby J. V., Connolly A. C., & Guntupalli J. S. (2014). Decoding neural representational spaces using multivariate pattern analysis. Annual Review of Neuroscience, 37(1), 435-456.
doi: 10.1146/annurev-neuro-062012-170325 URL |
[47] |
Haynes J. D. (2015). A primer on pattern-based approaches to fMRI: Principles, pitfalls, and perspectives. Neuron, 87(2), 257-270.
doi: 10.1016/j.neuron.2015.05.025 URL |
[48] |
Hebart M. N., & Baker C. I. (2018). Deconstructing multivariate decoding for the study of brain function. Neuroimage, 180, 4-18.
doi: S1053-8119(17)30652-3 pmid: 28782682 |
[49] |
Heikel E., Sassenhagen J., & Fiebach C. J. (2018). Time-generalized multivariate analysis of EEG responses reveals a cascading architecture of semantic mismatch processing. Brain and Language, 184, 43-53.
doi: S0093-934X(17)30220-1 pmid: 29980071 |
[50] |
Hubbard J., Kikumoto A., & Mayr U. (2019). EEG decoding reveals the strength and temporal dynamics of goal-relevant representations. Scientific Reports, 9(1), 1-11.
doi: 10.1038/s41598-018-37186-2 URL |
[51] |
Huster R. J., Debener S., Eichele T., & Herrmann C. S. (2012). Methods for simultaneous EEG-fMRI: An introductory review. Journal of Neuroscience, 32(18), 6053-6060.
doi: 10.1523/JNEUROSCI.0447-12.2012 pmid: 22553012 |
[52] |
Isik L., Meyers E. M., Leibo J. Z., & Poggio T. (2014). The dynamics of invariant object recognition in the human visual system. Journal of Neurophysiology, 111(1), 91-102.
doi: 10.1152/jn.00394.2013 pmid: 24089402 |
[53] | Ivanova A. A., Schrimpf M., Anzellotti S., Zaslavsky N., Fedorenko E., & Isik L. (2021). Is it that simple? Linear mapping models in cognitive neuroscience. bioRxiv. |
[54] |
Johnson S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254.
doi: 10.1007/BF02289588 pmid: 5234703 |
[55] |
Kaiser D., Azzalini D. C., & Peelen M. V. (2016). Shape-independent object category responses revealed by MEG and fMRI decoding. Journal of Neurophysiology, 115(4), 2246-2250.
doi: 10.1152/jn.01074.2015 pmid: 26740535 |
[56] |
Kaiser D., Oosterhof N. N., & Peelen M. V. (2016). The neural dynamics of attentional selection in natural scenes. Journal of Neuroscience, 36(41), 10522-10528.
pmid: 27733605 |
[57] |
Kamitani Y., & Tong F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8(5), 679-685.
doi: 10.1038/nn1444 pmid: 15852014 |
[58] | Kia S. M., Vega Pons S., Weisz N., & Passerini A. (2017). Interpretability of multivariate brain maps in linear brain decoding: Definition, and heuristic quantification in multivariate analysis of MEG time-locked effects. Frontiers in Neuroscience, 10, 619. |
[59] |
Kietzmann T. C., Gert A. L., Tong F., & König P. (2017). Representational dynamics of facial viewpoint encoding. Journal of Cognitive Neuroscience, 29(4), 637-651.
doi: 10.1162/jocn_a_01070 pmid: 27791433 |
[60] |
King J. R., & Dehaene S. (2014). Characterizing the dynamics of mental representations: The temporal generalization method. Trends in Cognitive Sciences, 18(4), 203-210.
doi: 10.1016/j.tics.2014.01.002 pmid: 24593982 |
[61] |
Kong N. C., Kaneshiro B., Yamins D. L., & Norcia A. M. (2020). Time-resolved correspondences between deep neural network layers and EEG measurements in object processing. Vision Research, 172, 27-45.
doi: S0042-6989(20)30065-1 pmid: 32388211 |
[62] |
Kriegeskorte N. (2011). Pattern-information analysis: From stimulus decoding to computational-model testing. Neuroimage, 56(2), 411-421.
doi: 10.1016/j.neuroimage.2011.01.061 pmid: 21281719 |
[63] |
Kriegeskorte N., & Diedrichsen J. (2019). Peeling the onion of brain representations. Annual Review of Neuroscience, 42, 407-432.
doi: 10.1146/annurev-neuro-080317-061906 pmid: 31283895 |
[64] |
Kriegeskorte N., & Kievit R. A. (2013). Representational geometry: Integrating cognition, computation, and the brain. Trends in Cognitive Sciences, 17(8), 401-412.
doi: 10.1016/j.tics.2013.06.007 pmid: 23876494 |
[65] |
Kriegeskorte N., Mur M., & Bandettini P. A. (2008). Representational similarity analysis-connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 4.
doi: 10.3389/neuro.06.004.2008 pmid: 19104670 |
[66] |
Kriegeskorte N., Mur M., Ruff D. A., Kiani R., Bodurka J., Esteky H.,... Bandettini P. A. (2008). Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron, 60(6), 1126-1141.
doi: 10.1016/j.neuron.2008.10.043 pmid: 19109916 |
[67] |
Kriegeskorte N., & Wei X. X. (2021). Neural tuning and representational geometry. Nature Reviews Neuroscience, 22(11), 703-718.
doi: 10.1038/s41583-021-00502-3 pmid: 34522043 |
[68] |
Lemm S., Blankertz B., Dickhaus T., & Müller K. R. (2011). Introduction to machine learning for brain imaging. Neuroimage, 56(2), 387-399.
doi: 10.1016/j.neuroimage.2010.11.004 pmid: 21172442 |
[69] |
Linde-Domingo J., Treder M. S., Kerrén C., & Wimber M. (2019). Evidence that neural information flow is reversed between object perception and object reconstruction from memory. Nature Communications, 10(1), 1-13.
doi: 10.1038/s41467-018-07882-8 URL |
[70] | Lu Z. (2020). PyCTRSA: A Python package for cross-temporal representational similarity analysis-based E/MEG decoding. Retrieved April 23, 2022, from http://doi.org/10.5281/zenodo.4273674 |
[71] |
Lu Z., & Ku Y. (2020). Neurora: A python toolbox of representational analysis from multi-modal neural data. Frontiers in Neuroinformatics, 14, 563669.
doi: 10.3389/fninf.2020.563669 URL |
[72] | Luck S. J. (2014). An introduction to the event-related potential technique. Cambridge: MIT press. |
[73] |
Maris E., & Oostenveld R. (2007). Nonparametric statistical testing of EEG-and MEG-data. Journal of Neuroscience Methods, 164(1), 177-190.
doi: 10.1016/j.jneumeth.2007.03.024 pmid: 17517438 |
[74] |
Michel C. M., Murray M. M., Lantz G., Gonzalez S., Spinelli L., & de Peralta R. G. (2004). EEG source imaging. Clinical Neurophysiology, 115(10), 2195-2222.
doi: 10.1016/j.clinph.2004.06.001 pmid: 15351361 |
[75] |
Misaki M., Kim Y., Bandettini P. A., & Kriegeskorte N. (2010). Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. Neuroimage, 53(1), 103-118.
doi: 10.1016/j.neuroimage.2010.05.051 pmid: 20580933 |
[76] |
Mur M., Meys M., Bodurka J., Goebel R., Bandettini P. A., & Kriegeskorte N. (2013). Human object-similarity judgments reflect and transcend the primate-IT object representation. Frontiers in Psychology, 4, 128.
doi: 10.3389/fpsyg.2013.00128 pmid: 23525516 |
[77] | Nili H., Wingfield C., Walther A., Su L., Marslen-Wilson W., & Kriegeskorte N. (2014). A toolbox for representational similarity analysis. PLoS Computational Biology, 10(4), e1003553. |
[78] |
Norman K. A., Polyn S. M., Detre G. J., & Haxby J. V. (2006). Beyond mind-reading: Multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424-430.
doi: 10.1016/j.tics.2006.07.005 pmid: 16899397 |
[79] |
Oosterhof N. N., Connolly A. C., & Haxby J. V. (2016). CoSMoMVPA: Multi-modal multivariate pattern analysis of neuroimaging data in Matlab/GNU Octave. Frontiers in Neuroinformatics, 10, 27.
doi: 10.3389/fninf.2016.00027 pmid: 27499741 |
[80] |
Pantazis D., Fang M., Qin S., Mohsenzadeh Y., Li Q., & Cichy R. M. (2018). Decoding the orientation of contrast edges from MEG evoked and induced responses. NeuroImage, 180, 267-279.
doi: S1053-8119(17)30590-6 pmid: 28712993 |
[81] | Pereira F., Mitchell T., & Botvinick M. (2009). Machine learning classifiers and fMRI: A tutorial overview. Neuroimage, 45(1), S199-S209. |
[82] |
Popal H., Wang Y., & Olson I. R. (2019). A guide to representational similarity analysis for social neuroscience. Social Cognitive and Affective Neuroscience, 14(11), 1243-1253.
doi: 10.1093/scan/nsz099 pmid: 31989169 |
[83] | Qu Z., Hillyard S. A., & Ding Y. (2017). Perceptual learning induces persistent attentional capture by nonsalient shapes. Cerebral Cortex, 27(2), 1512-1523. |
[84] |
Qu Z., Wang Y., Zhen Y., Hu L., Song Y., & Ding Y. (2014). Brain mechanisms underlying behavioral specificity and generalization of short-term texture discrimination learning. Vision Research, 105, 166-176.
pmid: 25449163 |
[85] |
Redcay E., & Carlson T. A. (2015). Rapid neural discrimination of communicative gestures. Social Cognitive and Affective Neuroscience, 10(4), 545-551.
doi: 10.1093/scan/nsu089 pmid: 24958087 |
[86] |
Ritchie J. B., Bracci S., & de Beeck H. O. (2017). Avoiding illusory effects in representational similarity analysis: What (not) to do with the diagonal. NeuroImage, 148, 197-200.
doi: S1053-8119(16)30805-9 pmid: 28069538 |
[87] |
Robinson A. K., Grootswagers T., & Carlson T. A. (2019). The influence of image masking on object representations during rapid serial visual presentation. NeuroImage, 197, 224-231.
doi: S1053-8119(19)30336-2 pmid: 31009746 |
[88] |
Ronconi L., Oosterhof N. N., Bonmassar C., & Melcher D. (2017). Multiple oscillatory rhythms determine the temporal organization of perception. Proceedings of the National Academy of Sciences, 114(51), 13435-13440.
doi: 10.1073/pnas.1714522114 URL |
[89] |
Rouder J. N., Speckman P. L., Sun D., Morey R. D., & Iverson G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225-237.
doi: 10.3758/PBR.16.2.225 URL |
[90] | Sandhaeger F., von Nicolai C., Miller E. K., & Siegel M. (2019). Monkey EEG links neuronal color and motion information across species and scales. Elife, 8, e45645. |
[91] | Sankaran N., Thompson W. F., Carlile S., & Carlson T. A. (2018). Decoding the dynamic representation of musical pitch from human brain activity. Scientific Reports, 8(1), 1-9. |
[92] |
Sato M. A., Yoshioka T., Kajihara S., Toyama K., Goda N., Doya K., & Kawato M. (2004). Hierarchical Bayesian estimation for MEG inverse problem. NeuroImage, 23(3), 806-826.
doi: 10.1016/j.neuroimage.2004.06.037 URL |
[93] | Sato M., Yamashita O., Sato M. A., & Miyawaki Y. (2018). Information spreading by a combination of MEG source estimation and multivariate pattern classification. PloS ONE, 13(6), e0198806. |
[94] | Scrivener C. L. (2021). When is simultaneous recording necessary? A guide for researchers considering combined EEG-fMRI. Frontiers in Neuroscience, 15, 774. |
[95] |
Sprague T. C., Saproo S., & Serences J. T. (2015). Visual attention mitigates information loss in small-and large-scale neural codes. Trends in Cognitive Sciences, 19(4), 215-226.
doi: 10.1016/j.tics.2015.02.005 pmid: 25769502 |
[96] |
Teichmann L., Grootswagers T., Carlson T., & Rich A. N. (2018). Decoding digits and dice with magnetoencephalography: Evidence for a shared representation of magnitude. Journal of Cognitive Neuroscience, 30(7), 999-1010.
doi: 10.1162/jocn_a_01257 pmid: 29561240 |
[97] |
Teichmann L., Quek G. L., Robinson A. K., Grootswagers T., Carlson T. A., & Rich A. N. (2020). The influence of object-color knowledge on emerging object representations in the brain. Journal of Neuroscience, 40(35), 6779-6789.
doi: 10.1523/JNEUROSCI.0158-20.2020 pmid: 32703903 |
[98] | Torgerson W. S. (1958). Theory and methods of scaling. New York: Wiley. |
[99] |
Treder M. S. (2020). MVPA-Light: A classification and regression toolbox for multi-dimensional data. Frontiers in Neuroscience, 14, 289.
doi: 10.3389/fnins.2020.00289 pmid: 32581662 |
[100] |
Tucciarelli R., Turella L., Oosterhof N. N., Weisz N., & Lingnau A. (2015). MEG multivariate analysis reveals early abstract action representations in the lateral occipitotemporal cortex. Journal of Neuroscience, 35(49), 16034-16045.
doi: 10.1523/JNEUROSCI.1422-15.2015 pmid: 26658857 |
[101] | Tuckute G., Hansen S. T., Pedersen N., Steenstrup D., & Hansen L. K. (2019). Single-trial decoding of scalp EEG under natural conditions. Computational Intelligence and Neuroscience, 2019, 9210785. |
[102] | van der Maaten L., & Hinton G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(11), 2579-2605. |
[103] |
Wagenmakers E. J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14(5), 779-804.
doi: 10.3758/BF03194105 URL |
[104] |
Walther A., Nili H., Ejaz N., Alink A., Kriegeskorte N., & Diedrichsen J. (2016). Reliability of dissimilarity measures for multi-voxel pattern analysis. Neuroimage, 137, 188-200.
doi: S1053-8119(15)01125-8 pmid: 26707889 |
[105] |
Wandell B. A., & Winawer J. (2015). Computational neuroimaging and population receptive fields. Trends in Cognitive Sciences, 19(6), 349-357.
doi: 10.1016/j.tics.2015.03.009 pmid: 25850730 |
[106] | Wang X., Xu Y., Wang Y., Zeng Y., Zhang J., Ling Z., & Bi Y. (2018). Representational similarity analysis reveals task-dependent semantic influence of the visual word form area. Scientific Reports, 8(1), 1-10. |
[107] |
Wardle S. G., Kriegeskorte N., Grootswagers T., Khaligh- Razavi S. M., & Carlson T. A. (2016). Perceptual similarity of visual patterns predicts dynamic neural activation patterns measured with MEG. Neuroimage, 132, 59-70.
doi: S1053-8119(16)00126-9 pmid: 26899210 |
[108] |
Weaverdyck M. E., Lieberman M. D., & Parkinson C. (2020). Tools of the Trade Multivoxel pattern analysis in fMRI: A practical introduction for social and affective neuroscientists. Social Cognitive and Affective Neuroscience, 15(4), 487-509.
doi: 10.1093/scan/nsaa057 pmid: 32364607 |
[109] |
Xie S., Kaiser D., & Cichy R. M. (2020). Visual imagery and perception share neural representations in the alpha frequency band. Current Biology, 30(13), 2621-2627.
doi: S0960-9822(20)30590-X pmid: 32531274 |
[1] | 方俊燕, 温忠麟. 追踪研究中的内生性问题:来源与应对[J]. 心理科学进展, 2023, 31(4): 507-518. |
[2] | 黄顺森, 陈豪杰, 来枭雄, 代欣然, 王耘. 多元宇宙样分析:简介及应用[J]. 心理科学进展, 2023, 31(2): 196-208. |
[3] | 包寒吴霜 王梓西 程曦 苏展 杨盈 张光耀 王博 蔡华俭. 基于词嵌入技术的心理学研究:方法及应用[J]. 心理科学进展, 0, (): 0-0. |
[4] | 朱训, 顾昕. 变量相对重要性评估的方法选择及应用[J]. 心理科学进展, 2023, 31(1): 145-158. |
[5] | 方杰, 温忠麟. 纵向数据的调节效应分析[J]. 心理科学进展, 2022, 30(11): 2461-2472. |
[6] | 翟宏堃, 李强, 魏晓薇. 结构方程模型统计检验力分析:原理与方法[J]. 心理科学进展, 2022, 30(9): 2117-2130. |
[7] | 王阳, 温忠麟, 王惠惠, 管芳. 第二类有中介的调节模型[J]. 心理科学进展, 2022, 30(9): 2131-2142. |
[8] | 温忠麟, 谢晋艳, 方杰, 王一帆. 新世纪20年国内假设检验及其关联问题的方法学研究[J]. 心理科学进展, 2022, 30(8): 1667-1681. |
[9] | 温忠麟, 陈虹熹, 方杰, 叶宝娟, 蔡保贞. 新世纪20年国内测验信度研究[J]. 心理科学进展, 2022, 30(8): 1682-1691. |
[10] | 温忠麟, 方杰, 谢晋艳, 欧阳劲樱. 国内中介效应的方法学研究[J]. 心理科学进展, 2022, 30(8): 1692-1702. |
[11] | 方杰, 温忠麟, 欧阳劲樱, 蔡保贞. 国内调节效应的方法学研究[J]. 心理科学进展, 2022, 30(8): 1703-1714. |
[12] | 王阳, 温忠麟, 李伟, 方杰. 新世纪20年国内结构方程模型方法研究与模型发展[J]. 心理科学进展, 2022, 30(8): 1715-1733. |
[13] | 刘源, 都弘彦, 方杰, 温忠麟. 国内追踪数据分析方法研究与模型发展[J]. 心理科学进展, 2022, 30(8): 1734-1746. |
[14] | 林浇敏, 李爱梅, 周雅然, 何军红, 周蕾. 眼动操纵技术在决策研究中的应用前景:改变决策行为[J]. 心理科学进展, 2022, 30(8): 1794-1803. |
[15] | 卫旭华, 汪光炜, 陈义. 国内管理心理实验中的操纵检验: 现状、问题与建议[J]. 心理科学进展, 2022, 30(6): 1367-1376. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||