心理科学进展 ›› 2026, Vol. 34 ›› Issue (3): 441-460.doi: 10.3724/SP.J.1042.2026.0441 cstr: 32111.14.2026.0441
郭新宇, 汤煜尧, 张丹丹
收稿日期:2025-10-14
出版日期:2026-03-15
发布日期:2026-01-07
基金资助:GUO Xinyu, TANG Yuyao, ZHANG Dandan
Received:2025-10-14
Online:2026-03-15
Published:2026-01-07
摘要: 同步经颅磁刺激-脑电图(transcranial magnetic stimulation-electroencephalography, TMS-EEG)是一种将经颅磁刺激与脑电记录同步整合的技术。一方面, EEG能够记录TMS脉冲引起的瞬时神经电生理反应, 另一方面, TMS脉冲的施加也能基于所记录的EEG信号来进行状态依赖的精准调控。本文结合这两个特点提出并系统梳理了同步TMS-EEG在心理学研究中的三种主要应用模式:神经生理评估、因果性揭示神经机制以及大脑闭环调控。文章将围绕这三条主线, 区分并比较不同模式在工作机制、实验方案与应用目标上的差异, 并结合近10年的心理学相关研究, 梳理各模式已有研究的主要发现, 以期为应用同步TMS-EEG技术提供清晰的理论框架与实践指南。
郭新宇, 汤煜尧, 张丹丹. (2026). 同步TMS-EEG技术在心理学研究中的应用. 心理科学进展 , 34(3), 441-460.
GUO Xinyu, TANG Yuyao, ZHANG Dandan. (2026). Applications of TMS-EEG in psychological research: Neurophysiological assessment, causal neural mechanisms, and closed-loop modulation. Advances in Psychological Science, 34(3), 441-460.
| [1] Avnit A., Zibman S., Alyagon U., & Zangen A. (2023). Abnormal functional asymmetry and its behavioural correlates in adults with ADHD: A TMS-EEG study. PloS One, 18(5), e0285086. https://doi.org/10.1371/journal.pone.0285086 [2] Bagattini C., Mutanen T. P., Fracassi C., Manenti R., Cotelli M., Ilmoniemi R. J., Miniussi C.,& Bortoletto, M.(2019). Predicting Alzheimer's disease severity by means of TMS- EEG coregistration. Neurobiology of Aging, 80, 38-45. https://doi.org/10.1016/j.neurobiolaging.2019.04.008 [3] Bai Y., Gong A., Wang Q., Guo Y., Zhang Y., & Feng Z. (2024). Breakdown of oscillatory effective networks in disorders of consciousness. CNS Neuroscience & Therapeutics, 30(3), e14469. https://doi.org/10.1111/cns.14469 [4] Barker A. T., Jalinous R., & Freeston I. L. (1985). Non- invasive magnetic stimulation of human motor cortex. Lancet, 1(8437), 1106-1107. https://doi.org/10.1016/s0140-6736(85)92413-4 [5] Bertazzoli G., Dognini E., Fried P. J., Miniussi C., Julkunen P.,& Bortoletto, M.(2025). Bridging the gap to clinical use: A systematic review on TMS-EEG test-retest reliability. Clinical Neurophysiology, 171, 133-145. https://doi.org/10.1016/j.clinph.2025.01.002 [6] Beynel L., Appelbaum L. G., Luber B., Crowell C. A., Hilbig S. A., Lim W., … Deng, Z. D.(2019). Effects of online repetitive transcranial magnetic stimulation (rTMS) on cognitive processing: A meta-analysis and recommendations for future studies. Neuroscience and Biobehavioral Reviews, 107, 47-58. https://doi.org/10.1016/j.neubiorev.2019.08.018 [7] Bianco V., Arrigoni E.,Di Russo, F., Romero Lauro, L. J., & Pisoni, A.(2023). Top-down reconfiguration of SMA cortical connectivity during action preparation. iScience, 262023.107430 [8] Bichot, N. P., & Schall, J. D. (1999). Effects of similarity and history on neural mechanisms of visual selection. Nature Neuroscience, 2(6), 549-554. https://doi.org/10.1038/9205 [9] Biondi A., Rocchi L., Santoro V., Rossini P. G., Beatch G. N., Richardson M. P., & Premoli I. (2022). Spontaneous and TMS-related EEG changes as new biomarkers to measure anti-epileptic drug effects. Scientific Reports, 12(1), 1919. https://doi.org/10.1038/s41598-022-05179-x [10] Bogadhi A. R., Bollimunta A., Leopold D. A.,& Krauzlis, R. J.(2019). Spatial attention deficits are causally linked to an area in macaque temporal cortex. Current Biology, 292019.01. 028 [11] Borra E.,& Luppino, G.(2017). Functional anatomy of the macaque temporo-parieto-frontal connectivity. Cortex, 97, 306-326. https://doi.org/10.1016/j.cortex.2016.12.007 [12] Borgomaneri S., Zanon M., Di Luzio P., Cataneo A., Arcara G., Romei V., Tamietto M., & Avenanti A. (2023). Increasing associative plasticity in temporo-occipital back-projections improves visual perception of emotions. Nature Communications, 14(1), 5720. https://doi.org/10.1038/s41467-023-41058-3 [13] Bortoletto M., Bonzano L., Zazio A., Ferrari C., Pedullà L., Gasparotti R., Miniussi C.,& Bove, M.(2021). Asymmetric transcallosal conduction delay leads to finer bimanual coordination. Brain Stimulation, 142021.02.002 [14] Bortoletto M., Veniero D., Thut G.,& Miniussi, C.(2015). The contribution of TMS-EEG coregistration in the exploration of the human cortical connectome. Neuroscience and Biobehavioral Reviews, 49, 114-124. https://doi.org/10.1016/j.neubiorev.2014.12.014 [15] Britz J., Landis T., & Michel C. M. (2009). Right parietal brain activity precedes perceptual alternation of bistable stimuli. Cerebral Cortex, 19(1), 55-65. https://doi.org/10.1093/cercor/bhn056 [16] Burke M. J., Fried P. J., & Pascual-Leone A. (2019). Transcranial magnetic stimulation: Neurophysiological and clinical applications. Handbook of Clinical Neurology, 163, 73-92. https://doi.org/10.1016/B978-0-12-804281-6.00005-7 [17] Canali P., Casarotto S., Rosanova M.,Sferrazza-Papa, G., Casali, A. G., Gosseries, O., … Benedetti, F.(2017). Abnormal brain oscillations persist after recovery from bipolar depression. European Psychiatry, 41, 10-15. https://doi.org/10.1016/j.eurpsy.2016.10.005 [18] Cao D., Li Y., & Tang Y. (2021). Functional specificity of the left ventrolateral prefrontal cortex in positive reappraisal: A single-pulse transcranial magnetic stimulation study. Cognitive, Affective & Behavioral Neuroscience, 21(4), 793-804. https://doi.org/10.3758/s13415-021-00881-1 [19] Cao D., Qian Z., Tang Y., Wang J., Jiang T.,& Li, Y.(2022). Neural indicator of positive reappraisal: A TMS-EEG study over the left VLPFC. Journal of Affective Disorders, 300, 418-429. https://doi.org/10.1016/j.jad.2021.12.136 [20] Cao K. X., Ma M. L., Wang C. Z., Iqbal J., Si J. J., Xue Y. X.,& Yang, J. L.(2021). TMS-EEG: An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology, 197, 108574. https://doi.org/10.1016/j.neuropharm.2021.108574 [21] Casula E. P., Pellicciari M. C., Bonnì S., Borghi I., Maiella M., Assogna M., … Koch G. (2022). Decreased frontal gamma activity in Alzheimer disease patients. Annals of Neurology, 92(3), 464-475. https://doi.org/10.1002/ana.26444 [22] Casula E. P., Pellicciari M. C., Bonnì S., Spanò B., Ponzo V., Salsano I., … Koch G. (2021). Evidence for interhemispheric imbalance in stroke patients as revealed by combining transcranial magnetic stimulation and electroencephalography. Human Brain Mapping, 42(5), 1343-1358. https://doi.org/10.1002/hbm.25297 [23] Cespón J., Pellicciari M. C., & Miniussi C. (2024). Cognitive control is enhanced by single pulse TMS over the left frontal and parietal areas. Journal of Psychophysiology, 38(2), 68-80. https://doi.org/10.1027/0269-8803/a000331 [24] Che X., Fitzgibbon B. M., Ye Y., Wang J., Luo H., Fitzgerald P. B.,& Cash, R. F. H.(2021). Characterising the optimal pulse number and frequency for inducing analgesic effects with motor cortex rTMS. Brain Stimulation, 142021.06.015 [25] Chen H., Liu T., Song Y., Ding Z., & Li X. (2025). State- Dependent transcranial magnetic stimulation synchronized with electroencephalography: Mechanisms, applications, and future directions. Brain Sciences, 15(7), 731. https://doi.org/10.3390/brainsci15070731 [26] Chen L., Wassermann D., Abrams D. A., Kochalka J., Gallardo-Diez G., & Menon V. (2019). The visual word form area (VWFA) is part of both language and attention circuitry. Nature Communications, 10(1), 5601. https://doi.org/10.1038/s41467-019-13634-z [27] Chen X., Jin J. N., Xiang F., Liu Z. P.,& Yin, T.(2018). Frontal eye field involvement in color and motion feature- based attention: Single-pulse transcranial magnetic stimulation. Frontiers in Human Neuroscience, 12, 390. https://doi.org/10.3389/fnhum.2018.00390 [28] Chen Y., Zhou J., Hu Z., Jin Y., Tan B., Wang Y., … Che, X.(2025). Cerebello-cortical inhibition underlies the effects of cerebellar magnetic stimulation on spinocerebellar ataxia type 3: A randomized controlled trial. Brain Stimulation, 182025.09.020 [29] Cheng S., Qiu X., Mo L., Li S., Xu F.,& Zhang, D.(2024). Asynchronous involvement of VLPFC and DLPFC during negative emotion processing: An online transcranial magnetic stimulation study. Neuroscience, 551, 237-245. https://doi.org/10.1016/j.neuroscience.2024.05.041 [30] Chung S. W., Rogasch N. C., Hoy K. E.,& Fitzgerald, P. B.(2015). Measuring brain stimulation induced changes in cortical properties using TMS-EEG. Brain Stimulation, 82015.07. 029 [31] Cruzat J., Torralba M., Ruzzoli M., Fernández A., Deco G.,& Soto-Faraco, S.(2021). The phase of theta oscillations modulates successful memory formation at encoding. Neuropsychologia, 154, 107775. https://doi.org/10.1016/j.neuropsychologia.2021.107775 [32] Daskalakis Z. J., Christensen B. K., Fitzgerald P. B., & Chen R. (2002). Transcranial magnetic stimulation: A new investigational and treatment tool in psychiatry. The Journal of Neuropsychiatry and Clinical Neurosciences, 14(4), 406-415. https://doi.org/10.1176/jnp.14.4.406 [33] de Graaf T. A., de Jong M. C., Goebel R., van Ee R., & Sack A. T. (2011). On the functional relevance of frontal cortex for passive and voluntarily controlled bistable vision. Cerebral Cortex, 21(10), 2322-2331. https://doi.org/10.1093/cercor/bhr015 [34] Dehaene S.,& Cohen, L.(2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15 2011.04.003 [35] Desideri D., Zrenner C., Ziemann U., & Belardinelli P. (2019). Phase of sensorimotor μ-oscillation modulates cortical responses to transcranial magnetic stimulation of the human motor cortex. The Journal of Physiology, 597(23), 5671-5686. https://doi.org/10.1113/JP278638 [36] Dhami P., Atluri S., Lee J. C., Knyahnytska Y., Croarkin P. E., Blumberger D. M., Daskalakis Z. J., & Farzan F. (2020). Prefrontal cortical reactivity and connectivity markers distinguish youth depression from healthy youth. Cerebral Cortex, 30(7), 3884-3894. https://doi.org/10.1093/cercor/bhaa004 [37] Di Lazzaro,V., Pilato, F., Dileone, M., Profice, P., Ranieri, F., Ricci, V., … Ziemann, U.(2007). Segregating two inhibitory circuits in human motor cortex at the level of GABAA receptor subtypes: A TMS study. Clinical Neurophysiology, 1182007.07.005 [38] Di Russo,F., Berchicci, M., Bozzacchi, C., Perri, R. L., Pitzalis, S., & Spinelli, D.(2017). Beyond the "Bereitschaftspotential": Action preparation behind cognitive functions. Neuroscience and Biobehavioral Reviews, 78, 57-81. https://doi.org/10.1016/j.neubiorev.2017.04.019 [39] Ding Z., Wang Y., Li J., & Li X. (2022). Closed-loop TMS- EEG reactivity with occipital alpha-phase synchronized. Journal of Neural Engineering, 19(5), 056067. https://doi.org/10.1088/1741-2552/ac9432 [40] Dworkin A.,Jiménez-Jiménez, D., Ravenscroft, C., Turco, F., Johnson, C., Chowdhury, F. A., … Balestrini, S.(2025). TMS-EEG in postictal psychosis of epilepsy. Schizophrenia Research, 282, 176-183. https://doi.org/10.1016/j.schres.2025.06.015 [41] Faller J., Doose J., Sun X., Mclntosh J. R., Saber G. T., Lin Y., … Sajda, P.(2022). Daily prefrontal closed-loop repetitive transcranial magnetic stimulation (rTMS) produces progressive EEG quasi-alpha phase entrainment in depressed adults. Brain Stimulation, 152022.02.008 [42] Farzan, F. (2024). Transcranial magnetic stimulation- electroencephalography for biomarker discovery in psychiatry. Biological Psychiatry, 95(6), 564-580. https://doi.org/10.1016 [43] Farzan F.,& Bortoletto, M.(2022). Identification and verification of a 'true' TMS evoked potential in TMS-EEG. Journal of Neuroscience Methods, 378, 109651. https://doi.org/10.1016/j.jneumeth.2022.109651 [44] Ferrarelli F.,& Phillips, M. L.(2021). Examining and modulating neural circuits in psychiatric disorders with transcranial magnetic stimulation and electroencephalography: Present practices and future developments. The American Journal of Psychiatry, 1782020.20071050 [45] Ferreri, F., & Rossini, P. M. (2013). TMS and TMS-EEG techniques in the study of the excitability, connectivity, and plasticity of the human motor cortex. Reviews in the Neurosciences, 24(4), 431-442. https://doi.org/10.1515/revneuro-2013-0019 [46] Ferreri F., Vecchio F., Vollero L., Guerra A., Petrichella S., Ponzo D., … Di Lazzaro V. (2016). Sensorimotor cortex excitability and connectivity in Alzheimer's disease: A TMS-EEG Co-registration study. Human Brain Mapping, 37(6), 2083-2096. https://doi.org/10.1002/hbm.23158 [47] Fong P. Y., Spampinato D., Michell K., Mancuso M., Brown K., Ibáñez J., … Rocchi, L.(2023). EEG responses induced by cerebellar TMS at rest and during visuomotor adaptation. NeuroImage, 275, 120188. https://doi.org/10.1016/j.neuroimage.2023.120188 [48] Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8(9), 700-711. https://doi.org/10.1038/nrn2201 [49] Fries, P. (2015). Rhythms for cognition: Communication through Coherence. Neuron, 88(1), 220-235. https://doi.org/10.1016/j.neuron.2015.09.034 [50] Gamboa Arana,O. L., Palmer, H., Dannhauer, M., Hile, C., Liu, S., Hamdan, R., … Appelbaum, L. G.(2020). Intensity- and timing-dependent modulation of motion perception with transcranial magnetic stimulation of visual cortex. Neuropsychologia, 147, 107581. https://doi.org/10.1016/j.neuropsychologia.2020.107581 [51] George M. S., Huffman S., Doose J., Sun X., Dancy M., Faller J., … Brown, T. R.(2023). EEG synchronized left prefrontal transcranial magnetic stimulation (TMS) for treatment resistant depression is feasible and produces an entrainment dependent clinical response: A randomized controlled double blind clinical trial. Brain Stimulation, 162023.11. 010 [52] Goldenkoff E. R., Brissenden J. A., Lee T. G., Michon K. J., & Vesia M. (2025). Cerebellar activity affects distal cortical physiology and synaptic plasticity in a human parietal-motor pathway associated with motor actions. The Journal of Neuroscience, 45(23), e0404252025. https://doi.org/10.1523/JNEUROSCI.0404-25.2025 [53] Gonzalez-Burgos, G., & Lewis, D. A. (2008). GABA neurons and the mechanisms of network oscillations: Implications for understanding cortical dysfunction in schizophrenia. Schizophrenia Bulletin, 34(5), 944-961. https://doi.org/10.1093/schbul/sbn070 [54] Gordon P. C., Belardinelli P., Stenroos M., Ziemann U., & Zrenner C. (2022). Prefrontal theta phase-dependent rTMS- induced plasticity of cortical and behavioral responses in human cortex. Brain Stimulation, 15(2), 391-402. https://doi.org/10.1016/j.brs.2022.02.006 [55] Hadas I., Hadar A., Lazarovits A., Daskalakis Z. J.,& Zangen, A.(2021). Right prefrontal activation predicts ADHD and its severity: A TMS-EEG study in young adults. Progress in Neuro-psychopharmacology & Biological Psychiatry, 111, 110340. https://doi.org/10.1016/j.pnpbp.2021.110340 [56] Hadas I., Sun Y., Lioumis P., Zomorrodi R., Jones B., Voineskos D., … Daskalakis, Z. J.(2019). Association of repetitive transcranial magnetic stimulation treatment with subgenual cingulate hyperactivity in patients with major depressive disorder: A secondary analysis of a randomized clinical trial. JAMA Network Open, 22019.5578 [57] Hallett M.,Di Iorio, R., Rossini, P. M., Park, J. E., Chen, R., Celnik, P., … Ugawa, Y.(2017). Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks. Clinical Neurophysiology, 1282017.08.007 [58] Heath A., Madore M., Diaz K., & McNerney M. W. (2023). Hindbrain stimulation modulates object recognition discrimination efficiency and hippocampal synaptic connections. Brain Sciences, 13(10), 1425. https://doi.org/10.3390/brainsci13101425 [59] Heinen K., Feredoes E., Weiskopf N., Ruff C. C., & Driver J. (2014). Direct evidence for attention-dependent influences of the frontal eye-fields on feature-responsive visual cortex. Cerebral Cortex, 24(11), 2815-2821. https://doi.org/10.1093/cercor/bht157 [60] Hernandez-Pavon,J. C., Veniero, D., Bergmann, T. O., Belardinelli, P., Bortoletto, M., Casarotto, S., … Ilmoniemi, R. J.(2023). TMS combined with EEG: Recommendations and open issues for data collection and analysis. Brain Stimulation, 16 2023.02.009 [61] Hill A. T., Rogasch N. C., Fitzgerald P. B., & Hoy K. E. (2016). TMS-EEG: A window into the neurophysiological effects of transcranial electrical stimulation in non-motor brain regions. Neuroscience & Biobehavioral Reviews, 64, 175-184.https://doi.org/10.1016/s0140-6736(85)92413-4 [62] Hou M., Santoro V., Biondi A., Shergill S. S., & Premoli I. (2021). A systematic review of TMS and neurophysiological biometrics in patients with schizophrenia. Journal of Psychiatry & Neuroscience, 46(6), E675-E701. https://doi.org/10.1503/jpn.210006 [63] Huang Z., Wang Y., Yan Y., Liu Y., Chen J., Liu H., Li J., Gao Z.,& Che, X.(2025). Identifying neural circuitry abnormalities in neuropathic pain with transcranial magnetic stimulation and electroencephalogram co-registration. Neurotherapeutics, 222024.e00496 [64] Hyman J. M., Wyble B. P., Goyal V., Rossi C. A., & Hasselmo M. E. (2003). Stimulation in hippocampal region CA1 in behaving rats yields long-term potentiation when delivered to the peak of theta and long-term depression when delivered to the trough. The Journal of Neuroscience, 23(37), 11725-11731. https://doi.org/10.1523/JNEUROSCI.23-37-11725.2003 [65] Ilmoniemi, R. J., & Kičić, D. (2010). Methodology for combined TMS and EEG. Brain Topography, 22(4), 233-248. https://doi.org/10.1007/s10548-009-0123-4 [66] Ilmoniemi R. J., Virtanen J., Ruohonen J., Karhu J., Aronen H. J., Näätänen R., & Katila T. (1997). Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport, 8(16), 3537-3540. https://doi.org/10.1097/00001756-199711100-00024 [67] Jovellar D. B., Roy O., Belardinelli P., & Ziemann U. (2025). Real-time brain state-coupled network-targeted transcranial magnetic stimulation to enhance working memory. In C. Guger, J. Azorin, M. Korostenskaja, & B. Allison (Eds.), Brain-Computer Interface Research: A State-of-the-Art Summary 12(pp. 67-79). Cham: Springer Nature Switzerland. [68] Julkunen P., Kimiskidis V. K.,& Belardinelli, P.(2022). Bridging the gap: TMS-EEG from lab to clinic. Journal of Neuroscience Methods, 369, 109482. https://doi.org/10.1016/j.jneumeth.2022.109482 [69] Kahilakoski O. P., Alkio K., Siljamo O., Valén K., Laurinoja J., Haxel L., … Roine T. (2025). NeuroSimo: An open- source software for closed-loop EEG-or EMG-guided TMS. bioRxiv. Advance online publication. https://doi.org/10.1101/2025.04.05.647342 [70] Kallioniemi E.,& Daskalakis, Z. J.(2022). Identifying novel biomarkers with TMS-EEG - Methodological possibilities and challenges. Journal of Neuroscience Methods, 377, 109631. https://doi.org/10.1016/j.jneumeth.2022.109631 [71] Kammer, T. (2008). Visual masking by transcranial magnetic stimulation in the first 80 milliseconds. Advances in Cognitive Psychology, 3(1-2), 177-179. https://doi.org/10.2478/v10053-008-0023-2 [72] Kanai R., Carmel D., Bahrami B.,& Rees, G.(2011). Structural and functional fractionation of right superior parietal cortex in bistable perception. Current Biology, 212010.12. 009 [73] Kroczek L. O. H., Gunter T. C., Rysop A. U., Friederici A. D., & Hartwigsen G. (2019). Contributions of left frontal and temporal cortex to sentence comprehension: Evidence from simultaneous TMS-EEG. Cortex, 115, 86-98. https://doi.org/10.1016/j.cortex.2019.01.010 [74] Lafleur L. P., Tremblay S., Whittingstall K., & Lepage J. F. (2016). Assessment of effective connectivity and plasticity with dual-coil transcranial magnetic stimulation.Brain Stimulation, 9(3), 347-355. [75] Lefaucheur, J. (2019). Transcranial magnetic stimulation. Handbook of Clinical Neurology, 160, 559-580. https://doi.org/10.1016/B978-0-444-64032-1.00037-0 [76] Li W., Li Y., Cao D., Qian Z., Tang Y.,& Wang, J.(2023). TMS-EEG signatures of facilitated cognitive reappraisal in emotion regulation by left ventrolateral prefrontal cortex stimulation. Neuropsychologia, 184, 108560. https://doi.org/10.1016/j.neuropsychologia.2023.108560 [77] Lu M. K., Arai N., Tsai C. H., & Ziemann U. (2012). Movement related cortical potentials of cued versus self- initiated movements: Double dissociated modulation by dorsal premotor cortex versus supplementary motor area rTMS. Human Brain Mapping, 33(4), 824-839. https://doi.org/10.1002/hbm.21248 [78] Makkonen M., Mutanen T., Metsomaa J., Zrenner C., Souza V., & Ilmoniemi R. (2021). Real-time artifact detection and removal for closed-loop EEG-TMS.International Journal of Bioelectromagnetism, 23(2), 1-4. [79] Massimini M., Ferrarelli F., Huber R., Esser S. K., Singh H., & Tononi G. (2005). Breakdown of cortical effective connectivity during sleep. Science, 309(5744), 2228-2232. https://doi.org/10.1126/science.1117256 [80] Mattavelli G., Rosanova M., Casali A. G., Papagno C.,& Romero Lauro, L. J.(2016). Timing of emotion representation in right and left occipital region: Evidence from combined TMS-EEG. Brain and Cognition, 106, 13-22. https://doi.org/10.1016/j.bandc.2016.04.009 [81] Mijancos-Martínez G., Bachiller A., Fernández-Linsenbarth I., Romero S., Serna L. Y., Molina V., & Mañanas M. Á. (2025). Individualized time windows enhance TMS-EEG signal characterization and improve assessment of cortical function in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 275(3), 785-797. https://doi.org/10.1007/s00406-024-01859-z [82] Miniussi, C., & Thut, G. (2010). Combining TMS and EEG offers new prospects in cognitive neuroscience. Brain Topography, 22(4), 249-256. https://doi.org/10.1007/s10548-009-0083-8 [83] Monni A., Collison K. L., Hill K. E., Oumeziane B. A., & Foti D. (2022). The novel frontal alpha asymmetry factor and its association with depression, anxiety, and personality traits. Psychophysiology, 59(11), e14109. https://doi.org/10.1111/psyp.14109 [84] Morawetz C., Bode S., Baudewig J., Kirilina E., & Heekeren H. R. (2016). Changes in effective connectivity between dorsal and ventral prefrontal regions moderate emotion regulation. Cerebral Cortex, 26(5), 1923-1937. https://doi.org/10.1093/cercor/bhv005 [85] Nakazawa K., Zsiros V., Jiang Z., Nakao K., Kolata S., Zhang S.,& Belforte, J. E.(2012). GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology, 62 2011.01.022 [86] Nikouline V., Ruohonen J., & Ilmoniemi R. J. (1999). The role of the coil click in TMS assessed with simultaneous EEG. Clinical Neurophysiology, 110(8), 1325-1328. https://doi.org/10.1016/s1388-2457(99)00070-x [87] Noda, Y. (2020). Toward the establishment of neurophysiological indicators for neuropsychiatric disorders using transcranial magnetic stimulation-evoked potentials: A systematic review. Psychiatry and Clinical Neurosciences, 74(1), 12-34. https://doi.org/10.1111/pcn.12936 [88] Noda Y., Barr M. S., Zomorrodi R., Cash R. F. H., Farzan F., Rajji T. K., … Blumberger D. M. (2017). Evaluation of short interval cortical inhibition and intracortical facilitation from the dorsolateral prefrontal cortex in patients with schizophrenia. Scientific Reports, 7(1), 17106. https://doi.org/10.1038/s41598-017-17052-3 [89] Obleser, J., & Kotz, S. A. (2010). Expectancy constraints in degraded speech modulate the language comprehension network. Cerebral Cortex, 20(3), 633-640. https://doi.org/10.1093/cercor/bhp128 [90] Ojha, P. (2024). Berger and the breakthrough: A centennial celebration of the human electroencephalogram. The Neurodiagnostic Journal, 64(2), 69-74. https://doi.org/10.1080/21646821.2024.2327268 [91] Palmisano A., Pandit S., Smeralda C. L., Demchenko I., Rossi S., Battelli L., … Santarnecchi E. (2024). The pathophysiological underpinnings of gamma-band alterations in psychiatric disorders. Life, 14(5), 578. https://doi.org/10.3390/life14050578 [92] Parmigiani S., Casarotto S., Fecchio M., & Rosanova M. (2019). How to collect genuine TEPs: A graphical user interface to control data quality in real-time.Brain Stimulation, 12(2), 423. [93] Pascual-Leone,A., Bartres-Faz, D., & Keenan, J. P.(1999). Transcranial magnetic stimulation: Studying the brain- behaviour relationship by induction of 'virtual lesions'. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 3541999.0476 [94] Perera N. D., Wischnewski M., Alekseichuk I., Shirinpour S., & Opitz A. (2024). State-dependent motor cortex stimulation reveals distinct mechanisms for corticospinal excitability and cortical responses. eNeuro, 11(11), ENEURO.0450-24.2024. https://doi.org/10.1523/ENEURO.0450-24.2024 [95] Petrichella S., Johnson N., & He B. (2017). The influence of corticospinal activity on TMS-evoked activity and connectivity in healthy subjects: A TMS-EEG study. PloS One, 12(4), e0174879. https://doi.org/10.1371/journal.pone.0174879 [96] Pisoni A.,Romero Lauro, L. J., Vergallito, A., Maddaluno, O., & Bolognini, N.(2018). Cortical dynamics underpinning the self-other distinction of touch: A TMS-EEG study. NeuroImage, 178, 475-484. https://doi.org/10.1016/j.neuroimage.2018.05.078 [97] Pitcher D., Parkin B., & Walsh V. (2021). Transcranial magnetic stimulation and the understanding of behavior. Annual Review of Psychology, 72, 97-121. https://doi.org/10.1146/annurev-psych-081120-013144 [98] Planton S., Wang S., Bolger D., Bonnard M.,& Pattamadilok, C.(2022). Effective connectivity of the left-ventral occipito-temporal cortex during visual word processing: Direct causal evidence from TMS-EEG co-registration. Cortex, 154, 167-183. https://doi.org/10.1016/j.cortex.2022.06.004 [99] Poorganji M., Zomorrodi R., Zrenner C., Bansal A., Hawco C., Hill A. T., … Daskalakis Z. J. (2023). Pre-stimulus power but not phase predicts prefrontal cortical excitability in TMS-EEG. Biosensors, 13(2), 220. https://doi.org/10.3390/bios13020220 [100] Premoli I., Király J.,Müller-Dahlhaus, F., Zipser, C. M., Rossini, P., Zrenner, C., Ziemann, U., & Belardinelli, P.(2018). Short-interval and long-interval intracortical inhibition of TMS-evoked EEG potentials. Brain Stimulation, 112018.03.008 [101] Rizzolatti G.,& Sinigaglia, C.(2016). The mirror mechanism: A basic principle of brain function. Nature Reviews. Neuroscience, 172016.135 [102] Rogasch, N. C., & Fitzgerald, P. B. (2013). Assessing cortical network properties using TMS-EEG. Human Brain Mapping, 34(7), 1652-1669. https://doi.org/10.1002/hbm.22016 [103] Rossini P. M., Burke D., Chen R., Cohen L. G., Daskalakis Z.,Di Iorio, R., … Ziemann, U.(2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clinical Neurophysiology, 1262015.02.001 [104] Rossini P. M., Cole J., Paulus W., Ziemann U.,& Chen, R.(2025). 1924-2024: First centennial of EEG. Clinical Neurophysiology, 170, 132-135. https://doi.org/10.1016/j.clinph.2024.11.021 [105] Santoro V., Hou M. D., Premoli I., Belardinelli P., Biondi A., Carobin A., … Shergill, S. S.(2024). Investigating cortical excitability and inhibition in patients with schizophrenia: A TMS-EEG study. Brain Research Bulletin, 212, 110972. https://doi.org/10.1016/j.brainresbull.2024.110972 [106] Schauer G., Chang A., Schwartzman D., Rae C. L., Iriye H., Seth A. K., & Kanai R. (2016). Fractionation of parietal function in bistable perception probed with concurrent TMS-EEG. Scientific Data, 3, 160065. https://doi.org/10.1038/sdata.2016.65 [107] Schroën J. A. M., Gunter T. C., Numssen O., Kroczek L. O. H., Hartwigsen G., & Friederici A. D. (2023). Causal evidence for a coordinated temporal interplay within the language network. Proceedings of the National Academy of Sciences of the United States of America, 120(47), e2306279120. https://doi.org/10.1073/pnas.2306279120 [108] Siebner H. R., Bergmann T. O., Bestmann S., Massimini M., Johansen-Berg H., Mochizuki H., … Rossini P. M. (2009). Consensus paper: Combining transcranial stimulation with neuroimaging. Brain Stimulation, 2(2), 58-80. https://doi.org/10.1016/j.brs.2008.11.002 [109] Siegle, J. H., & Wilson, M. A. (2014). Enhancement of encoding and retrieval functions through theta phase- specific manipulation of hippocampus. eLife, 3, e03061. https://doi.org/10.7554/eLife.03061 [110] Silvers J. A.,& Guassi Moreira, J. F.(2019). Capacity and tendency: A neuroscientific framework for the study of emotion regulation. Neuroscience Letters, 693, 35-39. https://doi.org/10.1016/j.neulet.2017.09.017 [111] Sohn M. N., Brown J. C., Sharma P., Ziemann U., & McGirr A. (2024). Pharmacological adjuncts and transcranial magnetic stimulation-induced synaptic plasticity: A systematic review. Journal of Psychiatry & Neuroscience, 49(1), E59-E76. https://doi.org/10.1503/jpn.230090 [112] Stemmann, H., & Freiwald, W. A. (2019). Evidence for an attentional priority map in inferotemporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 116(47), 23797-23805. https://doi.org/10.1073/pnas.1821866116 [113] Stevens W. D., Kravitz D. J., Peng C. S., Tessler M. H., & Martin A. (2017). Privileged functional connectivity between the visual word form area and the language system. The Journal of Neuroscience, 37(21), 5288-5297. https://doi.org/10.1523/JNEUROSCI.0138-17.2017 [114] Sun L.,& Bao, L.(2025). Neuronal theta oscillation of hippocampal ensemble and memory function. Behavioural Brain Research, 481, 115429. https://doi.org/10.1016/j.bbr.2025.115429 [115] Thong S., Doery E., Biabani M., Rogasch N. C., Chong T. T., Hendrikse J., & Coxon J. P. (2025). Disinhibition across secondary motor cortical regions during motor sequence learning: A TMS-EEG study. The Journal of Neuroscience, 45(8), e0443242024. https://doi.org/10.1523/JNEUROSCI.0443-24.2024 [116] Torriero S., Mattavelli G.,Lo Gerfo, E., Romero Lauro, L., Actis-Grosso, R., & Ricciardelli, P.(2019). FEF excitability in attentional bias: A TMS-EEG study. Frontiers in Behavioral Neuroscience, 12, 333. https://doi.org/10.3389/fnbeh.2018.00333 [117] Tremblay S., Rogasch N. C., Premoli I., Blumberger D. M., Casarotto S., Chen R., … Daskalakis, Z. J.(2019). Clinical utility and prospective of TMS-EEG. Clinical Neurophysiology, 1302019.01.001 [118] Valero-Cabré,A., Amengual, J. L., Stengel, C., Pascual- Leone, A., & Coubard, O. A.(2017). Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights. Neuroscience and Biobehavioral Reviews, 83, 381-404. https://doi.org/10.1016/j.neubiorev.2017.10.006 [119] Varone G., Hussain Z., Sheikh Z., Howard A., Boulila W., Mahmud M., … Hussain A. (2021). Real-time artifacts reduction during TMS-EEG co-registration: A comprehensive review on technologies and procedures. Sensors, 21(2), 637. https://doi.org/10.3390/s21020637 [120] Vernet M., Brem A. K., Farzan F.,& Pascual-Leone, A.(2015). Synchronous and opposite roles of the parietal and prefrontal cortices in bistable perception: A double-coil TMS-EEG study. Cortex, 64, 78-88. https://doi.org/10.1016/j.cortex.2014.09.021 [121] Voineskos D., Blumberger D. M., Zomorrodi R., Rogasch N. C., Farzan F., Foussias G., Rajji T. K.,& Daskalakis, Z. J.(2019). Altered transcranial magnetic stimulation- electroencephalographic markers of inhibition and excitation in the dorsolateral prefrontal cortex in major depressive disorder. Biological Psychiatry, 852018.09.032 [122] Wang Y., Dang Y., Bai Y., Xia X., & Li X. (2023). Evaluating the effect of spinal cord stimulation on patient with disorders of consciousness: A TMS-EEG study. Computers in Biology and Medicine, 166, 107547. https://doi.org/10.1016/j.compbiomed.2023.107547 [123] Weissman-Fogel, I., & Granovsky, Y. (2019). The "virtual lesion" approach to transcranial magnetic stimulation: studying the brain-behavioral relationships in experimental pain. Pain Reports, 4(4), e760. https://doi.org/10.1097/PR9.0000000000000760 [124] Xie Y. H., Zhang Y. M., Fan F. F., Song X. Y., & Liu L. (2023). Functional role of frontal electroencephalogram alpha asymmetry in the resting state in patients with depression: A review. World Journal of Clinical Cases, 11(9), 1903-1917. https://doi.org/10.12998/wjcc.v11.i9.1903 [125] Ye Y., Wang J., & Che X. (2022). Concurrent TMS-EEG to reveal the neuroplastic changes in the prefrontal and insular cortices in the analgesic effects of DLPFC-rTMS. Cerebral Cortex, 32(20), 4436-4446. https://doi.org/10.1093/cercor/bhab493 [126] Zanon M., Borgomaneri S.,& Avenanti, A.(2018). Action- related dynamic changes in inferior frontal cortex effective connectivity: A TMS/EEG coregistration study. Cortex, 108, 193-209. https://doi.org/10.1016/j.cortex.2018.08.004 [127] Zaretskaya N., Thielscher A., Logothetis N. K.,& Bartels, A.(2010). Disrupting parietal function prolongs dominance durations in binocular rivalry. Current Biology, 202010.10.046 [128] Zhang J., Lu H., Zhu L., Ren H., Dang G., Su X.,… Guo, Y.(2021). Classification of cognitive impairment and healthy controls based on transcranial magnetic stimulation evoked potentials. Frontiers in Aging Neuroscience, 13, 804384. https://doi.org/10.3389/fnagi.2021.804384 [129] Zhang M., Nathaniel U., Savill N., Smallwood J.,& Jefferies, E.(2022). Intrinsic connectivity of left ventrolateral prefrontal cortex predicts individual differences in controlled semantic retrieval. NeuroImage, 246, 118760. https://doi. org/10.1016/j.neuroimage.2021.118760 [130] Zhang Y.,Simon-Vermot, L., Araque Caballero, M. Á., Gesierich, B., Taylor, A. N. W., Duering, M., … Alzheimer's Disease Neuroimaging Initiative.(2016). Enhanced resting- state functional connectivity between core memory-task activation peaks is associated with memory impairment in MCI. Neurobiology of Aging, 45, 43-49. https://doi.org/10.1016/j.neurobiolaging.2016.04.018 [131] Zhao J., Mo L., Bi R., He Z., Chen Y., Xu F., Xie H., & Zhang D. (2021). The VLPFC versus the DLPFC in downregulating social pain using reappraisal and distraction strategies. The Journal of Neuroscience, 41(6), 1331-1339. https://doi.org/10.1523/JNEUROSCI.1906-20.2020 [132] Zhen Z., Guo R., Tan B., Wang Y., Shi S., Ye Y.,& Che, X.(2025). Prefrontal transcranial magnetic stimulation changes cortical excitability across local and distributed brain regions. Clinical Neurophysiology, 173, 173-180. https://doi.org/10.1016/j.clinph.2025.03.020 [133] Zhou Q., Song P., Wang X., Lin H.,& Wang, Y.(2021). Transcranial magnetic stimulation over the right posterior superior temporal sulcus promotes the feature discrimination processing. Frontiers in Human Neuroscience, 15, 663789. https://doi.org/10.3389/fnhum.2021.663789 [134] Ziemann, U. (2003). Pharmacology of TMS. Supplements to Clinical Neurophysiology, 56, 226-231. [135] Ziemann U., Reis J., Schwenkreis P., Rosanova M., Strafella A., Badawy R.,& Müller-Dahlhaus, F.(2015). TMS and drugs revisited 2014. Clinical Neurophysiology, 1262014.08.028 [136] Zipser C. M., Premoli I., Belardinelli P., Castellanos N., Rivolta D., Heidegger T.,Müller-Dahlhaus, F., & Ziemann, U.(2018). Cortical excitability and interhemispheric connectivity in early relapsing-remitting multiple sclerosis studied with TMS-EEG. Frontiers in Neuroscience, 12, 393. https://doi.org/10.3389/fnins.2018.00393 [137] Zouaoui I., Zellag M., Hernout J., Dumais A., Potvin S.,& Lavoie, M. E.(2023). Alpha and theta oscillations during the cognitive reappraisal of aversive pictures: A spatio-temporal qEEG investigation. International Journal of Psychophysiology, 192, 13-25. https://doi.org/10.1016/j.ijpsycho.2023.07.001 [138] Zrenner C., Desideri D., Belardinelli P.,& Ziemann, U.(2018). Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex. Brain Stimulation, 112017.11.016 [139] Zrenner, C., & Ziemann, U. (2024). Closed-loop brain stimulation. Biological Psychiatry, 95(6), 545-552. https://doi.org/10.1016/j.biopsych.2023.09.014 [140] Zrenner B., Zrenner C., Gordon P. C., Belardinelli P.,McDermott, E. J., Soekadar, S. R., … Müller-Dahlhaus, F.(2020). Brain oscillation-synchronized stimulation of the left dorsolateral prefrontal cortex in depression using real- time EEG-triggered TMS. Brain Stimulation, 132019.10.007 |
| No related articles found! |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||