心理科学进展 ›› 2021, Vol. 29 ›› Issue (10): 1740-1754.doi: 10.3724/SP.J.1042.2021.01740
马敏璇, 李文婕, 秦梦玲, 韦耀鸿, 谭倩宝, 沈路, 陈骐, 韩彪()
收稿日期:
2020-09-18
出版日期:
2021-10-15
发布日期:
2021-08-23
基金资助:
MA Minxuan, LI Wenjie, QIN Mengling, WEI Yaohong, TAN Qianbao, SHEN Lu, CHEN Qi, HAN Biao()
Received:
2020-09-18
Online:
2021-10-15
Published:
2021-08-23
摘要:
大脑电刺激是历史悠久但近年来才广泛应用在人类被试上的实验技术。通过对颅内刺激位点进行电刺激, 并分析引发的暂时性行为功能变化和记录位点的电位活动, 大脑电刺激技术可以揭示认知加工过程中脑区内的功能作用与脑区间的有效连接。通过对听觉语言加工过程相关的丘脑、听觉皮层、高级语言皮层进行电刺激, 现有研究发现了各个脑区的不同功能特点以及不同脑区间的信息传递机制, 为进一步探索听觉语言加工的神经机制提供了新的视角。
中图分类号:
马敏璇, 李文婕, 秦梦玲, 韦耀鸿, 谭倩宝, 沈路, 陈骐, 韩彪. (2021). 大脑电刺激在听觉语言加工研究中的应用. 心理科学进展 , 29(10), 1740-1754.
MA Minxuan, LI Wenjie, QIN Mengling, WEI Yaohong, TAN Qianbao, SHEN Lu, CHEN Qi, HAN Biao. (2021). Application of electrical brain stimulation in the auditory language processing. Advances in Psychological Science, 29(10), 1740-1754.
图1 听觉语言加工过程示意图。 听觉语言信息从丘脑传到听觉皮层, 再由听觉皮层依次传导到颞叶、额叶语言区, 同时额叶语言区将信息反馈到颞叶语言区。 图片修改于:OpenStax, CC BY 4.0; Cancer Research UK, CC BY-SA via Wikimedia Commons.
研究 | N | 年龄mean (min~max) | 刺激位点 | 记录位点 | 频率 (Hz) | 电流强度 (mA) | 时长(ms) | 主要结论 |
---|---|---|---|---|---|---|---|---|
Rosenberg et al. ( | 7 | 34 (16~47) | PuM, 皮层广泛位置 | 皮层广泛位置, PuM | 0.2 | 3 | 1 | 丘脑内侧枕与皮层有广泛联系 |
Atencio et al. ( | 5 | 成年 | MGB | PAC | 2 | (20~35.6) ×10-6 | 0.2 | 用低强度电流刺激猫丘脑可以激活听觉皮层 |
Howard et al. ( | 18 | / | HG | PLST | 1/2 | 1~4 | 0.2 | HG与PLST之间存在单向投射 |
Brugge et al. ( | 7 | 38 (19~46) | HG, PLST | HG, PLST | 1/0.5 | 1~4 | 0.2 | HG与PLST之间存在双向投射 |
Matsumoto et al. ( | 8 | 24.9 (13~42) | 颞叶, 额叶, 面部运动区 | 颞叶, 额叶, 顶叶, 中央沟 | 1 | 12 | 0.3 | Perisylvian内的双向连接 |
Entz et al. ( | 25 | 31.6 (15~60) | 颞叶, 额叶 | 颞叶, 额叶 | 0.5/1 | 10 | 0.2 | 颞叶、额叶等语言网络之间的双向投射 |
Kanno et al. ( | 27 | / (13~43) | 额叶 | 颞顶区 | 1 | 10 | / | 个体的额叶和颞顶叶在半球之间的连接比较 |
Nakae et al. ( | 14 | 45.9 (21~79) | IFG, 外侧颞-枕区 | IFG, 外侧颞-枕区 | 1 | 15 | 0.3 | 左IFG各部分分别与颞叶呈梯度性连接 |
表1 大脑电刺激在听觉语言加工中的应用研究(脑区连接部分)
研究 | N | 年龄mean (min~max) | 刺激位点 | 记录位点 | 频率 (Hz) | 电流强度 (mA) | 时长(ms) | 主要结论 |
---|---|---|---|---|---|---|---|---|
Rosenberg et al. ( | 7 | 34 (16~47) | PuM, 皮层广泛位置 | 皮层广泛位置, PuM | 0.2 | 3 | 1 | 丘脑内侧枕与皮层有广泛联系 |
Atencio et al. ( | 5 | 成年 | MGB | PAC | 2 | (20~35.6) ×10-6 | 0.2 | 用低强度电流刺激猫丘脑可以激活听觉皮层 |
Howard et al. ( | 18 | / | HG | PLST | 1/2 | 1~4 | 0.2 | HG与PLST之间存在单向投射 |
Brugge et al. ( | 7 | 38 (19~46) | HG, PLST | HG, PLST | 1/0.5 | 1~4 | 0.2 | HG与PLST之间存在双向投射 |
Matsumoto et al. ( | 8 | 24.9 (13~42) | 颞叶, 额叶, 面部运动区 | 颞叶, 额叶, 顶叶, 中央沟 | 1 | 12 | 0.3 | Perisylvian内的双向连接 |
Entz et al. ( | 25 | 31.6 (15~60) | 颞叶, 额叶 | 颞叶, 额叶 | 0.5/1 | 10 | 0.2 | 颞叶、额叶等语言网络之间的双向投射 |
Kanno et al. ( | 27 | / (13~43) | 额叶 | 颞顶区 | 1 | 10 | / | 个体的额叶和颞顶叶在半球之间的连接比较 |
Nakae et al. ( | 14 | 45.9 (21~79) | IFG, 外侧颞-枕区 | IFG, 外侧颞-枕区 | 1 | 15 | 0.3 | 左IFG各部分分别与颞叶呈梯度性连接 |
研究 | N | 年龄mean (min~max) | 刺激位点 | 记录位点 | 频率(Hz) | 电流强度(mA) | 时长(ms) | 主要结论 |
---|---|---|---|---|---|---|---|---|
Ma et al. ( | 11 | 成年 | MGBv/m | A1 | 10 | 0.0001 | 0.2 | 刺激蝙蝠MGB不同部位对A1的影响不同 |
Zhang et al. ( | 9 | 成年 | 听觉皮层 | MGB | 5 | 0.0001 | 0.2 | 髭蝠听觉皮层对丘脑神经元的反馈作用 |
Sinai et al. ( | 6 | 35.7(23~58) | STG | STG | 50 | 10~15 | 0.3 | 颞上回中/后部均影响听觉语言知觉和听觉理解 |
Boatman et al. ( | 5 | 32(17~47) | 左STG | 左STG | <15 | 0.3 | 左STG辅音和元音知觉是有差异的 | |
Suzuki et al. ( | 7 | 22(18~47) | PLST | PLST | 50 | 0~15 | 0.4 | 双侧PLST的功能不同 |
Matsumoto et al. ( | 2 | 31(30~32) | STG/STS, pMTG, pITG | STG/STS, pMTG, pITG | 50 | / | 0.3 | 左颞叶前区在听觉语言感知中的作用 |
Roux et al. ( | 90 | 48(18~74) | 额叶, 顶叶, 颞叶 | 额叶, 顶叶, 颞叶 | 60 | 4~12 | 1 | 左侧颞上回参与单词理解的加工 |
表2 大脑电刺激在听觉语言加工中的应用研究(功能特点方面)
研究 | N | 年龄mean (min~max) | 刺激位点 | 记录位点 | 频率(Hz) | 电流强度(mA) | 时长(ms) | 主要结论 |
---|---|---|---|---|---|---|---|---|
Ma et al. ( | 11 | 成年 | MGBv/m | A1 | 10 | 0.0001 | 0.2 | 刺激蝙蝠MGB不同部位对A1的影响不同 |
Zhang et al. ( | 9 | 成年 | 听觉皮层 | MGB | 5 | 0.0001 | 0.2 | 髭蝠听觉皮层对丘脑神经元的反馈作用 |
Sinai et al. ( | 6 | 35.7(23~58) | STG | STG | 50 | 10~15 | 0.3 | 颞上回中/后部均影响听觉语言知觉和听觉理解 |
Boatman et al. ( | 5 | 32(17~47) | 左STG | 左STG | <15 | 0.3 | 左STG辅音和元音知觉是有差异的 | |
Suzuki et al. ( | 7 | 22(18~47) | PLST | PLST | 50 | 0~15 | 0.4 | 双侧PLST的功能不同 |
Matsumoto et al. ( | 2 | 31(30~32) | STG/STS, pMTG, pITG | STG/STS, pMTG, pITG | 50 | / | 0.3 | 左颞叶前区在听觉语言感知中的作用 |
Roux et al. ( | 90 | 48(18~74) | 额叶, 顶叶, 颞叶 | 额叶, 顶叶, 颞叶 | 60 | 4~12 | 1 | 左侧颞上回参与单词理解的加工 |
[1] |
Alitto, H. J., & Usrey, W. M. (2003). Corticothalamic feedback and sensory processing. Current Opinion in Neurobiology, 13(4), 440-445.
pmid: 12965291 |
[2] |
Amunts, K., Lenzen, M., Friederici, A. D., Schleicher, A., Morosan, P., Palomero-Gallagher, N., & Zilles, K. (2010). Broca's region: Novel organizational principles and multiple receptor mapping. Plos Biology, 8(9), e1000489.
doi: 10.1371/journal.pbio.1000489 URL |
[3] |
Antunes, F. M., & Malmierca, M. S. (2014). An overview of stimulus-specific adaptation in the auditory thalamus. Brain Topography, 27(4), 480-499.
doi: 10.1007/s10548-013-0342-6 pmid: 24343247 |
[4] |
Atencio, C. A., Shih, J. Y., Schreiner, C. E., & Cheung, S. W. (2014). Primary auditory cortical responses to electrical stimulation of the thalamus. Journal of Neurophysiology, 111(5), 1077-1087.
doi: 10.1152/jn.00749.2012 pmid: 24335216 |
[5] |
Bartlett, E. L. (2013). The organization and physiology of the auditory thalamus and its role in processing acoustic features important for speech perception. Brain and Language, 126(1), 29-48.
doi: 10.1016/j.bandl.2013.03.003 pmid: 23725661 |
[6] |
Bignall, K. E. (1969). Bilateral temporofrontal projections in the squirrel monkey: Origin, distribution and pathways. Brain Research, 13(2), 319-327.
pmid: 4977229 |
[7] |
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767-2796.
doi: 10.1093/cercor/bhp055 URL |
[8] | Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Springer, J. A., Kaufman, J. N., & Possing, E. T. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10(5), 512-528. |
[9] |
Boatman, D. (2004). Cortical bases of speech perception: Evidence from functional lesion studies. Cognition, 92(1-2), 47-65.
doi: 10.1016/j.cognition.2003.11.001 URL |
[10] |
Boatman, D., Hall, C., Goldstein, M. H., Lesser, R., & Gordon, B. (1997). Neuroperceptual differences in consonant and vowel discrimination: As revealed by direct cortical electrical interference. Cortex, 33(1), 83-98.
pmid: 9088723 |
[11] |
Boatman, D., Lesser, R. P., & Gordon, B. (1995). Auditory speech processing in the left temporal lobe: An electrical interference study. Brain and Language, 51(2), 269-290.
pmid: 8564472 |
[12] |
Bonilha, L., Hillis, A. E., Hickok, G., den Ouden, D. B., Rorden, C., & Fridriksson, J. (2017). Temporal lobe networks supporting the comprehension of spoken words. Brain, 140(9), 2370-2380.
doi: 10.1093/brain/awx169 URL |
[13] |
Borchers, S., Himmelbach, M., Logothetis, N., & Karnath, H. O. (2011). Direct electrical stimulation of human cortex -- The gold standard for mapping brain functions?. Nature Reviews Neuroscience, 13(1), 63-70.
doi: 10.1038/nrn3140 pmid: 22127300 |
[14] |
Boulogne, S., Andre-Obadia, N., Kimiskidis, V. K., Ryvlin, P., & Rheims, S. (2016). Cortico-cortical and motor evoked potentials to single and paired-pulse stimuli: An exploratory transcranial magnetic and intracranial electric brain stimulation study. Human Brain Mapping, 37(11), 3767-3778.
doi: 10.1002/hbm.v37.11 URL |
[15] |
Boulogne, S., Ryvlin, P., & Rheims, S. (2016). Single and paired-pulse electrical stimulation during invasive EEG recordings. Revue Neurologique, 172(3), 174-181.
doi: 10.1016/j.neurol.2016.02.004 pmid: 26993563 |
[16] |
Brugge, J. F., Volkov, I. O., Garell, P. C., Reale, R. A., & Howard, M. A., 3rd (2003). Functional connections between auditory cortex on Heschl's gyrus and on the lateral superior temporal gyrus in humans. Journal of Neurophysiology, 90(6), 3750-3763.
pmid: 12968011 |
[17] |
Catani, M., & Mesulam, M. (2008). The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state. Cortex, 44(8), 953-961.
doi: 10.1016/j.cortex.2008.04.002 pmid: 18614162 |
[18] |
Chang, E. F., Kurteff, G., & Wilson, S. M. (2018). Selective interference with syntactic encoding during sentence production by direct electrocortical stimulation of the inferior frontal gyrus. Journal of Cognitive Neuroscience, 30(3), 411-420.
doi: 10.1162/jocn_a_01215 URL |
[19] |
Cocquyt, E. -M., Lanckmans, E., van Mierlo, P., Duyck, W., Szmalec, A., Santens, P., & de Letter, M. (2020). The white matter architecture underlying semantic processing: A systematic review. Neuropsychologia, 136, 107182.
doi: S0028-3932(19)30228-3 pmid: 31568774 |
[20] |
Conner, C. R., Ellmore, T. M., DiSano, M. A., Pieters, T. A., Potter, A. W., & Tandon, N. (2011). Anatomic and electro-physiologic connectivity of the language system: A combined DTI-CCEP study. Computers in Biology and Medicine, 41(12), 1100-1109.
doi: 10.1016/j.compbiomed.2011.07.008 URL |
[21] |
Cushing, H. (1909). A note upon the faradic stimulation of the postcentral gyrus in conscious patients. Brain, 32(1), 44-53.
doi: 10.1093/brain/32.1.44 URL |
[22] | David, O., Bastin, J., Chabardès, S., Minotti, L., & Kahane, P. (2010). Studying network mechanisms using intracranial stimulation in epileptic patients. Frontiers in Systems Neuroscience, 4, 148. |
[23] |
David, O., Job, A. S., de Palma, L., Hoffmann, D., Minotti, L., & Kahane, P. (2013). Probabilistic functional tractography of the human cortex. NeuroImage, 80, 307-317.
doi: 10.1016/j.neuroimage.2013.05.075 URL |
[24] |
de la Mothe, L. A., Blumell, S., Kajikawa, Y., & Hackett, T. A. (2012). Thalamic connections of auditory cortex in marmoset monkeys: Lateral belt and parabelt regions. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 295(5), 822-836.
doi: 10.1002/ar.v295.5 URL |
[25] |
den Ouden, D. B., Saur, D., Mader, W., Schelter, B., Lukic, S., Wali, E., … Thompson, C. K. (2012). Network modulation during complex syntactic processing. NeuroImage, 59(1), 815-823.
doi: 10.1016/j.neuroimage.2011.07.057 URL |
[26] | DeWitt, I., & Rauschecker, J. P. (2012). Phoneme and word recognition in the auditory ventral stream. Proceedings of the National Academy of Sciences, 109(8), E505-E514. |
[27] |
Duffau, H. (2015). Stimulation mapping of white matter tracts to study brain functional connectivity. Nature Reviews Neurology, 11(5), 255-265.
doi: 10.1038/nrneurol.2015.51 URL |
[28] |
Duffau, H., Leroy, M., & Gatignol, P. (2008). Cortico-subcortical organization of language networks in the right hemisphere: An electrostimulation study in left-handers. Neuropsychologia, 46(14), 3197-3209.
doi: 10.1016/j.neuropsychologia.2008.07.017 URL |
[29] |
Enatsu, R., Kubota, Y., Kakisaka, Y., Bulacio, J., Piao, Z., O'Connor, T., … Nair, D. R. (2013). Reorganization of posterior language area in temporal lobe epilepsy: A cortico-cortical evoked potential study. Epilepsy Research, 103(1), 73-82.
doi: 10.1016/j.eplepsyres.2012.07.008 pmid: 22819071 |
[30] |
Entz, L., Tóth, E., Keller, C. J., Bickel, S., Groppe, D. M., Fabó, D., … Mehta, A. D. (2014). Evoked effective connectivity of the human neocortex. Human Brain Mapping, 35(12), 5736-5753.
doi: 10.1002/hbm.v35.12 URL |
[31] |
Europa, E., Gitelman, D. R., Kiran, S., & Thompson, C. K. (2019). Neural connectivity in syntactic movement processing. Frontiers in Human Neuroscience, 13, 27.
doi: 10.3389/fnhum.2019.00027 URL |
[32] |
Ezure, K., & Oshima, T. (1985). Lateral spread of neuronal activity within the motor cortex investigated with intracellular responses to distant epicortical stimulation. The Japanese Journal of Physiology, 35(2), 223-249.
doi: 10.2170/jjphysiol.35.223 URL |
[33] | Fernández, L., Velásquez, C., García Porrero, J. A., de Lucas, E. M., Martino, J. (2020). Heschl's gyrus fiber intersection area: A new insight on the connectivity of the auditory-language hub. Neurosurgical Focus, 48(2), E7. |
[34] |
Foerster, O., & Altenburger, H. (1935) Elektrobiologische vorgange an der menschlichen hirnrinde. Dtsch. Z. Nervenheilk, 135, 277-286.
doi: 10.1007/BF01732786 URL |
[35] |
Friederici, A. D. (2012). The cortical language circuit: From auditory perception to sentence comprehension. Trends in Cognitive Sciences, 16(5), 262-268.
doi: 10.1016/j.tics.2012.04.001 pmid: 22516238 |
[36] |
Friederici, A. D., Chomsky, N., Berwick, R. C., Moro, A., & Bolhuis, J. J. (2017). Language, mind and brain. Nature Human Behaviour, 1(10), 713-722.
doi: 10.1038/s41562-017-0184-4 pmid: 31024099 |
[37] | Fritsch, G., & Hitzig, E. (1870) Uber die elektrische erregbarkeit des Grosshirns. Arch Anat Physiol Wissen, 37, 300-332. Reprinted in 2009: Electric excitability of the cerebrum. Epilepsy & Behavior, 15(2), 123-130. |
[38] |
Garell, P. C., Bakken, H., Greenlee, J. D. W., Volkov, I., Reale, R. A., Oya, H., … Brugge, J. F. (2013). Functional connection between posterior superior temporal gyrus and ventrolateral prefrontal cortex in human. Cerebral Cortex, 23(10), 2309-2321.
doi: 10.1093/cercor/bhs220 URL |
[39] |
George, D. D., Ojemann, S. G., Drees, C., & Thompson, J. A. (2020). Stimulation mapping using stereoelectroencephalography: Current and future directions. Frontiers in Neurology, 11, 320.
doi: 10.3389/fneur.2020.00320 pmid: 32477236 |
[40] |
Gierhan, S. M. E. (2013). Connections for auditory language in the human brain. Brain and Language, 127(2), 205-221.
doi: 10.1016/j.bandl.2012.11.002 pmid: 23290461 |
[41] |
Hackett, T. A. (2011). Information flow in the auditory cortical network. Hearing Research, 271(1-2), 133-146.
doi: 10.1016/j.heares.2010.10.016 URL |
[42] |
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews. Neuroscience, 8(5), 393-402.
doi: 10.1038/nrn2113 URL |
[43] |
Howard, M. A., Volkov, I. O., Mirsky, R., Garell, P. C., Noh, M. D., Granner, M., … Brugge, J. F. (2000). Auditory cortex on the human posterior superior temporal gyrus. The Journal of Comparative Neurology, 416(1), 79-92.
doi: 10.1002/(ISSN)1096-9861 URL |
[44] |
Humphries, C., Liebenthal, E., & Binder, J. R. (2010). Tonotopic organization of human auditory cortex. NeuroImage, 50(3), 1202-1211.
doi: 10.1016/j.neuroimage.2010.01.046 pmid: 20096790 |
[45] |
Ivanova, M. V., Isaev, D. Y., Dragoy, O. V., Akinina, Y. S., Petrushevskiy, A. G., Fedina, O. N., … Dronkers, N. F. (2016). Diffusion-tensor imaging of major white matter tracts and their role in language processing in aphasia. Cortex, 85, 165-181.
doi: S0010-9452(16)30098-3 pmid: 27289586 |
[46] |
Jankowska, E., Padel, Y., & Tanaka, R. (1975). The mode of activation of pyramidal tract cells by intracortical stimuli. The Journal of Physiology, 249(3), 617-636.
doi: 10.1113/jphysiol.1975.sp011034 URL |
[47] | Kanno, A., Enatsu, R., Ookawa, S., Noshiro, S., Ohtaki, S., Suzuki, K., … Mikuni, N. (2018). Interhemispheric asymmetry of network connecting between frontal and temporoparietal cortices: A corticocortical-evoked potential study. World Neurosurgery, 120, e628-e636. |
[48] |
Keller, C. J., Bickel, S., Entz, L., Ulbert, I., Milham, M. P., Kelly, C., & Mehta, A. D. (2011). Intrinsic functional architecture predicts electrically evoked responses in the human brain. Proceedings of the National Academy of Sciences, 108(25), 10308-10313.
doi: 10.1073/pnas.1019750108 URL |
[49] | Keller, C. J., Honey, C. J., Mégevand, P., Entz, L., Ulbert, I., & Mehta, A. D. (2014). Mapping human brain networks with cortico-cortical evoked potentials. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1653), 20130528. |
[50] |
Koubeissi, M. Z., Fernandez-Baca Vaca, G., Maciunas, R., & Stephani, C. (2016). A white matter tract mediating awareness of speech. Neurology, 86(2), 177-179.
doi: 10.1212/WNL.0000000000002246 pmid: 26643545 |
[51] |
Kovac, S., Kahane, P., & Diehl, B. (2016). Seizures induced by direct electrical cortical stimulation-mechanisms and clinical considerations. Clinical Neurophysiology, 127(1), 31-39.
doi: 10.1016/j.clinph.2014.12.009 URL |
[52] |
Kuhnke, P., Meyer, L., Friederici, A. D., & Hartwigsen, G. (2017). Left posterior inferior frontal gyrus is causally involved in reordering during sentence processing. NeuroImage, 148, 254-263.
doi: 10.1016/j.neuroimage.2017.01.013 URL |
[53] |
Kunieda, T., Yamao, Y., Kikuchi, T., & Matsumoto, R. (2015). New approach for exploring cerebral functional connectivity: Review of cortico-cortical evoked potential. Neurologia Medico-Chirurgica, 55(5), 374-382.
doi: 10.2176/nmc.ra.2014-0388 URL |
[54] | Lachaux, JP., Rudrauf, D., Kahane, P. (2003). Intracranial EEG and human Brain Mapping. Journal of Physiology-Paris, 97(4-6), 613-628. |
[55] |
Lee, C. C., & Winer, J. A. (2011). Convergence of thalamic and cortical pathways in cat auditory cortex. Hearing Research, 274(1-2), 85-94.
doi: 10.1016/j.heares.2010.12.020 URL |
[56] |
Leonard, M. K., Cai, R., Babiak, M. C., Ren, A., & Chang, E. F. (2019). The peri-Sylvian cortical network underlying single word repetition revealed by electrocortical stimulation and direct neural recordings. Brain and Language, 193, 58-72.
doi: 10.1016/j.bandl.2016.06.001 URL |
[57] | Lesser, R. P., Lüders, H., Klem, G., Dinner, D. S., Morris, H. H., Hahn, J. F., & Wyllie, E. (1987). Extraoperative cortical functional localization in patients with epilepsy. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 4(1), 27-53. |
[58] | Liegeois-Chauvel, C., Musolino, A., & Chauvel, P. (1991). Localization of the primary auditory area in man. Brain, 114(1), 139-153. |
[59] |
Liu, Z., Shu, S., Lu, L., Ge, J., & Gao, J. H. (2020). Spatiotemporal dynamics of predictive brain mechanisms during speech processing: An MEG study. Brain and Language, 203, 104755.
doi: 10.1016/j.bandl.2020.104755 URL |
[60] |
Lyu, B., Ge, J., Niu, Z., Tan, L. H., & Gao, J. H. (2016). Predictive brain mechanisms in sound-to-meaning mapping during speech processing. Journal of Neuroscience, 36(42), 10813-10822.
doi: 10.1523/JNEUROSCI.0583-16.2016 URL |
[61] |
Mandonnet, E., Winkler, P. A., & Duffau, H. (2010). Direct electrical stimulation as an input gate into brain functional networks: Principles, advantages and limitations. Acta Neurochirurgica. 152(2), 185-193.
doi: 10.1007/s00701-009-0469-0 URL |
[62] |
Mars, R. B., Foxley, S., Verhagen, L., Jbabdi, S., Sallet, J., Noonan, M. P., … Rushworth, M. F. S. (2016). The extreme capsule fiber complex in humans and macaque monkeys: A comparative diffusion MRI tractography study. Brain Structure and Function, 221(8), 4059-4071.
doi: 10.1007/s00429-015-1146-0 URL |
[63] |
Matsumoto, R., Nair, D. R., LaPresto, E., Najm, I., Bingaman, W., Shibasaki, H., & Luders, H. O. (2004). Functional connectivity in the human language system: A cortico-cortical evoked potential study. Brain, 127(10), 2316-2330.
doi: 10.1093/brain/awh246 URL |
[64] |
Matsumoto, R., Imamura, H., Inouchi, M., Nakagawa, T., Yokoyama, Y., Matsuhashi, M., … Ikeda, A. (2011). Left anterior temporal cortex actively engages in speech perception: A direct cortical stimulation study. Neuropsychologia, 49(5), 1350-1354.
doi: S0028-3932(11)00028-5 pmid: 21251921 |
[65] |
Matsumoto, R., Kunieda, T., & Nair, D. (2017). Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy. Seizure, 44, 27-36.
doi: S1059-1311(16)30206-0 pmid: 27939100 |
[66] |
Ma, X., & Suga, N. (2009). Specific and nonspecific plasticity of the primary auditory cortex elicited by thalamic auditory neurons. Journal of Neuroscience, 29(15), 4888- 4896.
doi: 10.1523/JNEUROSCI.0167-09.2009 URL |
[67] | Moore, B. C. J., Tyler, L. K., & Marslen-Wilson, W. (2008). Introduction. The perception of speech: From sound to meaning. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1493), 917-921. |
[68] |
Muh, C. R., Chou, N. D., Rahimpour, S., Komisarow, J. M., Spears, T. G., Fuchs, H. E., … Grant, G. A. (2020). Cortical stimulation mapping for localization of visual and auditory language in pediatric epilepsy patients. Journal of Neurosurgery: Pediatrics, 25(2), 168-177.
doi: 10.3171/2019.8.PEDS1922 URL |
[69] |
Nakai, Y., Jeong, J. -W., Brown, E. C., Rothermel, R., Kojima, K., Kambara, T., … Asano, E. (2017). Three- and four-dimensional mapping of speech and language in patients with epilepsy. Brain, 140(5), 1351-1370.
doi: 10.1093/brain/awx051 URL |
[70] |
Nakae, T., Matsumoto, R., Kunieda, T., Arakawa, Y., Kobayashi, K., Shimotake, A., … Miyamoto, S. (2020). Connectivity gradient in the human left inferior frontal gyrus: Intraoperative cortico-cortical evoked potential study. Cerebral Cortex, 30(8), 4633-4650.
doi: 10.1093/cercor/bhaa065 URL |
[71] |
Nishida, M., Korzeniewska, A., Crone, N. E., Toyoda, G., Nakai, Y., Ofen, N., … Asano, E. (2017). Brain network dynamics in the human articulatory loop. Clinical Neurophysiology, 128(8), 1473-1487.
doi: 10.1016/j.clinph.2017.05.002 URL |
[72] |
Oestreich, L. K. L., Whitford, T. J., & Garrido, M. I. (2018). Prediction of speech sounds is facilitated by a functional fronto-temporal network. Frontiers in Neural Circuits, 12, 43.
doi: 10.3389/fncir.2018.00043 pmid: 29875638 |
[73] | Orena, E. F., Caldiroli, D., Acerbi, F., Barazzetta, I., & Papagno, C. (2019). Investigating the functional neuroanatomy of concrete and abstract word processing through direct electric stimulation (DES) during awake surgery. Cognitive Neuropsychology, 36(3-4), 167-177. |
[74] |
Pandya, D. N., Hallett, M., & Kmukherjee, S. K. (1969). Intra- and interhemispheric connections of the neocortical auditory system in the rhesus monkey. Brain Research, 14(1), 49-65.
pmid: 4977327 |
[75] |
Pandya, D. N., & Sanides, F. (1973). Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Zeitschrift Fur Anatomie und Entwicklungsgeschichte, 139(2), 127-161.
doi: 10.1007/BF00523634 URL |
[76] |
Perrone-Bertolotti, M., Alexandre, S., Jobb, A. S., de Palma, L., Baciu, M., Mairesse, M. P., … David, O. (2020). Probabilistic mapping of language networks from high frequency activity induced by direct electrical stimulation. Human Brain Mapping, 41(14), 4113-4126.
doi: 10.1002/hbm.v41.14 URL |
[77] |
Pfurtscheller, G., & Cooper, R. (1975). Frequency dependence of the transmission of the EEG from cortex to scalp. Electroencephalography and Clinical Neurophysiology, 38(1), 93-96.
pmid: 45909 |
[78] |
Prime, D., Rowlands, D., O'Keefe, S., & Dionisio, S. (2018). Considerations in performing and analyzing the responses of cortico-cortical evoked potentials in stereo-EEG. Epilepsia, 59(1), 16-26.
doi: 10.1111/epi.13939 URL |
[79] |
Rattay, F. (1999). The basic mechanism for the electrical stimulation of the nervous system. Neuroscience, 89(2), 335-346.
pmid: 10077317 |
[80] |
Rauschecker, J. P. (2011). An expanded role for the dorsal auditory pathway in sensorimotor control and integration. Hearing Research, 271(1-2), 16-25.
doi: 10.1016/j.heares.2010.10.016 URL |
[81] |
Rauschecker, J. P. (2018). Where did language come from? Precursor mechanisms in nonhuman primates. Current Opinion in Behavioral Sciences, 21, 195-204.
doi: 10.1016/j.cobeha.2018.06.003 pmid: 30778394 |
[82] |
Rauschecker, J. P., Tian, B., & Hauser, M. (1995). Processing of complex sounds in the macaque nonprimary auditory cortex. Science, 268(5207), 111-114.
pmid: 7701330 |
[83] |
Ripollés, P., Biel, D., Peñaloza, C., Kaufmann, J., Marco- Pallarés, J., Noesselt, T., & Rodríguez-Fornells, A. (2017). Strength of temporal white matter pathways predicts semantic learning. Journal of Neuroscience, 37(46), 11101-11113.
doi: 10.1523/JNEUROSCI.1720-17.2017 pmid: 29025925 |
[84] | Rofes, A., Mandonnet, E., de Aguiar, V., Rapp, B., Tsapkini, K., & Miceli, G. (2019). Language processing from the perspective of electrical stimulation mapping. Cognitive Neuropsychology, 36(3-4), 117-139. |
[85] |
Rosenberg, D. S., Mauguiere, F., Catenoix, H., Faillenot, I., & Magnin, M. (2009). Reciprocal thalamocortical connectivity of the medial pulvinar: A depth stimulation and evoked potential study in human brain. Cerebral Cortex, 19(6), 1462-1473.
doi: 10.1093/cercor/bhn185 URL |
[86] |
Roux, F. E., Miskin, K., Durand, J. B., Sacko, O., Réhault, E., Tanova, R., & Démonet, J. F. (2015). Electrostimulation mapping of comprehension of auditory and visual words. Cortex, 71, 398-408.
doi: 10.1016/j.cortex.2015.07.001 URL |
[87] |
Sarubbo, S., de Benedictis, A., Merler, S., Mandonnet, E., Barbareschi, M., Dallabona, M., Duffau, H. (2016). Structural and functional integration between dorsal and ventral language streams as revealed by blunt dissection and direct electrical stimulation. Human Brain Mapping, 37(11), 3858-3872.
doi: 10.1002/hbm.23281 pmid: 27258125 |
[88] |
Schneider, L., Spierer, L., Maeder, P., Buttet Sovilla, J., & Clarke, S. (2016). Auditory-verbal analysis in aphasia. Aphasiology, 30(12), 1483-1511.
doi: 10.1080/02687038.2016.1140119 URL |
[89] |
Serafini, S., Clyde, M., Tolson, M., Haglund, M. M. (2013). Multimodality word-finding distinctions in cortical stimulation mapping. Neurosurgery, 73(1), 36-47.
doi: 10.1227/01.neu.0000429861.42394.d8 pmid: 23615091 |
[90] |
Shimotake, A., Matsumoto, R., Ueno, T., Kunieda, T., Saito, S., Hoffman, P., … Ikeda, A. (2015). Direct exploration of the role of the ventral anterior temporal lobe in semantic memory: Cortical stimulation and local field potential evidence from subdural grid electrodes. Cerebral Cortex, 25(10), 3802-3817.
doi: 10.1093/cercor/bhu262 URL |
[91] |
Sierpowska, J., Gabarrós, A., Fernández-Coello, A., Camins, À., Castañer, S., Juncadella, M., … Rodríguez-Fornells, A. (2019). White-matter pathways and semantic processing: Intrasurgical and lesion-symptom mapping evidence. NeuroImage: Clinical, 22, 101704.
doi: 10.1016/j.nicl.2019.101704 URL |
[92] |
Sinai, A., Crone, N. E., Wied, H. M., Franaszczuk, P. J., Miglioretti, D., & Boatman-Reich, D. (2009). Intracranial mapping of auditory perception: Event-related responses and electrocortical stimulation. Clinical Neurophysiology, 120(1), 140-149.
doi: 10.1016/j.clinph.2008.10.152 pmid: 19070540 |
[93] |
Skeide, M. A., & Friederici, A. D. (2016). The ontogeny of the cortical language network. Nature Reviews Neuroscience, 17(5), 323-332.
doi: 10.1038/nrn.2016.23 URL |
[94] |
Suzuki, Y., Enatsu, R., Kanno, A., Ochi, S., & Mikuni, N. (2018). The auditory cortex network in the posterior superior temporal area. Clinical Neurophysiology, 129(10), 2132-2136.
doi: S1388-2457(18)31175-1 pmid: 30110660 |
[95] |
Talairach, J., & Bancaud, J. (1966). Lesion, "irritative" zone and epileptogenic focus. Stereotactic and Functional Neurosurgery, 27(1-3), 91-94.
doi: 10.1159/000103925 URL |
[96] |
Tang, J., Yang, W., & Suga, N. (2012). Modulation of thalamic auditory neurons by the primary auditory cortex. Journal of Neurophysiology, 108(3), 935-942.
doi: 10.1152/jn.00251.2012 pmid: 22552191 |
[97] |
Tremblay, P., & Dick, A. S. (2016). Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain and Language, 162, 60-71.
doi: S0093-934X(16)30047-5 pmid: 27584714 |
[98] |
Wessinger, C. M., VanMeter, J., Tian, B., van Lare, J., Pekar, J., & Rauschecker, J. P. (2001). Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 13(1), 1-7.
pmid: 11224904 |
[99] | Woods, D. L., Herron, T. L., Kang, X., Cate, A. D., & Yund, E. W. (2011). Phonological processing in human auditory cortical fields. Frontiers in Human Neuroscience, 5(42), 1-15. |
[100] |
Yi, H. G., Leonard, M. K., & Chang, E. F. (2019). The encoding of speech sounds in the superior temporal gyrus. Neuron, 102(6), 1096-1110.
doi: 10.1016/j.neuron.2019.04.023 URL |
[101] | Young, J. J., Coulehan, K., Fields, M. C., Yoo, J. Y., Marcuse, L. V., Jette, N., … Bender, H. A. (2018). Language mapping using electrocorticography versus stereoelectroencephalography: A case series. Epilepsy & Behavior, 84, 148-151. |
[102] |
Zhang, G., Si, Y., & Dang, J. (2019). Revealing the dynamic brain connectivity from perception of speech sound to semantic processing by EEG. Neuroscience, 415, 70-76.
doi: 10.1016/j.neuroscience.2019.07.023 URL |
[103] |
Zhang, Y., & Suga, N. (2000). Modulation of responses and frequency tuning of thalamic and collicular neurons by cortical activation in mustached bats. Journal of Neurophysiology, 84(1), 325-333.
pmid: 10899207 |
[1] | 叶舒琪, 尹俊婷, 李招贤, 罗俊龙. 情绪对直觉与分析加工的影响机制[J]. 心理科学进展, 2023, 31(5): 736-746. |
[2] | 李亚丹, 杜颖, 谢聪, 刘春宇, 杨毅隆, 李阳萍, 邱江. 语义距离与创造性思维关系的元分析[J]. 心理科学进展, 2023, 31(4): 519-534. |
[3] | 余婕, 陈有国. 时空干扰效应:基于贝叶斯模型的解释[J]. 心理科学进展, 2023, 31(4): 597-607. |
[4] | 王勇丽, 葛胜男, Lancy Lantin Huang, 万勤, 卢海丹. 言语想象的神经机制[J]. 心理科学进展, 2023, 31(4): 608-621. |
[5] | 杨庆, 李亚琴. 不确定是坏的么?不确定状态中的错误加工特点及其解释机制[J]. 心理科学进展, 2023, 31(3): 338-349. |
[6] | 王旭东, 何雅吉, 范会勇, 罗扬眉, 陈煦海. 人际愤怒的利与弊:来自元分析的证据[J]. 心理科学进展, 2023, 31(3): 386-401. |
[7] | 李清扬, 尹俊婷, 罗俊龙. 才思泉涌“举步”间:体育运动对创造性思维的影响[J]. 心理科学进展, 2023, 31(3): 455-466. |
[8] | 陈子炜, 付迪, 刘勋. 错认总比错过好——面孔视错觉的发生机制及其应用[J]. 心理科学进展, 2023, 31(2): 240-255. |
[9] | 王松雪, 程思, 蒋挺, 刘勋, 张明霞. 外在奖赏对陈述性记忆的影响[J]. 心理科学进展, 2023, 31(1): 78-86. |
[10] | 谢才凤, 邬家骅, 许丽颖, 喻丰, 张语嫣, 谢莹莹. 算法决策趋避的过程动机理论[J]. 心理科学进展, 2023, 31(1): 60-77. |
[11] | 叶伟豪 于美琪 张利会 高琪 傅明珠 卢家楣. 精准的意义:负性情绪粒度的作用机制与干预[J]. 心理科学进展, 0, (): 0-0. |
[12] | 朱传林, 刘电芝, 罗文波. 情绪体验影响估算策略运用的认知与脑机制[J]. 心理科学进展, 2022, 30(12): 2639-2649. |
[13] | 史汉文, 李雨桐, 隋雪. 情绪词类型效应:区分情绪标签词和情绪负载词的行为和神经活动证据[J]. 心理科学进展, 2022, 30(12): 2696-2707. |
[14] | 陈玉田, 陈睿, 李鹏. 工作记忆中“组块”概念的演化及理论模型[J]. 心理科学进展, 2022, 30(12): 2708-2717. |
[15] | 时慧颖, 汤洁, 刘萍萍. 眼睛效应不稳定与感知规范:一个新视角[J]. 心理科学进展, 2022, 30(12): 2718-2734. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||