心理科学进展 ›› 2023, Vol. 31 ›› Issue (2): 196-208.doi: 10.3724/SP.J.1042.2023.00196
收稿日期:
2022-01-13
出版日期:
2023-02-15
发布日期:
2022-11-10
通讯作者:
王耘
E-mail:wangyun@bnu.edu.cn
基金资助:
HUANG Shunsen, CHEN Haojie, LAI Xiaoxiong, DAI Xinran, WANG Yun()
Received:
2022-01-13
Online:
2023-02-15
Published:
2022-11-10
Contact:
WANG Yun
E-mail:wangyun@bnu.edu.cn
摘要:
选择性分析和报告是造成心理科学研究可重复性危机的一个重要因素。近年来研究者提出用多元宇宙样分析的方法, 囊括多种数据分析策略, 减少分析过程中的主观选择性和随意性, 并进行稳健性检验以提高结果的可靠性。以手机使用与手机压力的关系为例, 介绍该方法和操作步骤。该方法已在心理学和认知神经科学等领域得到一定的应用。未来研究应继续发展和完善该方法的统计推断, 使之运用到更多的数据类型和更广的研究领域中。
中图分类号:
黄顺森, 陈豪杰, 来枭雄, 代欣然, 王耘. (2023). 多元宇宙样分析:简介及应用. 心理科学进展 , 31(2), 196-208.
HUANG Shunsen, CHEN Haojie, LAI Xiaoxiong, DAI Xinran, WANG Yun. (2023). Multiverse-style analysis: Introduction and application. Advances in Psychological Science, 31(2), 196-208.
研究问题:智能手机使用与智能手机压力的关系 | |
---|---|
研究者对变量的决策 | 策略的可能性 |
智能手机使用 | 作为连续变量:工作日使用时间、休息日使用时间、工作日和休息日平均使用时间 作为分类变量:将连续变量虚拟编码为低使用(<2小时编码为0)和高使用(≥2小时编码为1)。 |
智能手机压力 | 不同测量方式:简版手机压力量表和完整版手机压力量表 完整版中不同的维度分别进行替代:6个维度(不满意的信息和交流、未满足的娱乐动机、在线学习负担、社会关注、无用和过载信息、在线言语攻击) |
模型选用 | 线性模型 |
控制变量 | 4个协变量取所有子集分别进行控制(如年龄、年龄+性别、性别+居住地) 所有协变量都不控制 |
智能手机使用与智能手机压力之间的关系分析策略共768个组合, 即768个宇宙。(智能手机使用时间(6种) × 智能手机压力(8种) × 模型选用(1种) × 控制变量(16种) = 768种) |
表1 探究智能手机使用与智能手机压力关系的分析策略
研究问题:智能手机使用与智能手机压力的关系 | |
---|---|
研究者对变量的决策 | 策略的可能性 |
智能手机使用 | 作为连续变量:工作日使用时间、休息日使用时间、工作日和休息日平均使用时间 作为分类变量:将连续变量虚拟编码为低使用(<2小时编码为0)和高使用(≥2小时编码为1)。 |
智能手机压力 | 不同测量方式:简版手机压力量表和完整版手机压力量表 完整版中不同的维度分别进行替代:6个维度(不满意的信息和交流、未满足的娱乐动机、在线学习负担、社会关注、无用和过载信息、在线言语攻击) |
模型选用 | 线性模型 |
控制变量 | 4个协变量取所有子集分别进行控制(如年龄、年龄+性别、性别+居住地) 所有协变量都不控制 |
智能手机使用与智能手机压力之间的关系分析策略共768个组合, 即768个宇宙。(智能手机使用时间(6种) × 智能手机压力(8种) × 模型选用(1种) × 控制变量(16种) = 768种) |
图2 多元宇宙样分析策略结果描述 注:图2(A)中estimate指回归系数的估计值, 曲线上点的纵坐标表示不同策略组合下自变量对因变量的回归系数, 阴影部分表示该系数的置信区间。图2(B)右侧纵坐标controls指控制变量, y指因变量, x指自变量。灰色表示不显著的策略组合, 蓝色表示显著的策略组合。
智能手机使用 | Median β | Number of significant and positive results | Number of significant and negative results |
---|---|---|---|
工作日使用时间 | 0.12*** | 117/128***? | 0/128 |
休息日使用时间 | 0.20*** | 128/128***? | 0/128 |
使用时间均分 | 0.19*** | 128/128***? | 0/128 |
工作日使用时间分类 | 0.11*** | 106/128***? | 0/128 |
休息日使用时间分类 | 0.15*** | 128/128***? | 0/128 |
使用时间均分分类 | 0.19*** | 128/128***? | 0/128 |
表2 多元宇宙样分析的统计推断结果
智能手机使用 | Median β | Number of significant and positive results | Number of significant and negative results |
---|---|---|---|
工作日使用时间 | 0.12*** | 117/128***? | 0/128 |
休息日使用时间 | 0.20*** | 128/128***? | 0/128 |
使用时间均分 | 0.19*** | 128/128***? | 0/128 |
工作日使用时间分类 | 0.11*** | 106/128***? | 0/128 |
休息日使用时间分类 | 0.15*** | 128/128***? | 0/128 |
使用时间均分分类 | 0.19*** | 128/128***? | 0/128 |
图3 多元宇宙样分析在Web of Science数据库中的发文量(2015~2021) 注:图中数据来源于Web of Science检索结果。检索关键词为TS = (“Multiverse analysis”) OR TS = (“Vibration of effects”) OR TS = (“Multimodel analysis”) OR TS = (“Specification curve analysis”). 检索日期范围始于2015年, 截止至2021年12月31日。
[1] | 胡传鹏, 王非, 过继成思, 宋梦迪, 隋洁, 彭凯平. (2016). 心理学研究中的可重复性问题:从危机到契机. 心理科学进展, 24(9), 1504-1518. |
[2] | 刘佳, 霍涌泉, 陈文博, 王静. (2018). 心理学研究的可重复性“危机”: 一些积极应对策略. 心理学探新, 38(1), 86-90. |
[3] | 骆大森. (2017). 心理学可重复性危机两种根源的评估. 心理与行为研究, 15(5), 557-586. |
[4] | 王珺, 宋琼雅, 许岳培, 贾彬彬, 陆春雷, 陈曦,... 胡传鹏. (2021). 解读不显著结果:基于500个实证研究的量化分析. 心理科学进展, 29(3), 381-393. |
[5] | 温忠麟, 侯杰泰, 张雷. (2005). 调节效应与中介效应的比较和应用. 心理学报, 37(2), 268-274. |
[6] | 温忠麟, 叶宝娟. (2014). 中介效应分析:方法和模型发展. 心理科学进展, 22(5), 731-745. |
[7] | 谢宇. (2006). 社会学方法与定量研究. 北京: 社会科学文献出版社. |
[8] | 朱滢. (2016). “开放科学数据共享软件共享”, 你准备好了吗?. 心理科学进展, 24(6), 995-996. |
[9] |
Aarts A. A., Anderson J. E., Anderson C. J., Attridge P. R., Attwood A., Axt J., … Zuni K. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716. doi: 10.1126/science.aac4716
doi: 10.1126/science.aac4716 |
[10] | Anderl C., de Wit A. E., Giltay E. J., Oldehinkel A. J., & Chen F. S. (2022). Association between adolescent oral contraceptive use and future major depressive disorder: A prospective cohort study. Journal of Child Psychology and Psychiatry and Allied Disciplines, 63(3), 333-341. |
[11] |
Artner R., Verliefde T., Steegen S., Gomes S., Traets F., Tuerlinckx F., & Vanpaemel W. (2020). The reproducibility of statistical results in psychological research: An investigation using unpublished raw data. Psychological Methods, 26(5), 527-546.
doi: 10.1037/met0000365 URL |
[12] |
Ballou N., & Zendle D. (2022). “Clinically significant distress” in internet gaming disorder: An individual participant meta-analysis. Computers in Human Behavior, 129, 107140.
doi: 10.1016/j.chb.2021.107140 URL |
[13] |
Black L., Panayiotou M., & Humphrey N. (2021). Internalizing symptoms, well-being, and correlates in adolescence: A multiverse exploration via cross-lagged panel network models. Development and Psychopathology. DOI: 10.1017/S0954579421000225
doi: 10.1017/S0954579421000225 |
[14] | Bloom P. A., VanTieghem M., Gabard-Durnam L., Gee D. G., Flannery J., Caldera C.,... Tottenham N. (2022). Age-related change in task-evoked amygdale-prefrontal circuitry: A multiverse approach with an accelerated longitudinal cohort aged 4-22 years. Human Brain Mapping, 43(10), 3221-3244. |
[15] |
Bringmann L. F., Elmer T., Epskamp S., Krause R. W., Schoch D., Wichers M., Wigman J. T. W., & Snippe E. (2019). What do centrality measures measure in psychological networks? Journal of Abnormal Psychology, 128(8), 892-903.
doi: 10.1037/abn0000446 pmid: 31318245 |
[16] | Cosme D., & Lopez R. B. (2020). Neural indicators of food cue reactivity, regulation, and valuation and their associations with body composition and daily eating behavior. Social Cognitive and Affective Neuroscience, nsaa155. |
[17] |
Cosme D., Zeithamova D., Stice E., & Berkman E. T. (2020). Multivariate neural signatures for health neuroscience: Assessing spontaneous regulation during food choice. Social Cognitive and Affective Neuroscience, 15(10), 1120-1134.
doi: 10.1093/scan/nsaa002 pmid: 31993654 |
[18] |
Dablander F., & Hinne M. (2019). Node centrality measures are a poor substitute for causal inference. Scientific Reports, 9(1), 1-13.
doi: 10.1038/s41598-018-37186-2 URL |
[19] | Del Giudice M., & Gangestad S. W. (2021). A traveler’s guide to the multiverse: Promises, pitfalls, and a framework for the evaluation of analytic decisions. Advances in Methods and Practices in Psychological Science, 4(1), 1-15. |
[20] |
Fanelli D., Costas R., & Ioannidis J. P. A. (2017). Meta-assessment of bias in science. Proceedings of the National Academy of Sciences, 114(14), 3714-3719.
doi: 10.1073/pnas.1618569114 URL |
[21] |
Flachaire E. (1999). A better way to bootstrap pairs. Economics Letters, 64(3), 257-262.
doi: 10.1016/S0165-1765(99)00108-1 URL |
[22] | Gassen J. (2021). A package to explore and document your degrees of freedom. Github. https://github.com/joachim-gassen/rdfanalysis |
[23] |
Gelman A., & Loken E. (2014). The statistical crisis in science. American Scientist, 102(6), 460-465.
doi: 10.1511/2014.111.460 URL |
[24] |
Götz F. M., Gosling S. D., & Rentfrow P. J. (2022). Small effects: The indispensable foundation for a cumulative psychological science. Perspectives on Psychological Science, 17(1), 205-215.
doi: 10.1177/1745691620984483 URL |
[25] |
Harder J. A. (2020). The multiverse of methods: Extending the multiverse analysis to address data-collection decisions. Perspectives on Psychological Science, 15(5), 1158-1177.
doi: 10.1177/1745691620917678 pmid: 32598854 |
[26] | Huang S., Lai X., Ke L., Qin X., Yan J. J., Xie Y., Dai X., & Wang Y. (in press). Smartphone stress: Concept, structure, and development of measurement among adolescents. Cyberpsychology: Journal of Psychosocial Research on Cyber. |
[27] |
Ioannidis J. P. A. (2008). Why most discovered true associations are inflated. Epidemiology, 19(5), 640-648.
doi: 10.1097/EDE.0b013e31818131e7 pmid: 18633328 |
[28] |
Klein O., Hardwicke T. E., Aust F., Breuer J., Danielsson H., Mohr A. H., Jzerman H. I., Nilsonne G., Vanpaemel W., & Frank M. C. (2018). A practical guide for transparency in psychological science. Collabra: Psychology, 4(1), 1-15.
doi: 10.1525/collabra.112 URL |
[29] |
Kołodziej A., Magnuski M., Ruban A., & Brzezicka A. (2021). No relationship between frontal alpha asymmetry and depressive disorders in a multiverse analysis of five studies. ELife, 10, e60595..
doi: 10.7554/eLife.60595 URL |
[30] |
Laraway S., Snycerski S., Pradhan S., & Huitema B. E. (2019). An overview of scientific reproducibility: Consideration of relevant issues for behavior science/ analysis. Perspectives on Behavior Science, 42(1), 33-57.
doi: 10.1007/s40614-019-00193-3 pmid: 31976420 |
[31] | Liu Y., Althoff T., & Heer J. (2020). Paths explored, paths omitted, paths obscured:Decision points & selective reporting in end-to-end data analysis. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu. |
[32] |
Liu Y., Kale A., Althoff T., & Heer J. (2021). Boba: Authoring and visualizing multiverse analyses. IEEE Transactions on Visualization and Computer Graphics, 27(2), 1753-1763.
doi: 10.1109/TVCG.2020.3028985 URL |
[33] |
Lonsdorf T., Gerlicher A., Klingelhöfer-Jens M., & Krypotos A.-M. (2022). Multiverse analyses in fear conditioning research. Behaviour Research and Therapy, 153, 104072.
doi: 10.1016/j.brat.2022.104072 URL |
[34] |
MacKinnon D. P., Fairchild A. J., & Fritz M. S. (2007). Mediation analysis. Annual Review of Psychology, 58, 593-614. DOI:10.1146/annurev.psych.58.110405.085542
doi: 10.1146/annurev.psych.58.110405.085542 pmid: 16968208 |
[35] | Masur P. K. (2021). Understanding the effects of conceptual and analytical choices on ‘finding’ the privacy paradox: A specification curve analysis of large-scale survey data. Information Communication and Society, https://doi.org/10.1080/1369118X.2021.1963460 |
[36] | Masur P. K., & Scharkow M. (2020). specr:Conducting and visualizing specification curve analyses (Version 0.2.1). R groups. https://masurp.github.io/specr/, https://github.com/masurp/specr |
[37] |
Modecki K. L., Low-Choy S., Uink B. N., Vernon L., Correia H., & Andrews K. (2020). Tuning into the real effect of smartphone use on parenting: A multiverse analysis. Journal of Child Psychology and Psychiatry, 61(8), 855-865.
doi: 10.1111/jcpp.13282 URL |
[38] |
Möschl M., Schmidt K., Enge S., Weckesser L. J., & Miller R. (2021). Chronic stress and executive functioning: A specification-curve analysis. Physiology & Behavior, 243, 113639.
doi: 10.1016/j.physbeh.2021.113639 URL |
[39] |
Nosek B. A., Hardwicke T. E., Moshontz H., Allard A., Corker K. S., Dreber A.,... Vazire S. (2022). Replicability, robustness, and reproducibility in psychological science. Annual Review of Psychology, 73(1), 719-748.
doi: 10.1146/annurev-psych-020821-114157 URL |
[40] | Olsson-collentine A., van Aert R., & Bakker M., Wicherts J. M. (2021). Meta-analyzing the multiverse: A peek under the hood of selective reporting. PsyArXiv, 1-34. |
[41] |
Orben A., & Przybylski A. K. (2019a). Screens, teens, and psychological well-being: Evidence from three time-use- diary studies. Psychological Science, 30(5), 682-696.
doi: 10.1177/0956797619830329 URL |
[42] |
Orben A., & Przybylski A. K. (2019b). The association between adolescent well-being and digital technology use. Nature Human Behaviour, 3(2), 173-182.
doi: 10.1038/s41562-018-0506-1 URL |
[43] |
Pashler H., & Wagenmakers E.-J. (2012). Editors’ introduction to the special section on replicability in psychological science: A crisis of confidence? Perspectives on Psychological Science, 7(6), 528-530.
doi: 10.1177/1745691612465253 pmid: 26168108 |
[44] |
Patel C. J., Burford B., & Ioannidis J. P. A. (2015). Assessment of vibration of effects due to model specification can demonstrate the instability of observational associations. Journal of Clinical Epidemiology, 68(9), 1046-1058.
doi: 10.1016/j.jclinepi.2015.05.029 pmid: 26279400 |
[45] |
Prentice D. A., & Miller D. T. (1992). When small effects are impressive. Psychological Bulletin, 112(1), 160-164.
doi: 10.1037/0033-2909.112.1.160 URL |
[46] |
Rijnhart J. J. M., Lamp S. J., Valente M. J., MacKinnon D. P., Twisk J. W. R., & Heymans M. W. (2021). Mediation analysis methods used in observational research: A scoping review and recommendations. BMC Medical Research Methodology, 21(1), 1-17.
doi: 10.1186/s12874-020-01190-w URL |
[47] |
Rijnhart J. J. M., Twisk J. W. R., Deeg D. J. H., & Heymans M. W. (2021). Assessing the robustness of mediation analysis results using multiverse analysis. Prevention Science, 23(5), 821-831.
doi: 10.1007/s11121-021-01280-1 pmid: 34272641 |
[48] |
Rodebaugh T. L., Tonge N. A., Piccirill M. L., Fried E., Horenstein A., Morrison A. S.,... Heimberg R. G. (2018). Does centrality in a cross-sectional network suggest intervention targets for social anxiety disorder? Journal of Consulting and Clinical Psychology, 86(10), 831-844.
doi: 10.1037/ccp0000336 pmid: 30265042 |
[49] | Sarma A. (2021). Package ‘multiverse’: “Explorable Multiverse” Data analysis and reports (Version 0.5.0). R groups. https://cran.r-project.org/web/packages/multiverse/index.html |
[50] | Sievertsen H. H., & Kim B. H. (2020). Specification curve in Stata. Github. https://github.com/hhsievertsen/speccurve |
[51] |
Simmons J. P., Nelson L. D., & Simonsohn U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359-1366.
doi: 10.1177/0956797611417632 pmid: 22006061 |
[52] | Simonsohn U., Simmons J. P., & Nelson L. D. (2015). Specification curve: Descriptive and inferential statistics on all reasonable specifications. SSRN Electronic Journal, 1-15. https://doi.org/10.2139/ssrn.2694998 |
[53] |
Simonsohn U., Simmons J. P., & Nelson L. D. (2020). Specification curve analysis. Nature Human Behaviour, 4(11), 1208-1214.
doi: 10.1038/s41562-020-0912-z URL |
[54] |
Steegen S., Tuerlinckx F., Gelman A., & Vanpaemel W. (2016). Increasing transparency through a multiverse analysis. Perspectives on Psychological Science, 11(5), 702-712.
pmid: 27694465 |
[55] |
Tackett J. L., Brandes C. M., King K. M., & Markon K. E. (2019). Psychology’s replication crisis and clinical psychological science. Annual Review of Clinical Psychology, 15, 579-604.
doi: 10.1146/annurev-clinpsy-050718-095710 URL |
[56] | Turrell A. (2021). aeturrell/specification_curve: Specification Curve 0.2.6: Biosphere Mansion (Version 0.2.6). Zenodo. |
[57] | Voracek M., Kossmeier M., & Tran U. S. (2019). Which data to meta-analyze, and how? A specification-curve and multiverse-analysis approach to meta-analysis. Zeitschrift Fur Psychologie, 227(1), 64-82. |
[58] |
Wright L., Head J. A., & Jivraj S. (2021). How robust is the association between youth unemployment and later mental health? An analysis of longitudinal data from English schoolchildren. Occupational and Environmental Medicine, 78(8), 618-620.
doi: 10.1136/oemed-2021-107473 URL |
[59] |
Young C., & Holsteen K. (2017). Model uncertainty and robustness: A computational framework for multimodel analysis. Sociological Methods and Research, 46(1), 3-40.
doi: 10.1177/0049124115610347 URL |
[1] | 方俊燕, 温忠麟. 追踪研究中的内生性问题:来源与应对[J]. 心理科学进展, 2023, 31(4): 507-518. |
[2] | 陈新文, 李鸿杰, 丁玉珑. 探究事件相关脑电/脑磁信号中的神经表征模式:基于分类解码和表征相似性分析的方法[J]. 心理科学进展, 2023, 31(2): 173-195. |
[3] | 包寒吴霜 王梓西 程曦 苏展 杨盈 张光耀 王博 蔡华俭. 基于词嵌入技术的心理学研究:方法及应用[J]. 心理科学进展, 0, (): 0-0. |
[4] | 朱训, 顾昕. 变量相对重要性评估的方法选择及应用[J]. 心理科学进展, 2023, 31(1): 145-158. |
[5] | 方杰, 温忠麟. 纵向数据的调节效应分析[J]. 心理科学进展, 2022, 30(11): 2461-2472. |
[6] | 翟宏堃, 李强, 魏晓薇. 结构方程模型统计检验力分析:原理与方法[J]. 心理科学进展, 2022, 30(9): 2117-2130. |
[7] | 王阳, 温忠麟, 王惠惠, 管芳. 第二类有中介的调节模型[J]. 心理科学进展, 2022, 30(9): 2131-2142. |
[8] | 温忠麟, 谢晋艳, 方杰, 王一帆. 新世纪20年国内假设检验及其关联问题的方法学研究[J]. 心理科学进展, 2022, 30(8): 1667-1681. |
[9] | 温忠麟, 陈虹熹, 方杰, 叶宝娟, 蔡保贞. 新世纪20年国内测验信度研究[J]. 心理科学进展, 2022, 30(8): 1682-1691. |
[10] | 温忠麟, 方杰, 谢晋艳, 欧阳劲樱. 国内中介效应的方法学研究[J]. 心理科学进展, 2022, 30(8): 1692-1702. |
[11] | 方杰, 温忠麟, 欧阳劲樱, 蔡保贞. 国内调节效应的方法学研究[J]. 心理科学进展, 2022, 30(8): 1703-1714. |
[12] | 王阳, 温忠麟, 李伟, 方杰. 新世纪20年国内结构方程模型方法研究与模型发展[J]. 心理科学进展, 2022, 30(8): 1715-1733. |
[13] | 刘源, 都弘彦, 方杰, 温忠麟. 国内追踪数据分析方法研究与模型发展[J]. 心理科学进展, 2022, 30(8): 1734-1746. |
[14] | 林浇敏, 李爱梅, 周雅然, 何军红, 周蕾. 眼动操纵技术在决策研究中的应用前景:改变决策行为[J]. 心理科学进展, 2022, 30(8): 1794-1803. |
[15] | 卫旭华, 汪光炜, 陈义. 国内管理心理实验中的操纵检验: 现状、问题与建议[J]. 心理科学进展, 2022, 30(6): 1367-1376. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||