心理科学进展 ›› 2026, Vol. 34 ›› Issue (3): 424-440.doi: 10.3724/SP.J.1042.2026.0424 cstr: 32111.14.2026.0424
谢宇1, 郑弘欣1, 刘怡资1, 禹红刚2, 杨成赫2
收稿日期:2025-06-28
出版日期:2026-03-15
发布日期:2026-01-07
基金资助:XIE Yu1, ZHENG Hongxin1, LIU Yizi1, YU Honggang2, YANG Chenghe2
Received:2025-06-28
Online:2026-03-15
Published:2026-01-07
摘要: 抑郁症是一种常见的精神障碍, 严重影响患者的社会功能和生活质量。近年来, 大模型凭借其强大的语义理解和多模态数据处理能力, 在抑郁症早期筛查与辅助诊断中展现出显著优势。构建抑郁症筛查和诊断大模型通常包括: 数据准备、模型选择、模型训练和模型评估四个步骤。大模型在抑郁症筛查与诊断中, 主要通过情境化语义表征、注意力机制、多模态行为捕捉及生成式预测等关键技术实现。但当前研究仍存在算法偏见、诊断特异性、幻觉现象、隐私安全及伦理问题等挑战。未来应加强大模型心理干预的整合应用, 聚焦临床转化路径, 构建更为精细、动态且具备文化适应性的抑郁症数字表型, 实现心理健康服务的数智化转型。
谢宇, 郑弘欣, 刘怡资, 禹红刚, 杨成赫. (2026). 大模型在抑郁症筛查与诊断中的应用. 心理科学进展 , 34(3), 424-440.
XIE Yu, ZHENG Hongxin, LIU Yizi, YU Honggang, YANG Chenghe. (2026). The application of foundation models in depression screening and diagnosis. Advances in Psychological Science, 34(3), 424-440.
| [1] 陈露, 张思拓, 俞凯. (2023). 跨模态语言大模型: 进展及展望.中国科学基金, 37(5), 776-785. [2] 陈晓红, 刘浏, 袁依格, 王俊普, 李大元, 邱建华. (2024). 医疗大模型技术及应用发展研究.中国工程科学, 26(6), 77-88. [3] 董健宇, 韦文棋, 吴珂, 妮娜, 王粲霏, 付莹, 彭歆. (2020). 机器学习在抑郁症领域的应用.心理科学进展, 28(2), 266-274. [4] 张冬瑜, 庄沐霖, 靳森源, 刘馨月.(2025). 基于隐喻信息和指令调优的心理疾病检测. 数据分析与知识发现, https://doi.org/10.11925/infotech.2096-3467.2024.0450 [5] Abdulai, A. F., & Hung, L. (2023). Will ChatGPT undermine ethical values in nursing education, research, and practice.Nursing Inquiry, 30(3), e12556. [6] Akhlaghi H., Freeman S., Vari C., McKenna B., Braitberg G., Karro J., & Tahayori B. (2024). Machine learning in clinical practice: Evaluation of an artificial intelligence tool after implementation.Emergency Medicine Australasia, 36(1), 118-124. [7] Al Masud G. H., Shanto R. I., Sakin I., & Kabir M. R. (2025). Effective depression detection and interpretation: Integrating machine learning, deep learning, language models, and explainable AI.Array, 25, 100375. [8] American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596 [9] Badcock P. B., Davey C. G., Whittle S., Allen N. B., & Friston K. J. (2017). The depressed brain: An evolutionary systems theory.Trends in Cognitive Sciences, 21(3), 182-194. [10] Beck, A. T. (2008). The evolution of the cognitive model of depression and its neurobiological correlates. American Journal of Psychiatry, 165(8), 969-977. [11] Bendebane L., Laboudi Z., Saighi A.,& Bouziane, S. E.(2025). Fine-tuning the BERT model to predict depression and anxiety using multi-labeled Twitter data. 2025 4th International Conference on Sentiment Analysis and Deep Learning (ICSADL)2025.10932995 [12] Beniwal, R., & Saraswat, P. (2024). A hybrid BERT-CNN approach for depression detection on social media using multimodal data.The Computer Journal, 67(7), 2453-2472. [13] Berrezueta-Guzman S., Kandil M., Martín-Ruiz M. L., Pau de la Cruz, I., & Krusche S. (2024). Future of ADHD care: Evaluating the efficacy of ChatGPT in therapy enhancement.Healthcare, 12(6), 683. [14] Blease, C., & Torous, J. (2023). ChatGPT and mental healthcare: Balancing benefits with risks of harms.BMJ Mental Health, 26(1), e300884. [15] Blease C., Worthen A., & Torous J. (2024). Psychiatrists' experiences and opinions of generative artificial intelligence in mental healthcare: An online mixed methods survey. Psychiatry Research, 333, 115724. [16] Bommasani R., Hudson D. A., Adeli E., Altman R., Arora S., von Arx, S., … Liang, P.(2021). On the opportunities and risks of foundation models. ArXiv. https://doi.org/10.48550/arXiv.2108.07258 [17] Buyukdura J. S., McClintock S. M., & Croarkin P. E. (2011). Psychomotor retardation in depression: Biological underpinnings, measurement, and treatment.Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(2), 395-409. [18] Carstensen C., Small N., Bhaskar J., Lopez B., Shrestha A.,& Rundensteiner, E. A.(2024). MInDS: Using large language models to screen for depression. 2024 IEEE MIT Undergraduate Research Technology Conference (URTC)2024.10937571 [19] Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181-204. [20] Cohen, I. G. (2023). What should ChatGPT mean for bioethics? The American Journal of Bioethics, 23(10), 8-16. [21] Danner M., Hadzic B., Gerhardt S., Ludwig S., Uslu I., Shao P., … Rätsch M. (2023). Advancing mental health diagnostics: GPT-based method for depression detection. 2023 62nd Annual Conference of the Society of Instrument and Control Engineers (SICE)(pp.1290-1296). https://doi.org/10.23919/SICE59929.2023.10354236 [22] D'Souza R. F., Amanullah S., Mathew M., & Surapaneni K. M. (2023). Appraising the performance of ChatGPT in psychiatry using 100 clinical case vignettes.Asian Journal of Psychiatry, 89, 103770. [23] El-Ramly,M., Abu-Elyazid, H., Mo'men, Y., Alshaer, G., Adib, N., Eldeen, K. A., & El-Shazly, M.(2021). CairoDep: Detecting depression in Arabic posts using BERT transformers. 2021 Tenth International Conference on Intelligent Computing and Information Systems (ICICIS) 2021. 9694178 [24] Elyoseph Z., Gur T., Haber Y., Simon T., Angert T., Navon Y., … Asman O. (2024a). An ethical perspective on the democratization of mental health with generative AI. JMIR Mental Health, 11, e58011. [25] Elyoseph Z., Levkovich I., & Shinan-Altman S. (2024b). Assessing prognosis in depression: comparing perspectives of AI models, mental health professionals and the general public. Family Medicine and Community Health, 12(Suppl. 1), e002583. [26] Englhardt Z., Ma C., Morris M. E., Chang C. C., Xu X. O., Qin L., … Iyer V. (2024). From classification to clinical insights: Towards analyzing and reasoning about mobile and behavioral health data with large language models.Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 8(2), 1-25. [27] Farruque N., Goebel R., Sivapalan S., & Zaïane O. R. (2024). Depression symptoms modelling from social media text: An LLM driven semi-supervised learning approach.Language Resources and Evaluation, 58(3), 1013-1041. [28] Flint, J. (2023). The genetic basis of major depressive disorder.Molecular psychiatry, 28(6), 2254-2265. [29] Friston, K. (2005). A theory of cortical responses.Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815-836. [30] Gao J., Zeng M., Li Y., Wang F., Zheng R., Liu J., … Li, M.(2024). DP-BERT: A pre-trained deep language model for depression prediction using microarray data. 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)2024.10822456 [31] Gerczuk M., Triantafyllopoulos A., Amiriparian S., Kathan A., Bauer J., Berking M., & Schuller B. W. (2023). Zero-shot personalization of speech foundation models for depressed mood monitoring.Patterns, 4(11), 100873. [32] Gu Y., Zhou Y., Chen Q., Zhou N., Zhou J., Zhou A., & He L. (2024). Enhancing depression-diagnosis-oriented chat with psychological state tracking. ArXiv. https://doi.org/10.48550/arXiv.2403.09717 [33] Guo Y.,& Guo, Y.(2024). A knowledge graph and large language model-based framework for depression detection. 2024 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML)2024.10958051 [34] Gupta A. K., Dhamaniya A., & Gupta P. (2024). RADIANCE: Reliable and interpretable depression detection from speech using transformer.Computers in Biology and Medicine, 183, 109325. [35] Haque, O. S., & Waytz, A. (2012). Dehumanization in medicine: Causes, solutions, and functions.Perspectives on Psychological Science, 7(2), 176-186. [36] He L., Chan J. C. W., & Wang Z. (2021). Automatic depression recognition using CNN with attention mechanism from videos.Neurocomputing, 422, 165-175. [37] Hur J. K., Heffner J., Feng G. W., Joormann J., & Rutledge R. B. (2024). Language sentiment predicts changes in depressive symptoms.Proceedings of the National Academy of Sciences, 121(39), e2321321121. [38] Insel, T. R., & Cuthbert, B. N. (2015). Brain disorders? precisely. Science, 348(6234), 499-500. [39] Jain B., Goyal G.,& Sharma, M.(2024). Evaluating emotional detection and classification capabilities of GPT-2 and GPT-Neo using textual data. 2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence)2024.10463396 [40] Jarvers I., Ecker A., Donabauer P., Kampa K., Weißenbacher M., Schleicher D., … Ludwig B. (2024). MINI-KID interviews with adolescents: A corpus-based language analysis of adolescents with depressive disorders and the possibilities of continuation using Chat GPT.Frontiers in Psychiatry, 15, 1425820. [41] Jiang Z., Seyedi S., Griner E., Abbasi A., Rad A. B., Kwon H., … Clifford G. D. (2024). Multimodal mental health digital biomarker analysis from remote interviews using facial, vocal, linguistic, and cardiovascular patterns.IEEE Journal of Biomedical and Health Informatics, 28(3), 1680-1691. [42] Jin Z., Bi D., Hu J., & Zhao K. (2024). Evaluating the efficacy of AI-based interactive assessments using large language models for depression screening. MedRxiv. https://doi.org/10.1101/2024.07.19.24310543 [43] Joyce D. W., Kormilitzin A., Smith K. A., & Cipriani A. (2023). Explainable artificial intelligence for mental health through transparency and interpretability for understandability. NPJ Digital Medicine, 6(1), 6. [44] Juarto, B. (2024). Sentiment analysis for mental health using boosting, bagging, and DeBERTa from social media data. 2024 IEEE International Conference on Control & Automation, Electronics, Robotics, Internet of Things, and Artificial Intelligence (CERIA) (pp.1-6). https://doi.org/10.1109/CERIA64726.2024.10915163 [45] Kendall K. M., Van Assche E., Andlauer T. F. M., Choi K. W., Luykx J. J., Schulte E. C., & Lu Y. (2021). The genetic basis of major depression.Psychological Medicine, 51(13), 2217-2230. [46] Kerasiotis M., Ilias L., & Askounis D. (2024). Depression detection in social media posts using transformer-based models and auxiliary features. Social Network Analysis and Mining, 14(1), 196. [47] Kifayathullah M., Sekar R.,R, A., & K, V.(2025). Personalized mental health assistance: Integrating emotion prediction with GPT-based chatbot. 2025 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS)2025.10940203 [48] King C. A., Knox M. S., Henninger N., Nguyen T. A., Ghaziuddin N., Maker A., & Hanna G. L. (2006). Major depressive disorder in adolescents: Family psychiatric history predicts severe behavioral disinhibition.Journal of Affective Disorders, 90(2-3), 111-121. [49] Kube T., Schwarting R., Rozenkrantz L., Glombiewski J. A., & Rief W. (2020). Distorted cognitive processes in major depression: A predictive processing perspective.Biological Psychiatry, 87(5), 388-398. [50] Leow J. J.D., Chua, H. N., Jasser, M. B., Issa, B., & Wong, R. T. K.(2025). Comparison of depression detection between LLMs and zero-shot learning using DAD dataset. 2025 21st IEEE International Colloquium on Signal Processing & Its Applications (CSPA)2025.10933098 [51] Liu X. Q., Wang X., & Zhang H. R. (2024). Large multimodal models assist in psychiatry disorders prevention and diagnosis of students.World Journal of Psychiatry, 14(10), 1415. [52] Long Y., Ma Z., Mei Y., & Su Z. (2024). AffirmativeAI: Towards LGBTQ+ friendly audit frameworks for large language models. ArXiv. https://doi.org/10.48550/arXiv.2405.04652 [53] Lorenzoni G., Velmovitsky P. E., Alencar P.,& Cowan, D.(2024). GPT-4 on clinic depression assessment: An LLM- based pilot study. 2024 IEEE International Conference on Big Data (BigData)2024.10825184 [54] Lorge I., Joyce D. W., Taylor N., Nevado-Holgado A., Cipriani A., & Kormilitzin A. (2025). Detecting the clinical features of difficult-to-treat depression using synthetic data from large language models.Computers in Biology and Medicine, 194, 110246. [55] Ma Z., Mei Y., & Su Z. (2023, November 11-15). Understanding the benefits and challenges of using large language model-based conversational agents for mental well-being support [Paper presentation]. American Medical Informatics Association 2023 Annual Symposium, New Orleans, LA, United States. [56] MacKenzie L. E., Uher R., & Pavlova B. (2019). Cognitive performance in first-degree relatives of individuals with vs without major depressive disorder: A meta-analysis.JAMA Psychiatry, 76(3), 297-305. [57] McCoy T. H., Castro V. M., & Perlis R. H. (2025). Estimating depression severity in narrative clinical notes using large language models. Journal of Affective Disorders, 381, 270-274. [58] Meng Y., Speier W., Ong M. K., & Arnold C. W. (2021). Bidirectional representation learning from transformers using multimodal electronic health record data to predict depression.IEEE Journal of Biomedical and Health Informatics, 25(8), 3121-3129. [59] Menne F., Dörr F., Schräder J., Tröger J., Habel U., König A., & Wagels L. (2024). The voice of depression: Speech features as biomarkers for major depressive disorder.BMC Psychiatry, 24(1), 794. [60] Mennen A. C., Norman K. A., & Turk-Browne N. B. (2019). Attentional bias in depression: Understanding mechanisms to improve training and treatment.Current Opinion in Psychology, 29, 266-273. [61] Mittermaier M., Raza M. M., & Kvedar J. C. (2023). Bias in AI-based models for medical applications: Challenges and mitigation strategies.NPJ Digital Medicine, 6(1), 113. [62] Nadeem M., Sohail S. S., Madsen D. Ø., Alzahrani A. A., Del Ser J., & Muhammad K. (2025). A multi-modal assessment framework for comparison of specialized deep learning and general-purpose large language models.IEEE Transactions on Big Data, 11(3), 1001-1012. [63] Nushida T., Kang X., Matsumoto K., Yoshida M.,& Zhou, J.(2025). An automated depression diagnosis system utilizing a knowledge base created with GPT. 2025 IEEE 17th International Conference on Computer Research and Development (ICCRD)2025.10963224 [64] Ogunleye B., Sharma H., & Shobayo O. (2024). Sentiment informed sentence BERT-Ensemble algorithm for depression detection.Big Data and Cognitive Computing, 8(9), 112. [65] Oh J., Kim M., Park H., & Oh H. (2023). Are you depressed? Analyze user utterances to detect depressive emotions using DistilBERT.Applied Sciences, 13(10), 6223. [66] Ohse J., Hadžić B., Mohammed P., Peperkorn N., Danner M., Yorita A., … Shiban Y. (2024). Zero-Shot Strike: Testing the generalisation capabilities of out-of-the-box LLM models for depression detection.Computer Speech & Language, 88, 101663. [67] Omar M., Soffer S., Charney A. W., Landi I., Nadkarni G. N., & Klang E. (2024). Applications of large language models in psychiatry: A systematic review.Frontiers in Psychiatry, 15, 1422807. [68] Palmer, A., & Schwan, D. (2022). Beneficent dehumanization: Employing artificial intelligence and carebots to mitigate shame‐induced barriers to medical care.Bioethics, 36(2), 187-193. [69] Perlis R. H., Goldberg J. F., Ostacher M. J., & Schneck C. D. (2024). Clinical decision support for bipolar depression using large language models.Neuropsychopharmacology, 49(9), 1412-1416. [70] Priyadarshana Y. H.P. P., Liang, Z., & Piumarta, I.(2024). Transferring large language models for depression detection through multi-party conversation analysis. 2024 IEEE International Conference on E-health Networking, Application & Services (HealthCom)2024.10880743 [71] Qasim A., Mehak G., Hussain N., Gelbukh A., & Sidorov G. (2025). Detection of depression severity in social media text using transformer-based models.Information, 16(2), 114. [72] Rabie E. M., Hashem A. F., & Alsheref F. K. (2025). Recognition model for major depressive disorder in Arabic user-generated content.Beni-Suef University Journal of Basic and Applied Sciences, 14(1), 1-16. [73] Raj A., Ali Z., Chaudhary S., Bali K. K.,& Sharma, A.(2024). Depression detection using BERT on social media platforms. 2024 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)2024. 10730329 [74] Rizwan M., Mushtaq M. F., Akram U., Mehmood A., Ashraf I., & Sahelices B. (2022). Depression classification from tweets using small deep transfer learning language models.IEEE Access, 10, 129176-129189. [75] Sabour S., Zhang W., Xiao X., Zhang Y., Zheng Y., Wen J., … Huang M. (2023). A chatbot for mental health support: Exploring the impact of Emohaa on reducing mental distress in China.Frontiers in Digital Health, 5, 1133987. [76] Sadeghi M., Egger B., Agahi R., Richer R., Capito K., & Rupp L. H. (2023). Exploring the capabilities of a language model-only approach for depression detection in text data.2023 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI)(pp.1-5). [77] Sadeghi M., Richer R., Egger B., Schindler-Gmelch L., Rupp L. H., Rahimi F., … Eskofier B. M. (2024). Harnessing multimodal approaches for depression detection using large language models and facial expressions.NPJ Mental Health Research, 3(1), 66. [78] Saraswat P.,& Beniwal, R.(2024). BERT-based RNN for effective detection of depression with severity levels from text data. 2024 IEEE Symposium on Wireless Technology & Applications (ISWTA)2024.10651873 [79] Schuller, B. W. (2018). Speech emotion recognition: Two decades in a nutshell, benchmarks, and ongoing trends.Communications of the ACM, 61(5), 90-99. [80] Senn S., Tlachac M., Flores R.,& Rundensteiner, E.(2022). Ensembles of BERT for depression classification. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)2022.9871120 [81] Shah S. M., Gillani S. A., Baig M. S. A., Saleem M. A., & Siddiqui M. H. (2025). Advancing depression detection on social media platforms through fine-tuned large language models.Online Social Networks and Media, 46, 100311. [82] Sharma A., Lin I. W., Miner A. S., Atkins D. C., & Althoff T. (2023). Human-AI collaboration enables more empathic conversations in text-based peer-to-peer mental health support. Nature Machine Intelligence, 5(1), 46-57. [83] Shen Z.,& Paik, I.(2023). Predicting depression on Twitter with word embedding by pretrained language model. 2023 12th International Conference on Awareness Science and Technology (iCAST)2023.10359279 [84] Shin D., Kim H., Lee S., Cho Y., & Jung W. (2024). Using large language models to detect depression from user-generated diary text data as a novel approach in digital mental health screening: Instrument validation study.Journal of Medical Internet Research, 26, e54617. [85] Smith K. M., Renshaw P. F., & Bilello J. (2013). The diagnosis of depression: Current and emerging methods.Comprehensive Psychiatry, 54(1), 1-6. [86] Sood, P. (2024). Harnessing large language models for mental health: From sentiment analysis to depression screening [Unpublished master's thesis]. Stevens Institute of Technology. [87] Stasak B., Epps J., & Goecke R. (2019). Automatic depression classification based on affective read sentences: Opportunities for text-dependent analysis.Speech Communication, 115, 1-14. [88] Tao Y., Yang M., Shen H., Yang Z., Weng Z.,& Hu, B.(2023). Classifying anxiety and depression through LLMs virtual interactions: A case study with ChatGPT. 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)2023.10385305 [89] Taylor N., Kormilitzin A., Lorge I., Nevado-Holgado A., Cipriani A., & Joyce D. W. (2024). Model development for bespoke large language models for digital triage assistance in mental health care.Artificial Intelligence in Medicine, 157, 102988. [90] Teferra B. G., Rueda A., Pang H., Valenzano R., Samavi R., Krishnan S., & Bhat V. (2024). Screening for depression using natural language processing: Literature review.Interactive Journal of Medical Research, 13(1), e55067. [91] Tlachac M. L., Reisch M.,& Heinz, M.(2023). Mobile communication log time series to detect depressive symptoms. 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 2023.10341154 [92] Townson, S. (2023). Manage AI bias instead of trying to eliminate it.MIT Sloan Management Review, 64(2), 1-3. [93] Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., … Polosukhin I. (2017). Attention Is All You Need. ArXiv. https://doi.org/10.48550/arXiv.1706.03762 [94] Verma, S., Vishal, Joshi,R. C., Dutta, M. K., Jezek, S., & Burget, R.(2023). AI-enhanced mental health diagnosis: Leveraging transformers for early detection of depression tendency in textual data. 2023 15th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)2023.10333301 [95] Wang L.,& Zhang, Q.(2024). Dual-diagnostic method for depression patients based on BERT model and ViT model for audio and text analysis. 2024 IEEE 2nd International Conference on Image Processing and Computer Applications (ICIPCA) 2024.10709143 [96] Wang X., Liu K.,& Wang, C.(2023). Knowledge-enhanced pre-training large language model for depression diagnosis and treatment. 2023 IEEE 9th International Conference on Cloud Computing and Intelligent Systems (CCIS)2023.10263217 [97] Wei Y., Guo L., Lian C., & Chen J. (2023). ChatGPT: Opportunities, risks and priorities for psychiatry. Asian Journal of Psychiatry, 90, 103808. [98] Whiting P. F., Rutjes A. W., Westwood M. E., Mallett S., Deeks J. J., Reitsma J. B., … QUADAS-2 Group. (2011). QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies.Annals of Internal Medicine, 155(8), 529-536. [99] World Health Organization. (2017). Depression and other common mental disorders: Global health estimates. https://coilink.org/20.500.12592/thw4fb [100] Wu W., Zhang C.,& Woodland, P. C.(2023). Self- supervised representations in speech-based depression detection. 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)2023.10094910 [101] Xin, C., & Zakaria, L. Q. (2024). Integrating Bert with CNN and Bilstm for explainable detection of depression in social media contents.IEEE Access, 12, 161203-161212. [102] Xu S., Yan Y., Ding Y., Li F., Zhang S., Tang H., … Chen J. (2025). Identifying psychiatric manifestations in outpatients with depression and anxiety: A large language model-based approach. Npj Mental Health Research,4(1), 63. https://doi.org/10.1038/s44184-025-00175-1 [103] Yang B., Cao M., Zhu X., Wang S., Yang C., Ni R., & Liu X. (2024). MMPF: Multimodal purification fusion for automatic depression detection.IEEE Transactions on Computational Social Systems, 11(6), 7421-7434. [104] Yang K., Zhang T., Kuang Z., Xie Q., Huang J., & Ananiadou S. (2024). MentaLLaMA: Interpretable mental health analysis on social media with large language models.ACM Web Conference 2024, 4489-4500. [105] Zhang, J., & Guo, Y. (2024). Multilevel depression status detection based on fine-grained prompt learning.Pattern Recognition Letters, 178, 167-173. [106] Zhang L., Zhao J., He L., Jia J., & Meng X. (2023). An improved global-local fusion network for depression detection telemedicine framework.IEEE Internet of Things Journal, 10(22), 20230-20240. [107] Zhang X., Cui W., Wang J., & Li Y. (2024). Chat, summary and diagnosis: A LLM-enhanced conversational agent for interactive depression detection.2024 4th International Conference on Industrial Automation, Robotics and Control Engineering (IARCE)(pp.343-348). [108] Zhao W. X., Zhou K., Li J., Tang T., Wang X., Hou Y., … Wen J. R. (2023). A survey of large language models. ArXiv. https://doi.org/10.48550/arXiv.2303.18223 [109] Zhou X., Jin K., Shang Y., & Guo G. (2018). Visually interpretable representation learning for depression recognition from facial images.IEEE Transactions on Affective Computing, 11(3), 542-552. |
| [1] | 张昊天. 道德化:人们如何赋予中性事物以道德意味?[J]. 心理科学进展, 2026, 34(2): 348-363. |
| [2] | 王慧, 韩卓. 孤独症儿童社交沟通障碍的神经生理机制:基于亲子同步性的视角[J]. 心理科学进展, 2025, 33(9): 1483-1497. |
| [3] | 单晓龙, 陈华富, 段旭君. 孤独症谱系障碍多模态磁共振脑影像模式识别[J]. 心理科学进展, 2025, 33(4): 548-564. |
| [4] | 温秀娟, 马毓璟, 谭斯祺, 李芸, 刘文华. 身体还是认知努力的损害?抑郁症努力奖赏动机评估及计算模型应用[J]. 心理科学进展, 2025, 33(1): 107-122. |
| [5] | 丁颖, 汪紫滢, 李卫东. 抑郁症疼痛加工的行为特点及神经机制[J]. 心理科学进展, 2024, 32(8): 1315-1327. |
| [6] | 车强燕, 孙韵琳, 靳佳, 朱春燕, 汪凯, 叶榕, 余凤琼. 神经反馈增强积极情绪在抑郁症治疗中的应用[J]. 心理科学进展, 2024, 32(2): 342-363. |
| [7] | 吴朝毅, 王振. 抑郁症情绪失调的动态特征:情绪动力学的视角[J]. 心理科学进展, 2024, 32(2): 364-385. |
| [8] | 刘文华, 温秀娟, 陈灵, 杨瑞, 胡逸儒. 奖励期待和结果评估的脑电成分在精神疾病研究中的应用[J]. 心理科学进展, 2023, 31(5): 783-799. |
| [9] | 卜晓鸥, 王耀, 杜亚雯, 王沛. 机器学习在发展性阅读障碍儿童早期筛查中的应用[J]. 心理科学进展, 2023, 31(11): 2092-2105. |
| [10] | 张伟霞, 席敏, 阴甜甜, 王成, 司书宾. 基于网络分析的抑郁症产生与演变预测[J]. 心理科学进展, 2023, 31(11): 2129-2141. |
| [11] | 陈祥和, 李文秀, 刘波, 殷荣宾. 骨源性因子ucOCN在运动抗抑郁中的作用机制[J]. 心理科学进展, 2022, 30(2): 375-388. |
| [12] | 袁玉琢, 骆方. 人工智能辅助的自闭症早期患者的筛查与诊断[J]. 心理科学进展, 2022, 30(10): 2303-2320. |
| [13] | 黄观澜, 周晓璐. 抑郁症患者的语言使用模式[J]. 心理科学进展, 2021, 29(5): 838-848. |
| [14] | 秦浩方, 黄蓉, 贾世伟. 反馈相关负波:一种抑郁症的生物标记物[J]. 心理科学进展, 2021, 29(3): 404-413. |
| [15] | 邸天琪, 黄昱静, 高军. 催产素对产后抑郁症患者母性行为的调节作用[J]. 心理科学进展, 2020, 28(3): 456-464. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||