心理科学进展 ›› 2025, Vol. 33 ›› Issue (1): 11-24.doi: 10.3724/SP.J.1042.2025.0011
收稿日期:
2024-03-28
出版日期:
2025-01-15
发布日期:
2024-10-28
通讯作者:
石祝, E-mail: stonecolumn@163.com基金资助:
SHANG Junjie, SHI Zhu(), SHEN Kejie
Received:
2024-03-28
Online:
2025-01-15
Published:
2024-10-28
摘要:
空间能力是个体对客体或空间图形在头脑中进行识别、编码、贮存、表征、分解组合和抽象概括的能力, 是个体理解自身所处环境并解决问题的认知基础。准确、便捷、有效地测评空间能力, 对增强STEM教育教学水平和人才培养质量都具有重要意义。由于空间能力受多因素共同作用, 具有复杂性、多维度、内隐性的特点, 使得利用计算机评价空间能力比较困难。本研究旨在准确、有效、大规模地测评空间能力, 将使用多模态学习分析方法探索学习者空间认知行为表现特征, 并基于视频游戏环境研发空间能力隐形测评关键技术与工具。具体包括: 1)构建空间能力内在表征框架和评价指标体系; 2)基于多模态学习分析构建学习者空间能力行为表现模型; 3)探索视频游戏影响空间能力的关键因素, 并使用游戏引擎开发基于视频游戏的测评工具; 4)使用以证据为中心的设计框架和贝叶斯网络模型, 开发并部署能够推断和预测空间能力的测评算法; 5)在实验室和真实课堂情境开展实证研究, 验证测评工具有效性。研究成果将有利于理解人类空间认知过程和行为表现, 拓展和丰富空间能力相关理论, 并为大规模数字化测评提供关键技术支撑。
中图分类号:
尚俊杰, 石祝, 沈科杰. (2025). 基于视频游戏的空间能力测评. 心理科学进展 , 33(1), 11-24.
SHANG Junjie, SHI Zhu, SHEN Kejie. (2025). Video game-based assessment of spatial ability. Advances in Psychological Science, 33(1), 11-24.
空间能力一级维度 | 空间能力二级维度 | 空间能力测评任务 | 潜在测评指标 |
---|---|---|---|
对象操纵 | 心理旋转 心理折叠 心理切割 几何体组合 空间可视化 | 心理旋转测试(VMRT) (Xu et al., 圣巴巴拉固体测试(SBST) (Cohen & Hegarty, 空间构建任务(Peters et al., | 反应时 正确率 几何体差异度 有效运动距离 距焦点物体距离 垂直高度可变性 |
扫视透视 | 扫视 视角选取 空间定向 | 扫视识别任务(Malanchini et al., 多面体投影识别任务(Waller, 圣巴巴拉方向感测试(SBSOD) (Hegarty et al., 空间定向测试(SOT) (Friedman, et al., 皮亚杰三山测试(McLaren-Gradinaru et al., 空间布局测试(SCT) (McLaren-Gradinaru et al., | 反应时 正确率 角度误差 |
空间导航 | 地标导航 方向导航 路径记忆 地图识别 | 虚拟Morris 水迷宫(VWM) 虚拟空间导航测试(VSNA) (Ventura et al., 八臂迷宫任务(4/8 Maze) (West et al., 传送门测试(Portal test) (Foroughi et al., | 反应时 正确率 移动距离 路线分布 重访行为 扩散模式 漫游熵 轨迹整合度 |
表1 空间能力测评任务及其潜在测评指标
空间能力一级维度 | 空间能力二级维度 | 空间能力测评任务 | 潜在测评指标 |
---|---|---|---|
对象操纵 | 心理旋转 心理折叠 心理切割 几何体组合 空间可视化 | 心理旋转测试(VMRT) (Xu et al., 圣巴巴拉固体测试(SBST) (Cohen & Hegarty, 空间构建任务(Peters et al., | 反应时 正确率 几何体差异度 有效运动距离 距焦点物体距离 垂直高度可变性 |
扫视透视 | 扫视 视角选取 空间定向 | 扫视识别任务(Malanchini et al., 多面体投影识别任务(Waller, 圣巴巴拉方向感测试(SBSOD) (Hegarty et al., 空间定向测试(SOT) (Friedman, et al., 皮亚杰三山测试(McLaren-Gradinaru et al., 空间布局测试(SCT) (McLaren-Gradinaru et al., | 反应时 正确率 角度误差 |
空间导航 | 地标导航 方向导航 路径记忆 地图识别 | 虚拟Morris 水迷宫(VWM) 虚拟空间导航测试(VSNA) (Ventura et al., 八臂迷宫任务(4/8 Maze) (West et al., 传送门测试(Portal test) (Foroughi et al., | 反应时 正确率 移动距离 路线分布 重访行为 扩散模式 漫游熵 轨迹整合度 |
[1] | 陈鸿舟. (2015). 基于脑电的不同策略下心理旋转的认知机制研究 [硕士学位论文]. 上海交通大学. |
[2] | 龚鑫, 许洁, 乔爱玲. (2023). 基于沉浸式学习环境的隐形性评估: 机理、框架与应用. 电化教育研究, (12), 64-72. |
[3] | 郭守超. (2022). 数据驱动的空间能力评价研究 [博士学位论文]. 华东师范大学, 上海. |
[4] | 蒋宇, 尚俊杰, 庄绍勇. (2011). 游戏化探究学习模式的设计与应用研究. 中国电化教育, (5), 84-91. |
[5] | 李洪玉, 林崇德. (2005). 中学生空间认知能力结构的研究. 心理科学, 28(2), 269-271. |
[6] | 李一茗, 杨上琦, 黎坚. (2021). 基于游戏的评估: 特殊儿童心理评估的新方向. 中国特殊教育, (12), 90-96. |
[7] | 梁林梅, 蔡建东, 耿倩倩. (2022). 学习科学研究与教育实践变革: 研究方法论的创新和发展. 电化教育研究, 43(1), 39-45+62. |
[8] | 刘鸣. (2004). 表象研究方法论. 心理科学, 27(2), 258-260. |
[9] | 尚俊杰, 曾嘉灵, 周均奕. (2022). 学习科学视角下的数学空间游戏设计与应用研究. 电化教育研究, 43(7), 63-72. |
[10] | 石祝. (2019). 视频游戏对中学生空间能力和问题解决能力的影响: 基于视频游戏《传送门2》的实证研究 [硕士学位论文]. 北京师范大学. |
[11] | 石祝, 尚俊杰. (2024). 视频游戏对空间能力的影响与作用机制. 中国电化教育, (5), 32-44+113. |
[12] |
孙鑫, 黎坚, 符植煜. (2018). 利用游戏log-file预测学生推理能力和数学成绩——机器学习的应用. 心理学报, 50(7), 761-770.
doi: 10.3724/SP.J.1041.2018.00761 |
[13] | 田阳, 陈鹏, 黄荣怀, 曾海军. (2019). 面向混合学习的多模态交互分析机制及优化策略. 电化教育研究, 40(9), 67-74. |
[14] | 汪维富, 毛美娟. (2021). 多模态学习分析: 理解与评价真实学习的新路向. 电化教育研究, (2), 25-32. |
[15] | 武法提, 黄石华. (2020). 基于多源数据融合的共享教育数据模型研究. 电化教育研究, 41(5), 59-65+103. |
[16] |
徐俊怡, 李中权. (2021). 基于游戏的心理测评. 心理科学进展, 29(3), 394-403.
doi: 10.3724/SP.J.1042.2021.00394 |
[17] | 晏碧华. (2021). 飞行员空间能力: 认知计算的可塑性与渗透性. 北京: 科学出版社. |
[18] |
张凤翔, 陈美璇, 蒲艺, 孔祥祯. (2023). 空间导航能力个体差异的多层次形成机制. 心理科学进展, 31(9), 1642-1664.
doi: 10.3724/SP.J.1042.2023.01642 |
[19] | 张琪, 李福华, 孙基男. (2020). 多模态学习分析: 走向计算教育时代的学习分析学. 中国电化教育, (9), 7-14+39. |
[20] | 张生, 任岩, 骆方. (2019). 学生高阶思维能力的评价: 复杂问题解决的测量述评. 中国特殊教育, (10), 90-96. |
[21] | 周加仙, 蔡永华. (2013). 空间思维能力的认知机制及其对STEM教学的启示——与美国Nora S. Newcombe院士的对话. 全球教育展望, 42(2), 3-11. |
[22] | Açikgül, K., Şad, S. N., & Altay, B. (2023). Spatial ability test for university students: Development, validity and reliability studies. International Journal of Assessment Tools in Education, 10(1), 76-97. |
[23] | Almond, R. G., Mislevy, R. J., Steinberg, L. S., Yan, D., & Williamson, D. M. (2015). The conceptual assessment framework. In Bayesian networks in educational assessment. Springer. |
[24] | Ardila, A. (2018). Historical development of human cognition: A cultural-historical neuropsychological perspective (Vol. 3). Springer. |
[25] | Bartlett, K. A., & Camba, J. D. (2023). Gender differences in spatial ability: A critical review. Educational Psychology Review, 35(1), 8. |
[26] | Bodner, G. M., & Guay, R. B. (1997). The Purdue visualization of rotations test. The Chemical Educator, 2, 1-17. |
[27] | Brunec, I. K., Nantais, M. M., Sutton, J. E., Epstein, R. A., & Newcombe, N. S. (2023). Exploration patterns shape cognitive map learning. Cognition, 233, 105360. |
[28] | Choi, Y., & Mislevy, R. J. (2022). Evidence centered design framework and dynamic Bayesian network for modeling learning progression in online assessment system. Frontiers in Psychology, 13, 742956. |
[29] | Cohen, C. A., & Hegarty, M. (2012). Inferring cross sections of 3D objects: A new spatial thinking test. Learning and Individual Differences, 22(6), 868-874. |
[30] | College Entrance Examination Board. (1939). CEEB special aptitude test in spatial relations. Author. |
[31] | Coutrot, A., Manley, E., Goodroe, S., Gahnstrom, C., Filomena, G., Yesiltepe, D., … Spiers, H. J. (2022). Entropy of city street networks linked to future spatial navigation ability. Nature, 604(7904), 104-110. |
[32] | Coutrot, A., Schmidt, S., Coutrot, L., Pittman, J., Hong, L., Wiener, J. M., … Spiers, H. J. (2019). Virtual navigation tested on a mobile APP is predictive of real-world wayfinding navigation performance. Public Library of Science ONE, 14(3), e0213272. |
[33] | Danner, D., Hagemann, D., Holt, D. V., Hager, M., Schankin, A., Wüstenberg, S., & Funke, J. (2011). Measuring performance in dynamic decision making: Reliability and validity of the tailorshop simulation. Journal of Individual Differences, 32(4), 225-233. |
[34] | de Klerk, S., Veldkamp, B. P., & Eggen, T. J. (2015). Psychometric analysis of the performance data of simulation-based assessment: A systematic review and a Bayesian network example. Computers & Education, (85), 23-34. |
[35] | Foroughi, C. K., Serraino, C., Parasuraman, R., & Boehm- Davis, D. A. (2016). Can we create a measure of fluid intelligence using puzzle creator within Portal 2? Intelligence, 56, 58-64. |
[36] |
Fourtassi, M., Rode, G., & Pisella, L. (2017). Using eye movements to explore mental representations of space. Annals of Physical and Rehabilitation Medicine, 60(3), 160-163.
doi: S1877-0657(16)00044-0 pmid: 27038772 |
[37] |
Friedman, A., Kohler, B., Gunalp, P., Boone, A. P., & Hegarty, M. (2020). A computerized spatial orientation test. Behavior Research Methods, 52, 799-812.
doi: 10.3758/s13428-019-01277-3 pmid: 31347037 |
[38] |
Gagnon, K. T., Thomas, B. J., Munion, A., Creem-Regehr, S. H., Cashdan, E. A., & Stefanucci, J. K. (2018). Not all those who wander are lost: Spatial exploration patterns and their relationship to gender and spatial memory. Cognition, 180, 108-117.
doi: S0010-0277(18)30173-2 pmid: 30015210 |
[39] |
Geer, E. A., Quinn, J. M., & Ganley, C. M. (2019). Relations between spatial skills and math performance in elementary school children: A longitudinal investigation. Developmental Psychology, 55(3), 637-652.
doi: 10.1037/dev0000649 pmid: 30550325 |
[40] | Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(5), 425-447. |
[41] | Heinzen, T. E., Landrum, R. E., Gurung, R. A. R., & Dunn, D. S. (2015). Game-based assessment:The mash-up we've been waiting for. In T. Reiners & L. C. Wood (Eds.), Gamification in education and business (pp. 201-217). Springer International Publishing. |
[42] |
Hodgkiss, A., Gilligan, K. A., Tolmie, A. K., Thomas, M. S. C., & Farran, E. K. (2018). Spatial cognition and science achievement: The contribution of intrinsic and extrinsic spatial skills from 7 to 11 years. British Journal of Educational Psychology, 88(4), 675-697.
doi: 10.1111/bjep.12211 pmid: 29359476 |
[43] | Hong, X., & Liu, Q. (2022). Assessing young children's national identity through human-computer interaction: A game-based assessment task. Frontiers in Psychology, 13, 956570. |
[44] | Hunt, E., & Pellegrino, J. (1985). Using interactive computing to expand intelligence testing: A critique and prospectus. Intelligence, 9(3), 207-236. |
[45] | Kell, H. J., Lubinski, D., Benbow, C. P., & Steiger, J. H. (2013). Creativity and technical innovation: Spatial ability’s unique role. Psychological Science, 24(9), 1831-1836. |
[46] | Kim, Y. J., & Ifenthaler, D. (2019). Game-based assessment:The past ten years and moving forward. In: Ifenthaler, D., Kim, Y. J. (Eds.), Game-based assessment revisited. Advances in Game-Based Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-15569-8_1 |
[47] | Kim, Y. J., Knowles, M. A., Scianna, J., Lin, G., & Ruipérez-Valiente, J. A. (2023). Learning analytics application to examine validity and generalizability of game-based assessment for spatial reasoning. British Journal of Educational Technology, 54(1), 355-372. |
[48] | Kim, Y. J., & Shute, V. (2015). The interplay of game elements with psychometric qualities, learning, and enjoyment in game-based assessment. Computers & Education, 87, 340-356. |
[49] | Kong, X. Z., Wang, X., Pu, Y., Huang, L., Hao, X., Zhen, Z., & Liu, J. (2017). Human navigation network: The intrinsic functional organization and behavioral relevance. Brain Structure and Function, 222(2), 749-764. |
[50] | Kress, G., & Van Leeuwen, T. (2001). Multimodal discourse: The modes and media of contemporary communication (pp. 20-22). Arnold Publishers. |
[51] |
Li, J., Zhang, B., Du, H., Zhu, Z., & Li, Y. M. (2015). Metacognitive planning: Development and validation of an online measure. Psychological Assessment, 27(1), 260-271.
doi: 10.1037/pas0000019 pmid: 25222433 |
[52] | Listman, J. B., Tsay, J. S., Kim, H. E., Mackey, W. E., & Heeger, D. J. (2021). Long-term motor learning in the “wild” with high volume video game data. Frontiers in Human Neuroscience, 15, 777779. |
[53] | Liu, S., Wei, W., Chen, Y., Hugo, P., & Zhao, J. (2021). Visual-spatial ability predicts academic achievement through arithmetic and reading abilities. Frontiers in Psychology, 11, 591308. |
[54] | Loh, C. S., Sheng, Y., & Ifenthaler, D. (2015). Serious games analytics:Theoretical framework. In C. S. Loh, Y. Sheng, & D. Ifenthaler (Eds.), Serious games analytics. Methodologies for performance measurement, assessment, and improvement (pp. 3-29). Springer. |
[55] | Lubinski, D. (2010). Spatial ability and STEM: A sleeping giant for talent identification and development. Personality and Individual Differences, 49(4), 344-351. |
[56] |
Malanchini, M., Rimfeld, K., Shakeshaft, N. G., McMillan, A., Schofield, K. L., Rodic, M., … Plomin, R. (2020). Evidence for a unitary structure of spatial cognition beyond general intelligence. NPJ Science of Learning, 5, 9.
doi: 10.1038/s41539-020-0067-8 pmid: 32655883 |
[57] | Martín-Dorta, N., Saorín, J. L., & Contero, M. (2008). Development of a fast remedial course to improve the spatial abilities of engineering students. Journal of Engineering Education, 97(4), 505-513. |
[58] | Mavridis, A., & Tsiatsos, T. (2017). Game-based assessment: Investigating the impact on test anxiety and exam performance. Journal of Computer Assisted Learning, 33(2), 137-150. |
[59] | Mayer, R. E. (2014). Computer games for learning: An evidence-based approach. Boston Review. |
[60] |
McLaren-Gradinaru, M., Burles, F., Dhillon, I., David, A. L., Umiltà, A., Hannah, J., Dolhan, K., & Iaria, G. (2020). A novel training program to improve human spatial orientation: Preliminary findings. Frontiers in Human Neuroscience, 14, 5.
doi: 10.3389/fnhum.2020.00005 pmid: 32038207 |
[61] | Owen, V. E., & Baker, R. S. (2020). Fueling prediction of player decisions: Foundations of feature engineering for optimized behavior modeling in serious games. Technology, Knowledge and Learning, 25(2), 225-250. |
[62] | Peters, H., Kyngdon, A., & Stillwell, D. (2021). Construction and validation of a game-based intelligence assessment in Minecraft. Computers in Human Behavior, 119(5), 106701. |
[63] | Quiroga, M. Á., Escorial, S., Román, F. J., Morillo, D., Jarabo, A., Privado, J.,... Colom, R. (2015). Can we reliably measure the general factor of intelligence (g) through commercial video games? Yes, we can! Intelligence, 53, 1-7. |
[64] | Roh, C. H., & Lee, W. B. (2014). A study of the attention measurement variables of a serious game as a treatment for ADHD. Wireless Personal Communications, 79, 2485-2498. |
[65] | Shute, V. J., & Rahimi, S. (2021). Stealth assessment of creativity in a physics video game. Computers in Human Behavior, 116, 1-13. |
[66] | Shute, V. J., & Ventura, M. (2013). Measuring and supporting learning in video games: Stealth assessment. Cambridge, MA: The MIT Press. |
[67] | Shute, V. J., Ventura, M., & Ke, F. (2015). The power of play: The effects of Portal 2 and Lumosity on cognitive and noncognitive skills. Computers & Education, 80, 58-67. |
[68] | Soares Jr, R. da S., Oku, A. Y. A., Barreto, C. S. F., & Sato, J. R. (2022). Applying functional near-infrared spectroscopy and eye-tracking in a naturalistic educational environment to investigate physiological aspects that underlie the cognitive effort of children during mental rotation tests. Frontiers in Human Neuroscience, 16, 889806. |
[69] | Sorby, S. A., & Panther, G. C. (2020). Is the key to better PISA math scores improving spatial skills? Mathematics Education Research Journal, 32(2), 213-233. |
[70] | Spiers, H. J., Coutrot, A., & Hornberger, M. (2023). Explaining world-wide variation in navigation ability from millions of people: Citizen science project Sea Hero Quest. Topics in Cognitive Science, 15(1), 120-138. |
[71] |
Thornberry, C., Cimadevilla, J. M., & Commins, S. (2021). Virtual Morris Water Maze: Opportunities and challenges. Reviews in the Neurosciences, 32(8), 887-903.
doi: 10.1515/revneuro-2020-0149 pmid: 33838098 |
[72] | Uttal, D. H., & Cohen, C. A. (2012). Chapter Four - Spatial thinking and STEM education: When, why, and how? Psychology of Learning and Motivation, 57, 147-181. |
[73] |
Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352-402.
doi: 10.1037/a0028446 pmid: 22663761 |
[74] |
Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599-604.
doi: 10.2466/pms.1978.47.2.599 pmid: 724398 |
[75] |
Ventura, M., Shute, V., Wright, T., & Zhao, W. (2013). An investigation of the validity of the virtual spatial navigation assessment. Frontiers in Psychology, 4, 852.
doi: 10.3389/fpsyg.2013.00852 pmid: 24379790 |
[76] | Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for stem domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817-835. |
[77] | Waller, D. (2005). The WALKABOUT: Using virtual environments to assess large-scale spatial abilities. Computers in Human Behavior, 21(2), 243-253. |
[78] | Weisberg, S. M., Schinazi, V. R., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2014). Variations in cognitive maps: Understanding individual differences in navigation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(3), 669-682. |
[79] |
West, G. L., Konishi, K., Diarra, M., Benady-Chorney, J., Drisdelle, B. L., Dahmani, L.,... Bohbot, V. D. (2018). Impact of video games on plasticity of the hippocampus. Molecular Psychiatry, 23(7), 1566-1574.
doi: 10.1038/mp.2017.155 pmid: 28785110 |
[80] | Xie, F., Zhang, L., Chen, X., & Xin, Z. (2020). Is spatial ability related to mathematical ability: A meta-analysis. Educational Psychology Review, 32, 113-155. |
[81] | Xu, S., Song, Y., & Liu, J. (2023). The development of spatial cognition and its malleability assessed in mass population via a mobile game. Psychological Science, 34(3), 345-357. |
[82] |
Xue, J., Li, C., Quan, C., Lu, Y., Yue, J., & Zhang, C. (2017). Uncovering the cognitive processes underlying mental rotation: An eye-movement study. Scientific Reports, 7(1), 10076.
doi: 10.1038/s41598-017-10683-6 pmid: 28855724 |
[1] | 徐俊怡, 李中权. 基于游戏的心理测评[J]. 心理科学进展, 2021, 29(3): 394-403. |
[2] | 王杭;江俊;蒋存梅. 音乐训练对认知能力的影响[J]. 心理科学进展, 2015, 23(3): 419-429. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||