心理科学进展 ›› 2024, Vol. 32 ›› Issue (11): 1844-1853.doi: 10.3724/SP.J.1042.2024.01844
收稿日期:
2024-02-25
出版日期:
2024-11-15
发布日期:
2024-09-05
通讯作者:
张得龙, E-mail:delong.zhang@m.scnu.edu.cn基金资助:
Received:
2024-02-25
Online:
2024-11-15
Published:
2024-09-05
摘要:
失象症是一种特殊的心理现象, 表现为个体无法自主在大脑中生成心理表象。研究者通过VVIQ等主观报告方法揭示了失象症现象的存在, 并借助双眼竞争范式和脑成像技术探讨了失象症的神经基础。研究发现失象症个体通常采用替代策略, 如语言描述等非视觉策略, 以弥补表象能力的缺陷。这些策略不仅体现在想象和记忆领域, 还在空间能力、元认知和情感体验等方面表现出多样性。深度学习模型的发展不仅推动了认知科学与人工智能的交叉, 还为揭示失象症的神经计算机制提供了新途径。未来研究应继续探索失象症的多感官模态与认知多样性, 建立新的深度学习模型, 模拟失象症的认知模式并探究其神经机制, 为揭示大脑信息表征并开发更好的拟人化智能产品提供科学依据。
中图分类号:
齐登辉, 张得龙. (2024). 超越视觉限制:失象症的跨学科探索. 心理科学进展 , 32(11), 1844-1853.
QI Denghui, ZHANG Delong. (2024). Beyond visual constraints: Interdisciplinary exploration of aphantasia. Advances in Psychological Science, 32(11), 1844-1853.
[1] | 常松, 张得龙, 潘京花, 梁碧珊, 黄瑞旺, 刘鸣. (2017). 初级视觉皮层在表象表征方式研究中的作用. 心理科学, 40(2), 335-340. https://doi.org/10.16719/j.cnki.1671-6981.20170213 |
[2] | 刘鸣. (2004). 表象研究方法论. 心理科学, 27(2), 258-260. https://doi.org/10.16719/j.cnki.1671-6981.2004.02.001 |
[3] |
叶晓燕, 张得龙, 常松, 刘鸣. (2018). 视觉表象个体差异及其神经基础. 心理科学进展, 26(7), 1186-1192. https://doi.org/10.3724/SP.J.1042.2018.01186
doi: 10.3724/SP.J.1042.2018.01186 URL |
[4] | 张得龙, 梁碧珊, 文学, 黄瑞旺, 刘鸣. (2014). 视觉表象可视化——视觉表象研究的新途径. 心理科学, 37(3), 573-580. https://doi.org/10.16719/j.cnki.1671-6981.2014.03.014 |
[5] | Arcangeli, M. (2023). Aphantasia demystified. Synthese, 201(2), 31. https://doi.org/10.1007/s11229-022-04027-9 |
[6] |
Bainbridge, W. A., Pounder, Z., Eardley, A. F., & Baker, C. I. (2021). Quantifying aphantasia through drawing: Those without visual imagery show deficits in object but not spatial memory. Cortex, 135, 159-172. https://doi.org/10.1016/j.cortex.2020.11.014
doi: 10.1016/j.cortex.2020.11.014 URL pmid: 33383478 |
[7] |
Barnett, K. J., & Newell, F. N. (2008). Synaesthesia is associated with enhanced, self-rated visual imagery. Consciousness and Cognition, 17(3), 1032-1039. https://doi.org/10.1016/j.concog.2007.05.011
URL pmid: 17627844 |
[8] |
Bartolomeo, P., Bachoud-Lévi, A. C., Chokron, S., & Degos, J. D. (2002). Visually- and motor-based knowledge of letters: Evidence from a pure alexic patient. Neuropsychologia, 40(8), 1363-1371. https://doi.org/10.1016/S0028-3932(01)00209-3
URL pmid: 11931940 |
[9] | Bashivan, P., Kar, K., & DiCarlo, J. J. (2019). Neural population control via deep image synthesis. Science, 364(6439), eaav9436. https://doi.org/10.1126/science.aav9436 |
[10] |
Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76(4), 695-711. https:// doi.org/10.1016/j.neuron.2012.10.038
doi: 10.1016/j.neuron.2012.10.038 URL pmid: 23177956 |
[11] | Battleday, R. M., Peterson, J. C., & Griffiths, T. L. (2021). From convolutional neural networks to models of higher- level cognition (and back again). Annals of the New York Academy of Sciences, 1505(1), 55-78. https://doi.org/10.1111/nyas.14593 |
[12] | Bergmann, J., Genç, E., Kohler, A., Singer, W., & Pearson, J. (2016). Smaller primary visual cortex is associated with stronger, but less precise mental imagery. Cerebral Cortex, 26(9), 3838-3850. https://doi.org/10.1093/cercor/bhv186 |
[13] |
Breedlove, J. L., St-Yves, G., Olman, C. A., & Naselaris, T. (2020). Generative feedback explains distinct brain activity codes for seen and mental images. Current Biology, 30(12), 2211-2224. https://doi.org/10.1016/j.cub.2020.04.014
doi: S0960-9822(20)30494-2 URL pmid: 32359428 |
[14] | Brons, L. (2019). Aphantasia, SDAM, and episodic memory. Annals of the Japan Association for Philosophy of Science, 28(0), 9-32. https://doi.org/10.4288/jafpos.28.0_9 |
[15] |
Burkhardt, M., Bergelt, J., Gönner, L., Dinkelbach, H. Ü., Beuth, F., Schwarz, A., … Hamker, F. H. (2023). A large-scale neurocomputational model of spatial cognition integrating memory with vision. Neural Networks, 167, 473-488. https://doi.org/10.1016/j.neunet.2023.08.034
doi: 10.1016/j.neunet.2023.08.034 URL pmid: 37688954 |
[16] |
Cohoe, C. (2019). Aristotle, de anima: Translation, introduction, and commentary. The Philosophical Quarterly, 69(274), 192-193. https://doi.org/10.1093/pq/pqy001
doi: 10.1093/pq/pqy001 URL |
[17] | Crowder, A. (2018). Differences in spatial visualization ability and vividness of spatial imagery between people with and without aphantasia (Unpublished doctorial dissertation). Virginia Commonwealth University. |
[18] | Dance, C. J., Ipser, A., & Simner, J. (2022). The prevalence of aphantasia (imagery weakness) in the general population. Consciousness and Cognition, 97, 103243. https://doi.org/10.1016/j.concog.2021.103243 |
[19] | Dance, C. J., Jaquiery, M., Eagleman, D. M., Porteous, D., Zeman, A., & Simner, J. (2021). What is the relationship between aphantasia, synaesthesia and autism? Consciousness and Cognition, 89, 103087. https://doi.org/10.1016/j.concog.2021.103087 |
[20] | Dance, C. J., Ward, J., & Simner, J. (2021). What is the link between mental imagery and sensory sensitivity? Insights from aphantasia. Perception, 50(9), 757-782. https://doi.org/10.1177/03010066211042186 |
[21] |
Dawes, A. J., Keogh, R., Andrillon, T., & Pearson, J. (2020). A cognitive profile of multi-sensory imagery, memory and dreaming in aphantasia. Scientific Reports, 10(1), 10022. https://doi.org/10.1038/s41598-020-65705-7
doi: 10.1038/s41598-020-65705-7 URL pmid: 32572039 |
[22] | Dawes, A. J., Keogh, R., Robuck, S., & Pearson, J. (2022). Memories with a blind mind: Remembering the past and imagining the future with aphantasia. Cognition, 227, 105192. https://doi.org/10.1016/j.cognition.2022.105192 |
[23] |
De Haas, B., & Schwarzkopf, D. S. (2018). Spatially selective responses to Kanizsa and occlusion stimuli in human visual cortex. Scientific Reports, 8(1), 611. https://doi.org/10.1038/s41598-017-19121-z
doi: 10.1038/s41598-017-19121-z URL pmid: 29330457 |
[24] |
De Vito, S., & Bartolomeo, P. (2016). Refusing to imagine? On the possibility of psychogenic aphantasia. A commentary on Zeman et al. (2015). Cortex, 74, 334-335. https://doi.org/10.1016/j.cortex.2015.06.013
doi: 10.1016/j.cortex.2015.06.013 URL pmid: 26195151 |
[25] |
DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual object recognition? Neuron, 73(3), 415-434. https://doi.org/10.1016/j.neuron.2012.01.010
doi: 10.1016/j.neuron.2012.01.010 URL pmid: 22325196 |
[26] |
Dijkstra, N., Bosch, S. E., & Van Gerven, M. A. J. (2019). Shared neural mechanisms of visual perception and imagery. Trends in Cognitive Sciences, 23(5), 423-434. https://doi.org/10.1016/j.tics.2019.02.004
doi: S1364-6613(19)30059-2 URL pmid: 30876729 |
[27] | Faw, B. (2009). Conflicting intuitions may be based on differing abilities: Evidence from mental imaging research. Journal of Consciousness Studies, 16(4), 45-68. |
[28] | Galton, F. (1880). Visualised numerals. Nature, 21(533), 252-256. https://doi.org/10.1038/021252a0 |
[29] |
Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27(3), 377-396. https://doi.org/10.1017/S0140525X04000093
URL pmid: 15736871 |
[30] | Hinwar, R. P., & Lambert, A. J. (2021). Anauralia: The silent mind and its association with aphantasia. Frontiers in Psychology, 12, 744213. https://doi.org/10.3389/fpsyg.2021.744213 |
[31] | Horikawa, T., & Kamitani, Y. (2017). Generic decoding of seen and imagined objects using hierarchical visual features. Nature Communications, 8(1), 15037. https://doi.org/10.1038/ncomms15037 |
[32] |
Jacobs, C., Schwarzkopf, D. S., & Silvanto, J. (2018). Visual working memory performance in aphantasia. Cortex, 105, 61-73. https://doi.org/10.1016/j.cortex.2017.10.014
doi: S0010-9452(17)30360-X URL pmid: 29150139 |
[33] | Kay, L., Keogh, R., Andrillon, T., & Pearson, J. (2022). The pupillary light response as a physiological index of aphantasia, sensory and phenomenological imagery strength. eLife, 11, e72484. https://doi.org/10.7554/eLife.72484 |
[34] | Keogh, R., Bergmann, J., & Pearson, J. (2020). Cortical excitability controls the strength of mental imagery. eLife, 9, e50232. https://doi.org/10.7554/eLife.50232 |
[35] |
Keogh, R., & Pearson, J. (2018). The blind mind: No sensory visual imagery in aphantasia. Cortex, 105, 53-60. https:// doi.org/10.1016/j.cortex.2017.10.012
doi: S0010-9452(17)30358-1 URL pmid: 29175093 |
[36] | Keogh, R., & Pearson, J. (2021). Attention driven phantom vision: Measuring the sensory strength of attentional templates and their relation to visual mental imagery and aphantasia. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1817), 20190688. https://doi.org/10.1098/rstb.2019.0688 |
[37] |
Keogh, R., Wicken, M., & Pearson, J. (2021). Visual working memory in aphantasia: Retained accuracy and capacity with a different strategy. Cortex, 143, 237-253. https://doi.org/10.1016/j.cortex.2021.07.012
doi: 10.1016/j.cortex.2021.07.012 URL pmid: 34482017 |
[38] | Königsmark, V. T., Bergmann, J., & Reeder, R. R. (2021). The Ganzflicker experience: High probability of seeing vivid and complex pseudo-hallucinations with imagery but not aphantasia. Cortex, 141, 522-534. https://doi.org/10.1016/j.cortex.2021.05.007 |
[39] | Krempel, R., & Monzel, M. (2024). Aphantasia and involuntary imagery. Consciousness and Cognition, 120, 103679. https://doi.org/10.1016/j.concog.2024.103679 |
[40] |
Kunda, M. (2018). Visual mental imagery: A view from artificial intelligence. Cortex, 105, 155-172. https://doi.org/10.1016/j.cortex.2018.01.022
doi: S0010-9452(18)30059-5 URL pmid: 29980282 |
[41] |
Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., & Hinton, G. (2020). Backpropagation and the brain. Nature Reviews Neuroscience, 21(6), 335-346. https://doi.org/10.1038/s41583-020-0277-3
doi: 10.1038/s41583-020-0277-3 URL pmid: 32303713 |
[42] |
Liu, J., & Bartolomeo, P. (2023). Probing the unimaginable: The impact of aphantasia on distinct domains of visual mental imagery and visual perception. Cortex, 166, 338-347. https://doi.org/10.1016/j.cortex.2023.06.003
doi: 10.1016/j.cortex.2023.06.003 URL pmid: 37481856 |
[43] |
Macpherson, T., Churchland, A., Sejnowski, T., DiCarlo, J., Kamitani, Y., Takahashi, H., & Hikida, T. (2021). Natural and Artificial Intelligence: A brief introduction to the interplay between AI and neuroscience research. Neural Networks, 144, 603-613. https://doi.org/10.1016/j.neunet.2021.09.018
doi: 10.1016/j.neunet.2021.09.018 URL pmid: 34649035 |
[44] |
Marks, D. F. (1973). Visual imagery differences in the recall of pictures. British Journal of Psychology, 64(1), 17-24. https://doi.org/10.1111/j.2044-8295.1973.tb01322.x
URL pmid: 4742442 |
[45] | Meng, M., Chang, S., Zhang, X., & Pearson, J. (2023). Imageless imagery in aphantasia: Decoding non-sensory imagery in aphantasia. Research Square. Advance online publication. https://doi.org/10.21203/rs.3.rs-3162223/v1 |
[46] | Millidge, B., Tschantz, A., & Buckley, C. L. (2022). Predictive coding approximates backprop along arbitrary computation graphs. Neural Computation, 34(6), 1329-1368. https://doi.org/10.1162/neco_a_01497 |
[47] | Milton, F., Fulford, J., Dance, C., Gaddum, J., Heuerman- Williamson, B., Jones, K.,... Zeman, A. (2021). Behavioral and neural signatures of visual imagery vividness extremes: Aphantasia versus hyperphantasia. Cerebral Cortex Communications, 2(2), tgab035. https://doi.org/10.1093/texcom/tgab035 |
[48] | Monzel, M., Keidel, K., & Reuter, M. (2021). Imagine, and you will find - Lack of attentional guidance through visual imagery in aphantasics. Attention, Perception, & Psychophysics, 83(6), 2486-2497. https://doi.org/10.3758/s13414-021-02307-z |
[49] | Monzel, M., Vetterlein, A., & Reuter, M. (2022). Memory deficits in aphantasics are not restricted to autobiographical memory - Perspectives from the Dual Coding Approach. Journal of Neuropsychology, 16(2), 444-461. https://doi.org/10.1111/jnp.12265 |
[50] | Monzel, M., Vetterlein, A., & Reuter, M. (2023). No general pathological significance of aphantasia: An evaluation based on criteria for mental disorders. Scandinavian Journal of Psychology, 64(3), 314-324. https://doi.org/10.1111/sjop.12887 |
[51] |
Moro, V., Berlucchi, G., Lerch, J., Tomaiuolo, F., & Aglioti, S. M. (2008). Selective deficit of mental visual imagery with intact primary visual cortex and visual perception. Cortex, 44(2), 109-118. https://doi.org/10.1016/j.cortex.2006.06.004
doi: 10.1016/j.cortex.2006.06.004 URL pmid: 18387540 |
[52] | Moulton, S. T., & Kosslyn, S. M. (2009). Imagining predictions: Mental imagery as mental emulation. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521), 1273-1280. https://doi.org/10.1098/rstb.2008.0314 |
[53] |
Muckli, L., De Martino, F., Vizioli, L., Petro, L. S., Smith, F. W., Ugurbil, K.,... Yacoub, E. (2015). Contextual Feedback to Superficial Layers of V1. Current Biology, 25(20), 2690-2695. https://doi.org/10.1016/j.cub.2015.08.057
doi: 10.1016/j.cub.2015.08.057 URL pmid: 26441356 |
[54] | Nanay, B. (2021). Unconscious mental imagery. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1817), 20190689. https://doi.org/10.1098/rstb.2019.0689 |
[55] | Nonaka, S., Majima, K., Aoki, S. C., & Kamitani, Y. (2021). Brain hierarchy score: Which deep neural networks are hierarchically brain-like? iScience, 24(9), 103013. https://doi.org/10.1016/j.isci.2021.103013 |
[56] | Palermo, L., Boccia, M., Piccardi, L., & Nori, R. (2022). Congenital lack and extraordinary ability in object and spatial imagery: An investigation on sub-types of aphantasia and hyperphantasia. Consciousness and Cognition, 103, 103360. https://doi.org/10.1016/j.concog.2022.103360 |
[57] |
Pearson, J. (2019). The human imagination: The cognitive neuroscience of visual mental imagery. Nature Reviews Neuroscience, 20(10), 624-634. https://doi.org/10.1038/s41583-019-0202-9
doi: 10.1038/s41583-019-0202-9 URL pmid: 31384033 |
[58] |
Pearson, J., Naselaris, T., Holmes, E. A., & Kosslyn, S. M. (2015). Mental imagery: Functional mechanisms and clinical applications. Trends in Cognitive Sciences, 19(10), 590-602. https://doi.org/10.1016/j.tics.2015.08.003
doi: S1364-6613(15)00180-1 URL pmid: 26412097 |
[59] | Pounder, Z., Jacob, J., Eardley, A. F., Evans, S., Loveday, C., & Silvanto, J. (2021). Exploring individual differences in neuropsychological and visuospatial working memory task performance in aphantasia. Journal of Vision, 21(9), 2655. https://doi.org/10.1167/jov.21.9.2655 |
[60] |
Pounder, Z., Jacob, J., Evans, S., Loveday, C., Eardley, A. F., & Silvanto, J. (2022). Only minimal differences between individuals with congenital aphantasia and those with typical imagery on neuropsychological tasks that involve imagery. Cortex, 148, 180-192. https://doi.org/10.1016/j.cortex.2021.12.010
doi: 10.1016/j.cortex.2021.12.010 URL pmid: 35180481 |
[61] |
Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen, A., … Kording, K. P. (2019). A deep learning framework for neuroscience. Nature Neuroscience, 22(11), 1761-1770. https://doi.org/10.1038/s41593-019-0520-2
doi: 10.1038/s41593-019-0520-2 URL pmid: 31659335 |
[62] | Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B.,... DiCarlo, J. J. (2018). Brain-Score: Which Artificial Neural Network for Object Recognition is most Brain-Like? bioRxiv preprint. Advance online publication. https://doi.org/10.1101/407007 |
[63] |
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,... Hassabis, D. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), 1140-1144. https://doi.org/10.1126/science.aar6404
doi: 10.1126/science.aar6404 URL pmid: 30523106 |
[64] |
Spratling, M. W. (2016). Predictive coding as a model of cognition. Cognitive Processing, 17(3), 279-305. https://doi.org/10.1007/s10339-016-0765-6
doi: 10.1007/s10339-016-0765-6 URL pmid: 27118562 |
[65] |
St-Yves, G., & Naselaris, T. (2018). The feature-weighted receptive field: An interpretable encoding model for complex feature spaces. NeuroImage, 180, 188-202. https:// doi.org/10.1016/j.neuroimage.2017.06.035
doi: S1053-8119(17)30508-6 URL pmid: 28645845 |
[66] | Sulfaro, A. A., Robinson, A. K., & Carlson, T. A. (2023). Modelling perception as a hierarchical competition differentiates imagined, veridical, and hallucinated percepts. Neuroscience of Consciousness, 2023(1), niad018. https://doi.org/10.1093/nc/niad018 |
[67] | Takahashi, J., Saito, G., Omura, K., Yasunaga, D., Sugimura, S., Sakamoto, S.,... Gyoba, J. (2023). Diversity of aphantasia revealed by multiple assessments of visual imagery, multisensory imagery, and cognitive style. Frontiers in Psychology, 14, 1174873. https://doi.org/10.3389/fpsyg.2023.1174873 |
[68] |
Vetter, P., Smith, F. W., & Muckli, L. (2014). Decoding sound and imagery content in early visual cortex. Current Biology, 24(11), 1256-1262. https://doi.org/10.1016/j.cub.2014.04.020
doi: 10.1016/j.cub.2014.04.020 URL pmid: 24856208 |
[69] |
Watkins, N. W. (2018). (A)phantasia and severely deficient autobiographical memory: Scientific and personal perspectives. Cortex, 105, 41-52. https://doi.org/10.1016/j.cortex.2017.10.010
doi: S0010-9452(17)30356-8 URL pmid: 29137716 |
[70] |
Whittington, J. C. R., & Bogacz, R. (2019). Theories of error back-propagation in the brain. Trends in Cognitive Sciences, 23(3), 235-250. https://doi.org/10.1016/j.tics.2018.12.005
doi: S1364-6613(19)30012-9 URL pmid: 30704969 |
[71] | Wicken, M., Keogh, R., & Pearson, J. (2021). The critical role of mental imagery in human emotion: Insights from fear-based imagery and aphantasia. Proceedings of the Royal Society B: Biological Sciences, 288(1946), 20210267. https://doi.org/10.1098/rspb.2021.0267 |
[72] | Wittmann, B. C., & Şatırer, Y. (2022). Decreased associative processing and memory confidence in aphantasia. Learning & Memory, 29(11), 412-420. https://doi.org/10.1101/lm.053610.122 |
[73] |
Yamins, D. L. K., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience, 19(3), 356-365. https://doi.org/10.1038/nn.4244
doi: 10.1038/nn.4244 URL pmid: 26906502 |
[74] | Zeman, A. (2020). Aphantasia. In A. Abraham (Ed.), The Cambridge handbook of the imagination (pp. 692-710). chapter, Cambridge: Cambridge University Press. |
[75] |
Zeman, A., Dewar, M., & Della Sala, S. (2015). Lives without imagery - Congenital aphantasia. Cortex, 73, 378-380. https://doi.org/10.1016/j.cortex.2015.05.019
doi: 10.1016/j.cortex.2015.05.019 URL pmid: 26115582 |
[76] |
Zeman, A., Dewar, M., & Della Sala, S. (2016). Reflections on aphantasia. Cortex, 74, 336-337. https://doi.org/10.1016/j.cortex.2015.08.015
doi: 10.1016/j.cortex.2015.08.015 URL pmid: 26383091 |
[77] |
Zeman, A., Milton, F., Della Sala, S., Dewar, M., Frayling, T., Gaddum, J.,... Winlove, C. (2020). Phantasia-The psychological significance of lifelong visual imagery vividness extremes. Cortex, 130, 426-440. https://doi.org/10.1016/j.cortex.2020.04.003
doi: S0010-9452(20)30140-4 URL pmid: 32446532 |
[78] |
Zeman, A. Z. J., Della Sala, S., Torrens, L. A., Gountouna, V. E., McGonigle, D. J., & Logie, R. H. (2010). Loss of imagery phenomenology with intact visuo-spatial task performance: A case of 'blind imagination'. Neuropsychologia, 48(1), 145-155. https://doi.org/10.1016/j.neuropsychologia.2009.08.024
doi: 10.1016/j.neuropsychologia.2009.08.024 URL pmid: 19733188 |
[79] | Zhao, B., Della Sala, S., Zeman, A., & Gherri, E. (2022). Spatial transformation in mental rotation tasks in aphantasia. Psychonomic Bulletin & Review, 29(6), 2096-2107. https://doi.org/10.3758/s13423-022-02126-9 |
[1] | 刘海宁, 董现玲, 刘海虹, 刘艳丽, 李现文. 老年遗忘型轻度认知障碍执行功能的神经机制及数字干预[J]. 心理科学进展, 2024, 32(6): 873-885. |
[2] | 李泽堃, 陈汝印, 周佳玮. 基于深度学习的动态瞳孔检测斜视算法[J]. 心理科学进展, 2023, 31(suppl.): 140-140. |
[3] | 赵世轩, 杨开富, 李永杰. 受知觉组织规则启发的一种计算模型与眼底血管分割应用[J]. 心理科学进展, 2023, 31(suppl.): 176-176. |
[4] | 王甦菁, 邹博超, 刘瑞, 李振, 赵国朕, 刘烨, 傅小兰. 隐藏情绪分析与识别方法[J]. 心理科学进展, 2020, 28(9): 1426-1436. |
[5] | 徐艳. 视觉学习与注意力对心理影响[J]. 心理科学进展, 2017, 25(suppl.): 92-92. |
[6] | 王铭;江光荣. 情绪障碍及其干预:心理表象的视角[J]. 心理科学进展, 2016, 24(4): 573-590. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||