心理科学进展 ›› 2025, Vol. 33 ›› Issue (1): 107-122.doi: 10.3724/SP.J.1042.2025.0107
温秀娟1,2, 马毓璟1,2, 谭斯祺2, 李芸2, 刘文华1,2()
收稿日期:
2024-05-03
出版日期:
2025-01-15
发布日期:
2024-10-28
通讯作者:
刘文华, E-mail: wenhualiu@gzhmu.edu.cn
WEN Xiujuan1,2, MA Yujing1,2, TAN Siqi2, LI Yun2, LIU Wenhua1,2()
Received:
2024-05-03
Online:
2025-01-15
Published:
2024-10-28
摘要:
动机损害是抑郁症的常见特征, 患者常表现出异常的奖励评估或体验等行为。理解抑郁症患者努力奖赏动机活动中不愿意付出努力的类型——是不愿意付出身体努力还是不愿意付出认知努力, 对帮助患者恢复社会功能活动具有重要作用。然而, 当前缺少研究探讨努力类型(身体或认知努力)对研究认识的影响, 同时, 计算模型方法具有能够精细评估动机相关变量的优势, 这一方法在该领域中并未得到普及应用。通过实验方法区分评估抑郁症患者“认知努力”和“身体努力”这两种不同的努力决策, 并结合计算模型的数据分析方式, 从努力奖赏动机这一角度探索抑郁症动机损害行为, 对揭示这一损害潜在的认知神经基础具有促进作用。
中图分类号:
温秀娟, 马毓璟, 谭斯祺, 李芸, 刘文华. (2025). 身体还是认知努力的损害?抑郁症努力奖赏动机评估及计算模型应用. 心理科学进展 , 33(1), 107-122.
WEN Xiujuan, MA Yujing, TAN Siqi, LI Yun, LIU Wenhua. (2025). Motivation deficits in physical effort or cognitive effort expenditure? Evaluation of effort-based reward motivation and application of computational modeling in depression. Advances in Psychological Science, 33(1), 107-122.
作者(年) | 样本 | 实验范式 | 努力类型 | 主要的模型指标 | 研究结果 |
---|---|---|---|---|---|
Cathomas et al., | 抑郁症患者44人 健康人群18人 精神分裂症患者42人 | 评估奖励决策的握力计任务 | 身体努力 | 常规函数模型的努力折扣参数 | 健康人群与抑郁症患者“付出努力−获得奖励”的行为无显著差异。 |
Berwian et al., | 抑郁症康复期患者123人 健康人群66人 | 努力成本计算任务 | 身体努力 | 漂移扩散模型的参数βeff, βrew | 相比健康人群, 抑郁症康复期患者选择付出更少的身体努力去获得奖励。 |
Ang et al., | 抑郁症患者26人 健康人群44人 | 认知努力动机任务 | 认知努力 | 常规函数模型的努力折扣参数k | 与健康人群相比, 抑郁症患者不太愿意为奖励而付出认知努力。 |
Vinckier et al., | 抑郁症患者35人 健康人群35人 | 简单的握力计任务和认知表现任务 | 身体努力和认知努力 | 净价值与努力成本效益优化模型的自由参数kc, kf, kr | 与健康人群相比, 抑郁症患者对身体努力和认知努力的敏感性显著增加。 |
Westbrook et al., | 抑郁症患者103人 健康人群49人 | N-back认知努力任务 | 认知努力 | 常规函数的努力折扣参数 | 与健康人群相比, 抑郁症患更不愿意付出认知努力。 |
表1 抑郁症“身体努力”和“认知努力”的计算模型研究
作者(年) | 样本 | 实验范式 | 努力类型 | 主要的模型指标 | 研究结果 |
---|---|---|---|---|---|
Cathomas et al., | 抑郁症患者44人 健康人群18人 精神分裂症患者42人 | 评估奖励决策的握力计任务 | 身体努力 | 常规函数模型的努力折扣参数 | 健康人群与抑郁症患者“付出努力−获得奖励”的行为无显著差异。 |
Berwian et al., | 抑郁症康复期患者123人 健康人群66人 | 努力成本计算任务 | 身体努力 | 漂移扩散模型的参数βeff, βrew | 相比健康人群, 抑郁症康复期患者选择付出更少的身体努力去获得奖励。 |
Ang et al., | 抑郁症患者26人 健康人群44人 | 认知努力动机任务 | 认知努力 | 常规函数模型的努力折扣参数k | 与健康人群相比, 抑郁症患者不太愿意为奖励而付出认知努力。 |
Vinckier et al., | 抑郁症患者35人 健康人群35人 | 简单的握力计任务和认知表现任务 | 身体努力和认知努力 | 净价值与努力成本效益优化模型的自由参数kc, kf, kr | 与健康人群相比, 抑郁症患者对身体努力和认知努力的敏感性显著增加。 |
Westbrook et al., | 抑郁症患者103人 健康人群49人 | N-back认知努力任务 | 认知努力 | 常规函数的努力折扣参数 | 与健康人群相比, 抑郁症患更不愿意付出认知努力。 |
作者(年) | 样本 | 实验范式 | 努力类型 | 主要的模型指标 | 研究结果 |
---|---|---|---|---|---|
Arulpragasam et al., | 正常人群31人 | 身体努力任务 | 身体努力 | 常规函数模型的主观价值、努力折扣参数 | 正常人群的腹内侧前额叶皮层参与了主观价值的编码过程, 而背侧前扣带回和前岛叶的活动与努力折扣有关。 |
Westbrook et al., | 正常人群21人 | N-back认知努力任务 | 认知努力 | 常规函数模型的努力成本主观价值、努力折扣参数 | 正常人群的腹内侧前额叶、纹状体等脑区参与了认知努力成本主观价值的编码过程。 |
Aridan et al., | 正常人群46人 | 简单的握力计任务 | 身体努力 | 常规函数模型的主观价值参数 | 正常人群的腹内侧前额叶、腹侧纹状体和感觉运动皮层等脑区活动与主观价值有关。 |
Bernacer et al., | 正常人群24人 | 身体努力任务 | 身体努力 | 常规函数模型的主观价值参数 | 正常人群大脑前扣带回的活动与主观价值相关。 |
Bernacer et al., | 正常人群24人 | 身体努力任务 | 身体努力 | 常规函数模型的主观价值参数 | 正常人群后扣带回的活动与努力折扣有关。 |
Goh et al., | 正常人群20人 | 身体努力任务 | 身体努力 | 常规函数模型的主观价值参数 | 正常人群的大脑前扣带回参与了主观价值的编码过程。 |
Hogan et al., | 正常人群42人 | 评估奖励决策的握力计任务 | 身体努力 | 常规函数模型的主观价值参数 | 正常人群的腹内侧前额叶皮层活动与预期努力的主观价值有关。 |
Lockwood et al., | 正常人群41人 | 身体努力任务 | 身体努力 | 常规函数模型的努力折扣参数 | 正常人群前扣带回活动与努力折扣有关。 |
Suzuki et al., | 正常人群30人 | 评估奖励决策的握力计任务 | 身体努力 | 常规函数模型的努力折扣参数 | 正常人群大脑腹侧纹状体的活动与努力折扣有关。 |
Yao et al., | 正常人群30人 | 评估奖励决策的握力计任务 | 身体努力 | 常规函数模型的主观价值参数 | 正常人群的背内侧前额叶皮层参与了主观价值的编码过程。 |
Chong et al., | 正常人群38人 | 认知努力任务, 身体努力任务 | 身体努力和认知努力 | 常规函数模型的努力折扣参数 | 正常人群的大脑背内侧和背外侧前额叶、顶叶内沟和前脑岛活动与努力敏感性呈正相关, 与奖励敏感性呈负相关。 |
Skvortsova et al., | 正常人群20人 | 身体努力任务 | 身体努力 | 强化学习模型的预测误差参数 | 正常人群在执行任务时腹内侧前额叶和前脑岛的活动, 分别与个体的奖励预测误差和努力预测误差呈正相关。 |
Sayalı & Badre, | 正常人群20人 | 认知努力任务 | 认知努力 | 强化学习模型的预测误差参数 | 前额−顶叶网络参与了正常个体在执行任务时的努力预测误差编码过程。 |
Clairis & Pessiglione, | 正常人群24人 | 身体努力任务 认知努力任务 | 身体努力和认知努力 | 强化学习模型的学习率参数 | 正常人群的腹内侧前额叶的活动与选项价值估计和选择信心有关, 而背内侧前额叶的活动与认知控制和努力行为的执行控制有关。 |
Hogan et al., | 正常人群30人 | 基于按键任务的努力奖励任务 | 身体努力 | 常规函数模型的主观价值参数 | 正常人群的大脑运动皮层和躯体感觉皮层的激活, 与个体在身体疲劳状态下对努力成本的主观价值增大相关。 |
Müller et al., | 正常人群39人 | 评估奖励决策的握力计任务 | 身体努力 | 结合函数理论的强化学习模型的主观价值参数 | 正常人群的大脑额中回和扣带回活动与个体在疲劳状态下对身体努力成本的估值有关。 |
Soutschek & Tobler, | 正常人群60人 | N-back认知努力任务 | 认知努力 | 常规函数模型的努力折扣、主观价值参数 | 正常人群的大脑背外侧前额叶活动受到经颅磁刺激干预而减弱时, 个体的努力敏感性增强, 同时个体在付出认知努力后的疲劳水平下降。 |
Soutschek et al., | 正常人群35人 | 认知努力任务 | 认知努力 | 贝叶斯漂移扩散模型的边界阈值参数 | 在经θ波经颅交流电刺激干预大脑背内侧前额叶的活动后, 正常个体表现出增强的付出努力获得奖励的意愿。 |
Bi et al., | 抑郁症患者50人 | 基于按键任务的努力奖励任务 | 身体努力 | 常规函数模型的努力折扣参数 | 抑郁症患者大脑左侧背外侧前额叶的活动受经颅磁刺激术激活时, 患者对努力的敏感性减弱; 同时患者还表现出脑电P300、CNV和SPN波的波幅增大。 |
表2 计算模型结合认知神经科学技术评估“身体努力”和“认知努力”的研究
作者(年) | 样本 | 实验范式 | 努力类型 | 主要的模型指标 | 研究结果 |
---|---|---|---|---|---|
Arulpragasam et al., | 正常人群31人 | 身体努力任务 | 身体努力 | 常规函数模型的主观价值、努力折扣参数 | 正常人群的腹内侧前额叶皮层参与了主观价值的编码过程, 而背侧前扣带回和前岛叶的活动与努力折扣有关。 |
Westbrook et al., | 正常人群21人 | N-back认知努力任务 | 认知努力 | 常规函数模型的努力成本主观价值、努力折扣参数 | 正常人群的腹内侧前额叶、纹状体等脑区参与了认知努力成本主观价值的编码过程。 |
Aridan et al., | 正常人群46人 | 简单的握力计任务 | 身体努力 | 常规函数模型的主观价值参数 | 正常人群的腹内侧前额叶、腹侧纹状体和感觉运动皮层等脑区活动与主观价值有关。 |
Bernacer et al., | 正常人群24人 | 身体努力任务 | 身体努力 | 常规函数模型的主观价值参数 | 正常人群大脑前扣带回的活动与主观价值相关。 |
Bernacer et al., | 正常人群24人 | 身体努力任务 | 身体努力 | 常规函数模型的主观价值参数 | 正常人群后扣带回的活动与努力折扣有关。 |
Goh et al., | 正常人群20人 | 身体努力任务 | 身体努力 | 常规函数模型的主观价值参数 | 正常人群的大脑前扣带回参与了主观价值的编码过程。 |
Hogan et al., | 正常人群42人 | 评估奖励决策的握力计任务 | 身体努力 | 常规函数模型的主观价值参数 | 正常人群的腹内侧前额叶皮层活动与预期努力的主观价值有关。 |
Lockwood et al., | 正常人群41人 | 身体努力任务 | 身体努力 | 常规函数模型的努力折扣参数 | 正常人群前扣带回活动与努力折扣有关。 |
Suzuki et al., | 正常人群30人 | 评估奖励决策的握力计任务 | 身体努力 | 常规函数模型的努力折扣参数 | 正常人群大脑腹侧纹状体的活动与努力折扣有关。 |
Yao et al., | 正常人群30人 | 评估奖励决策的握力计任务 | 身体努力 | 常规函数模型的主观价值参数 | 正常人群的背内侧前额叶皮层参与了主观价值的编码过程。 |
Chong et al., | 正常人群38人 | 认知努力任务, 身体努力任务 | 身体努力和认知努力 | 常规函数模型的努力折扣参数 | 正常人群的大脑背内侧和背外侧前额叶、顶叶内沟和前脑岛活动与努力敏感性呈正相关, 与奖励敏感性呈负相关。 |
Skvortsova et al., | 正常人群20人 | 身体努力任务 | 身体努力 | 强化学习模型的预测误差参数 | 正常人群在执行任务时腹内侧前额叶和前脑岛的活动, 分别与个体的奖励预测误差和努力预测误差呈正相关。 |
Sayalı & Badre, | 正常人群20人 | 认知努力任务 | 认知努力 | 强化学习模型的预测误差参数 | 前额−顶叶网络参与了正常个体在执行任务时的努力预测误差编码过程。 |
Clairis & Pessiglione, | 正常人群24人 | 身体努力任务 认知努力任务 | 身体努力和认知努力 | 强化学习模型的学习率参数 | 正常人群的腹内侧前额叶的活动与选项价值估计和选择信心有关, 而背内侧前额叶的活动与认知控制和努力行为的执行控制有关。 |
Hogan et al., | 正常人群30人 | 基于按键任务的努力奖励任务 | 身体努力 | 常规函数模型的主观价值参数 | 正常人群的大脑运动皮层和躯体感觉皮层的激活, 与个体在身体疲劳状态下对努力成本的主观价值增大相关。 |
Müller et al., | 正常人群39人 | 评估奖励决策的握力计任务 | 身体努力 | 结合函数理论的强化学习模型的主观价值参数 | 正常人群的大脑额中回和扣带回活动与个体在疲劳状态下对身体努力成本的估值有关。 |
Soutschek & Tobler, | 正常人群60人 | N-back认知努力任务 | 认知努力 | 常规函数模型的努力折扣、主观价值参数 | 正常人群的大脑背外侧前额叶活动受到经颅磁刺激干预而减弱时, 个体的努力敏感性增强, 同时个体在付出认知努力后的疲劳水平下降。 |
Soutschek et al., | 正常人群35人 | 认知努力任务 | 认知努力 | 贝叶斯漂移扩散模型的边界阈值参数 | 在经θ波经颅交流电刺激干预大脑背内侧前额叶的活动后, 正常个体表现出增强的付出努力获得奖励的意愿。 |
Bi et al., | 抑郁症患者50人 | 基于按键任务的努力奖励任务 | 身体努力 | 常规函数模型的努力折扣参数 | 抑郁症患者大脑左侧背外侧前额叶的活动受经颅磁刺激术激活时, 患者对努力的敏感性减弱; 同时患者还表现出脑电P300、CNV和SPN波的波幅增大。 |
[1] |
易伟, 梅淑婷, 郑亚. (2019). 努力: 成本还是奖赏?. 心理科学进展, 27(8), 1439-1450.
doi: 10.3724/SP.J.1042.2019.01439 |
[2] | Adams, R. A., Huys, Q. J. M., & Roiser, J. P. (2015). Computational psychiatry: Towards a mathematically informed understanding of mental illness. Journal of Neurology, Neurosurgery & Psychiatry, 87(1), 53-63. https://doi.org/10/gdvhx4 |
[3] | American Psychiatric Association (Ed.). (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (5th ed). American Psychiatric Association. |
[4] | Ang, Y. S., Gelda, S. E., & Pizzagalli, D. A. (2023). Cognitive effort-based decision-making in major depressive disorder. Psychological Medicine, 53(9), 4228-4235. https://doi.org/10.1017/S0033291722000964 |
[5] |
Aridan, N., Malecek, N. J., Poldrack, R. A., & Schonberg, T. (2019). Neural correlates of effort-based valuation with prospective choices. NeuroImage, 185, 446-454. https://doi.org/10/gjjf55
doi: S1053-8119(18)32023-8 URL pmid: 30347281 |
[6] | Arulpragasam, A. R., Cooper, J. A., Nuutinen, M. R., & Treadway, M. T. (2018). Corticoinsular circuits encode subjective value expectation and violation for effortful goal-directed behavior. Proceedings of the National Academy of Sciences, 115(22), E5233-E5242. https://doi.org/10/gdkz59 |
[7] |
Barch, D. M., Culbreth, A. J., Ben Zeev, D., Campbell, A., Nepal, S., & Moran, E. K. (2023). Dissociation of cognitive effort-based decision making and its associations with symptoms, cognition, and everyday life function across schizophrenia, bipolar disorder, and depression. Biological Psychiatry, 94(6), 501-510. https://doi.org/10.1016/j.biopsych.2023.04.007
doi: 10.1016/j.biopsych.2023.04.007 URL pmid: 37080416 |
[8] | Bernacer, J., Martinez-Valbuena, I., Martinez, M., Pujol, N., Luis, E. O., Ramirez-Castillo, D., & Pastor, M. A. (2019a). An amygdala-cingulate network underpins changes in effort-based decision making after a fitness program. NeuroImage, 203, 116181. https://doi.org/10/gmccnh |
[9] | Bernacer, J., Martinez-Valbuena, I., Martinez, M., Pujol, N., Luis, E., Ramirez-Castillo, D., & Pastor, M. A. (2019b). Neural correlates of effort-based behavioral inconsistency. Cortex, 113, 96-110. https://doi.org/10.1016/j.cortex.2018.12.005 |
[10] |
Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26(9), 507-513. https://doi.org/10.1016/S0166-2236(03)00233-9
doi: 10.1016/S0166-2236(03)00233-9 URL pmid: 12948663 |
[11] |
Berwian, I. M., Wenzel, J. G., Collins, A. G. E., Seifritz, E., Stephan, K. E., Walter, H., & Huys, Q. J. M. (2020). Computational mechanisms of effort and reward decisions in patients with depression and their association with relapse after antidepressant discontinuation. JAMA Psychiatry, 77(5), 513. https://doi.org/10.1001/jamapsychiatry.2019.4971
doi: 10.1001/jamapsychiatry.2019.4971 URL pmid: 32074255 |
[12] | Bi, R., Dong, W., Zheng, Z., Li, S., & Zhang, D. (2022). Altered motivation of effortful decision‐making for self and others in subthreshold depression. Depression and Anxiety, 39(8-9), 633-645. https://doi.org/10.1002/da.23267 |
[13] |
Bi, R., Zhao, Y., Li, S., Xu, F., Peng, W., Tan, S., & Zhang, D. (2024). Brain stimulation over the left DLPFC enhances motivation for effortful rewards in patients with major depressive disorder. Journal of Affective Disorders, 356, 414-423. https://doi.org/10.1016/j.jad.2024.04.064
doi: 10.1016/j.jad.2024.04.064 URL pmid: 38640975 |
[14] | Bowyer, C. B., Brush, C. J., Patrick, C. J., & Hajcak, G. (2023). Effort and appetitive responding in depression: Examining deficits in motivational and consummatory stages of reward processing using the effort-doors task. Biological Psychiatry Global Open Science, 3(4), 10773-11082. https://doi.org/10.1016/j.bpsgos.2022.08.002 |
[15] | Cataldo, A. M., Scheuer, L., Maksimovskiy, A. L., Germine, L. T., & Dillon, D. G. (2023). Abnormal evidence accumulation underlies the positive memory deficit in depression. Journal of Experimental Psychology: General, 152(1), 139-156. https://doi.org/10.1037/xge0001268 |
[16] | Cathomas, F., Klaus, F., Guetter, K., Seifritz, E., Hartmann- Riemer, M. N., Tobler, P. N., Kaiser, S., & Kaliuzhna, M. (2021). Associations between negative symptoms and effort discounting in patients with schizophrenia and major depressive disorder. Schizophrenia Bulletin Open, 2(1), sgab022. https://doi.org/10.1093/schizbullopen/sgab022 |
[17] | Chen, C., Takahashi, T., Nakagawa, S., Inoue, T., & Kusumi, I. (2015). Reinforcement learning in depression: A review of computational research. Neuroscience & Biobehavioral Reviews, 55, 247-267. https://doi.org/10/f7j7k6 |
[18] | Chong, T. T.-J., Apps, M., Giehl, K., Sillence, A., Grima, L. L., & Husain, M. (2017). Neurocomputational mechanisms underlying subjective valuation of effort costs. PLOS Biology, 15(2), e1002598. https://doi.org/10/f9rgrk |
[19] |
Chong, T.-T.-J., Bonnelle, V., & Husain, M. (2016). Quantifying motivation with effort-based decision-making paradigms in health and disease. Progress in Brain Research, 229, 71-100. https://doi.org/10.1016/bs.pbr.2016.05.002
doi: S0079-6123(16)30055-3 URL pmid: 27926453 |
[20] | Clairis, N., & Pessiglione, M. (2024). Value estimation versus effort mobilization: A general dissociation between ventromedial and dorsomedial prefrontal cortex. The Journal of Neuroscience, 44(17), e1176232024. https://doi.org/10.1523/JNEUROSCI.1176-23.2024 |
[21] | Clay, G., Mlynski, C., Korb, F. M., Goschke, T., & Job, V. (2022). Rewarding cognitive effort increases the intrinsic value of mental labor. Proceedings of the National Academy of Sciences, 119(5), e2111785119. https://doi.org/10.1073/pnas.2111785119 |
[22] | Cléry-Melin, M. L., Schmidt, L., Lafargue, G., Baup, N., Fossati, P., & Pessiglione, M. (2011). Why don't you try harder? An investigation of effort production in major depression. PloS One, 6(8), e23178. https://doi.org/10.1371/journal.pone.0023178 |
[23] |
Feher da Silva, C., Lombardi, G., Edelson, M., & Hare, T. A. (2023). Rethinking model-based and model-free influences on mental effort and striatal prediction errors. Nature Human Behaviour, 7, 956-969. https://doi.org/10.1038/s41562-023-01573-1
doi: 10.1038/s41562-023-01573-1 URL pmid: 37012365 |
[24] | Gard, D. E., Gard, M. G., Kring, A. M., & John, O. P. (2006). Anticipatory and consummatory components of the experience of pleasure: A scale development study. Journal of Research in Personality, 40(6), 1086-1102. https://doi.org/10.1016/j.jrp.2005.11.001 |
[25] | Giustiniani, J., Nicolier, M., Teti Mayer, J., Chabin, T., Masse, C., Galmès, N.,... Gabriel, D. (2020). Event-related potentials (ERP) indices of motivation during the effort expenditure for reward task. Brain Sciences, 10(5), 283. https://doi.org/10/gpvxms |
[26] |
Goh, A. X.-A., Bennett, D., Bode, S., & Chong, T. T.-J. (2021). Neurocomputational mechanisms underlying the subjective value of information. Communications Biology, 4(1), 1346. https://doi.org/10.1038/s42003-021-02850-3
doi: 10.1038/s42003-021-02850-3 URL pmid: 34903804 |
[27] |
Grange, J. A. (2022). Computational modelling of the speed- accuracy tradeoff: No evidence for an association with depression symptomatology. Journal of Psychiatric Research, 147, 111-125. https://doi.org/10/gpwszf
doi: 10.1016/j.jpsychires.2021.12.057 URL pmid: 35032944 |
[28] |
Hammar, Å., Strand, M., Årdal, G., Schmid, M., Lund, A., & Elliott, R. (2011). Testing the cognitive effort hypothesis of cognitive impairment in major depression. Nordic Journal of Psychiatry, 65(1), 74-80. https://doi.org/10.3109/08039488.2010.494311
doi: 10.3109/08039488.2010.494311 URL pmid: 20560870 |
[29] | He, X., Qiu, B., Deng, Y., Liu, T., Chen, Y., & Zhang, W. (2022). Adaptive assessment of the capacity of cognitive control. Quarterly Journal of Experimental Psychology, 75(1), 43-52. https://doi.org/10.1177/17470218211030838 |
[30] |
Hershenberg, R., Satterthwaite, T. D., Daldal, A., Katchmar, N., Moore, T. M., Kable, J. W., & Wolf, D. H. (2016). Diminished effort on a progressive ratio task in both unipolar and bipolar depression. Journal of Affective Disorders, 196, 97-100. https://doi.org/10.1016/j.jad.2016.02.003
doi: 10.1016/j.jad.2016.02.003 URL pmid: 26919058 |
[31] |
Hogan, P. S., Chen, S. X., Teh, W. W., & Chib, V. S. (2020). Neural mechanisms underlying the effects of physical fatigue on effort-based choice. Nature Communications, 11(1), 4026. https://doi.org/10/gg7v3n
doi: 10.1038/s41467-020-17855-5 URL pmid: 32788604 |
[32] | Hogan, P. S., Galaro, J. K., & Chib, V. S. (2019). Roles of ventromedial prefrontal cortex and anterior cingulate in subjective valuation of prospective effort. Cerebral Cortex, 29(10), 4277-4290. https://doi.org/10/gmnw4h |
[33] | Horne, S. J., Topp, T. E., & Quigley, L. (2021). Depression and the willingness to expend cognitive and physical effort for rewards: A systematic review. Clinical Psychology Review, 88, 102065. https://doi.org/10/gk5373 |
[34] | Huibers, M. J. H., Lorenzo-Luaces, L., Cuijpers, P., & Kazantzis, N. (2021). On the road to personalized psychotherapy: A research agenda based on cognitive behavior therapy for depression. Frontiers in Psychiatry, 11, 607508. https://doi.org/10.3389/fpsyt.2020.607508 |
[35] |
Husain, M., & Roiser, J. P. (2018). Neuroscience of apathy and anhedonia: A transdiagnostic approach. Nature Reviews Neuroscience, 19(8), 470-484. https://doi.org/10.1038/s41583-018-0029-9
doi: 10.1038/s41583-018-0029-9 URL pmid: 29946157 |
[36] | Huys, Q. J. M., Browning, M., Paulus, M. P., & Frank, M. J. (2021). Advances in the computational understanding of mental illness. Neuropsychopharmacology, 46(1), 3-19. https://doi.org/10/ghm627 |
[37] |
Inzlicht, M., Shenhav, A., & Olivola, C. Y. (2018). The effort paradox: Effort is both costly and valued. Trends in Cognitive Sciences, 22(4), 337-349. https://doi.org/10/gc9qnq
doi: S1364-6613(18)30020-2 URL pmid: 29477776 |
[38] | Iodice, P., Calluso, C., Barca, L., Bertollo, M., Ripari, P., & Pezzulo, G. (2017). Fatigue increases the perception of future effort during decision making. Psychology of Sport and Exercise, 33, 150-160. https://doi.org/10.1016/j.psychsport.2017.08.013 |
[39] | Jarvis, H., Stevenson, I., Huynh, A. Q., Babbage, E., Coxon, J., & Chong, T. T.-J. (2022). Effort reinforces learning. The Journal of Neuroscience, 42(40), 7648-7658. https://doi.org/10.1523/JNEUROSCI.2223-21.2022 |
[40] | Klawohn, J., Joyner, K., Santopetro, N., Brush, C. J., & Hajcak, G. (2022). Depression reduces neural correlates of reward salience with increasing effort over the course of the progressive ratio task. Journal of Affective Disorders, 307, 294-300. https://doi.org/10.1016/j.jad.2022.03.051 |
[41] |
Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost model of subjective effort and task performance. Behavioral and Brain Sciences, 36(6), 661-679. https://doi.org/10/f5j8tr
doi: 10.1017/S0140525X12003196 URL pmid: 24304775 |
[42] | Le Bouc, R., Rigoux, L., Schmidt, L., Degos, B., Welter, M.-L., Vidailhet, M.,... Pessiglione, M. (2016). Computational dissection of dopamine motor and motivational functions in humans. The Journal of Neuroscience, 36(25), 6623-6633. https://doi.org/10.1523/JNEUROSCI.3078-15.2016 |
[43] |
LeMoult, J., & Gotlib, I. H. (2019). Depression: A cognitive perspective. Clinical Psychology Review, 69, 51-66. https://doi.org/10.1016/j.cpr.2018.06.008
doi: S0272-7358(17)30391-4 URL pmid: 29961601 |
[44] | Lockwood, P. L., Wittmann, M. K., Nili, H., Matsumoto- Ryan, M., Abdurahman, A., Cutler, J.,... Apps, M. A. (2022). Distinct neural representations for prosocial and self-benefiting effort. Current Biology, 32(19), 4172-4185. https://doi.org/10.1016/j.cub.2022.08.010 |
[45] | Lu, J., Xu, X., Huang, Y., Li, T., Ma, C., Xu, G.,... Zhang, N. (2021). Prevalence of depressive disorders and treatment in China: A cross-sectional epidemiological study. The Lancet Psychiatry, 8(11), 981-990. https://doi.org/10.1016/S2215-0366(21)00251-0 |
[46] | Matthews, J., Pisauro, M. A., Jurgelis, M., Müller, T., Vassena, E., Chong, T., & Apps, M. A. J. (2023). Computational mechanisms underlying the dynamics of physical and cognitive fatigue. Cognition, 240, 105603. https://doi.org/10.1016/j.cognition.2023.105603 |
[47] |
Müller, T., Husain, M., & Apps, M. A. J. (2022). Preferences for seeking effort or reward information bias the willingness to work. Scientific Reports, 12(1), 19486. https://doi.org/10.1038/s41598-022-21917-7
doi: 10.1038/s41598-022-21917-7 URL pmid: 36376340 |
[48] |
Müller, T., Klein-Flügge, M. C., Manohar, S. G., Husain, M., & Apps, M. A. J. (2021). Neural and computational mechanisms of momentary fatigue and persistence in effort-based choice. Nature Communications, 12(1), 4593. https://doi.org/10/gmccmr
doi: 10.1038/s41467-021-24927-7 URL pmid: 34321478 |
[49] | Park, I. H., Lee, B. C., Kim, J.-J., Kim, J. I., & Koo, M.-S. (2017). Effort-based reinforcement processing and functional connectivity underlying amotivation in medicated patients with depression and schizophrenia. The Journal of Neuroscience, 37(16), 4370-4380. https://doi.org/10.1523/JNEUROSCI.2524-16.2017 |
[50] | Pessiglione, M., Vinckier, F., Bouret, S., Daunizeau, J., & Le Bouc, R. (2018). Why not try harder? Computational approach to motivation deficits in neuro-psychiatric diseases. Brain: A Journal of Neurology, 141(3), 629-650. https://doi.org/10.1093/brain/awx278 |
[51] | Pike, A. C., & Robinson, O. J. (2022). Reinforcement learning in patients with mood and anxiety disorders vs control individuals: A systematic review and meta-analysis. JAMA Psychiatry, 79(4), 312-322. https://doi.org/10.1001/jamapsychiatry.2022.0051 |
[52] | Racine, S. E., Horvath, S. A., Brassard, S. L., & Benning, S. D. (2019). Effort expenditure for rewards task modified for food: A novel behavioral measure of willingness to work for food. International Journal of Eating Disorders, 52(1), 71-78. https://doi.org/10/gnf9h8 |
[53] |
Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20(4), 260-281. https://doi.org/10.1016/j.tics.2016.01.007
doi: S1364-6613(16)00025-5 URL pmid: 26952739 |
[54] | Rewitz, K., Schindler, S., & Wolff, W. (2023). Examining the alignment between subjective effort and objective force production. PsyArXiv. https://doi.org/10.31234/osf.io/vr2gn |
[55] | Richards, D. A., Ekers, D., McMillan, D., Taylor, R. S., Byford, S., Warren, F. C.,... Finning, K. (2016). Cost and outcome of behavioural activation versus cognitive behavioural therapy for depression (COBRA): A randomised, controlled, non-inferiority trial. The Lancet, 388(10047), 871-880. https://doi.org/10.1016/S0140-6736(16)31140-0 |
[56] | Robinson, O. J., & Chase, H. W. (2017). Learning and choice in mood disorders: Searching for the computational parameters of anhedonia. Computational Psychiatry, 1(0), 208. https://doi.org/10/ggnx69 |
[57] |
Rzepa, E., Fisk, J., & McCabe, C. (2017). Blunted neural response to anticipation, effort and consummation of reward and aversion in adolescents with depression symptomatology. Journal of Psychopharmacology, 31(3), 303-311. https://doi.org/10.1177/0269881116681416
doi: 10.1177/0269881116681416 URL pmid: 28093022 |
[58] | Rzepa, E., & McCabe, C. (2019). Dimensional anhedonia and the adolescent brain: Reward and aversion anticipation, effort and consummation. BJPsych Open, 5(6), e99. https://doi.org/10.1192/bjo.2019.68 |
[59] | Sayalı, C., & Badre, D. (2021). Neural systems underlying the learning of cognitive effort costs. Cognitive, Affective, & Behavioral Neuroscience, 21(4), 698-716. https://doi.org/10/gjwhjt |
[60] |
Sherdell, L., Waugh, C. E., & Gotlib, I. H. (2012). Anticipatory pleasure predicts motivation for reward in major depression. Journal of Abnormal Psychology, 121(1), 51-60. https://doi.org/10.1037/a0024945
doi: 10.1037/a0024945 URL pmid: 21842963 |
[61] |
Skvortsova, V., Palminteri, S., & Pessiglione, M. (2014). Learning to minimize efforts versus maximizing rewards: Computational principles and neural correlates. Journal of Neuroscience, 34(47), 15621-15630. https://doi.org/10/f6sdhv
doi: 10.1523/JNEUROSCI.1350-14.2014 URL pmid: 25411490 |
[62] | Soutschek, A., Nadporozhskaia, L., & Christian, P. (2022). Brain stimulation over dorsomedial prefrontal cortex modulates effort-based decision making. Cognitive, Affective, & Behavioral Neuroscience, 22(6), 1264-1274. https://doi.org/10.3758/s13415-022-01021-z |
[63] | Soutschek, A., & Tobler, P. N. (2020). Causal role of lateral prefrontal cortex in mental effort and fatigue. Human Brain Mapping, 41(16), 4630-4640. https://doi.org/10.1002/hbm.25146 |
[64] | Steele, J. (2020). What is (perception of) effort? Objective and subjective effort during attempted task performance. PsyArXiv. https://doi.org/10.31234/osf.io/kbyhm |
[65] | Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press. |
[66] |
Suzuki, S., Lawlor, V. M., Cooper, J. A., Arulpragasam, A. R., & Treadway, M. T. (2021). Distinct regions of the striatum underlying effort, movement initiation and effort discounting. Nature Human Behaviour, 5(3), 378-388. https://doi.org/10.1038/s41562-020-00972-y
doi: 10.1038/s41562-020-00972-y URL pmid: 33230282 |
[67] | Tran, T., Hagen, A. E. F., Hollenstein, T., & Bowie, C. R. (2021). Physical-and cognitive-effort-based decision-making in depression: Relationships to symptoms and functioning. Clinical Psychological Science, 9(1), 53-67. https://doi.org/10.1177/2167702620949236 |
[68] |
Treadway, M. T., Bossaller, N. A., Shelton, R. C., & Zald, D. H. (2012). Effort-based decision-making in major depressive disorder: A translational model of motivational anhedonia. Journal of Abnormal Psychology, 121(3), 553-558. https://doi.org/10/f364bv
doi: 10.1037/a0028813 URL pmid: 22775583 |
[69] | Treadway, M. T., Buckholtz, J. W., Schwartzman, A. N., Lambert, W. E., & Zald, D. H. (2009). Worth the ‘EEfRT’? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. PLoS ONE, 4(8), e6598. https://doi.org/10/dv4nmj |
[70] |
Treadway, M. T., & Zald, D. H. (2011). Reconsidering anhedonia in depression: Lessons from translational neuroscience. Neuroscience and Biobehavioral Reviews, 35(3), 537-555. https://doi.org/10.1016/j.neubiorev.2010.06.006
doi: 10.1016/j.neubiorev.2010.06.006 URL pmid: 20603146 |
[71] | Vinckier, F., Jaffre, C., Gauthier, C., Smajda, S., Abdel-Ahad, P., Bouc, R. L.,... Pessiglione, M. (2022). Elevated effort cost identified by computational modeling as a distinctive feature explaining multiple behaviors in patients with depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7(11), 1158-1169. https://doi.org/10.1016/j.bpsc.2022.07.011 |
[72] | Westbrook, A., Lamichhane, B., & Braver, T. (2019). The subjective value of cognitive effort is encoded by a domain- general valuation network. The Journal of Neuroscience, 39(20), 3934-3947. https://doi.org/10/ggmg4t |
[73] |
Westbrook, A., van den Bosch, R., Määttä, J. I., Hofmans, L., Papadopetraki, D., Cools, R., & Frank, M. J. (2020). Dopamine promotes cognitive effort by biasing the benefits versus costs of cognitive work. Science, 367(6484), 1362-1366. https://doi.org/10.1126/science.aaz5891
doi: 10.1126/science.aaz5891 URL pmid: 32193325 |
[74] |
Westbrook, A., Yang, X., Bylsma, L. M., Daches, S., George, C. J., Seidman, A. J.,... Kovacs, M. (2022). Economic choice and heart rate fractal scaling indicate that cognitive effort is reduced by depression and boosted by sad mood. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 8(7), 687-694. https://doi.org/10.1016/j.bpsc.2022.07.008
doi: 10.1016/j.bpsc.2022.07.008 URL pmid: 35948258 |
[75] | WHO. (2023). Depession. https://www.who.int/health-topics/depression |
[76] | Wilhelm, R. A., Threadgill, A. H., & Gable, P. A. (2021). Motor preparation and execution for performance difficulty: Centroparietal beta activation during the effort expenditure for rewards task as a function of motivation. Brain Sciences, 11(11), 1442. https://doi.org/10/gpv59p |
[77] | Wood-Ross, C., Best, M. W., Milanovic, M., & Bowie, C. R. (2021). Brain of thrones: Cognitive effort and perceived performance during a cognitive task in major depressive disorder. Cognitive Therapy and Research, 45(5), 986-999. https://doi.org/10.1007/s10608-020-10145-w |
[78] | Xie, W., & Zhang, W. (2023). Effortfulness of visual working memory: Gauged by physical exertion. Journal of Experimental Psychology: General, 152(7), 2074.https://doi.org/10.1037/xge0001391 |
[79] | Yang, X., Huang, J., Lan, Y., Zhu, C., Liu, X., Wang, Y.,... Chan, R. C. K. (2016). Diminished caudate and superior temporal gyrus responses to effort-based decision making in patients with first-episode major depressive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 64, 52-59. https://doi.org/10.1016/j.pnpbp.2015.07.006 |
[80] | Yang, X. H., Huang, J., Zhu, C. Y., Wang, Y. F., Cheung, E. F., Chan, R. C., & Xie, G. R. (2014). Motivational deficits in effort-based decision making in individuals with subsyndromal depression, first-episode and remitted depression patients. Psychiatry Research, 220(3), 874-882. https://doi.org/10.1016/j.psychres.2014.08.056 |
[81] | Yao, Y.-W., Song, K.-R., Schuck, N. W., Li, X., Fang, X.-Y., Zhang, J.-T., Heekeren, H. R., & Bruckner, R. (2023). The dorsomedial prefrontal cortex represents subjective value across effort-based and risky decision-making. NeuroImage, 279, 120326. https://doi.org/10.1016/j.neuroimage.2023.120326 |
[1] | 李兴珊, 张淇玮, 黄林洁琼. 中文词汇语义加工过程的计算模拟与实验验证[J]. 心理科学进展, 2024, 32(9): 1379-1392. |
[2] | 丁颖, 汪紫滢, 李卫东. 抑郁症疼痛加工的行为特点及神经机制[J]. 心理科学进展, 2024, 32(8): 1315-1327. |
[3] | 车强燕, 孙韵琳, 靳佳, 朱春燕, 汪凯, 叶榕, 余凤琼. 神经反馈增强积极情绪在抑郁症治疗中的应用[J]. 心理科学进展, 2024, 32(2): 342-363. |
[4] | 吴朝毅, 王振. 抑郁症情绪失调的动态特征:情绪动力学的视角[J]. 心理科学进展, 2024, 32(2): 364-385. |
[5] | 郭鸣谦, 潘晚坷, 胡传鹏. 认知建模中模型比较的方法[J]. 心理科学进展, 2024, 32(10): 1736-1756. |
[6] | 韩宜瑾, 朱金丽, 侯方. 弱视视觉系统的对比度增益研究[J]. 心理科学进展, 2023, 31(suppl.): 4-4. |
[7] | 刘文华, 温秀娟, 陈灵, 杨瑞, 胡逸儒. 奖励期待和结果评估的脑电成分在精神疾病研究中的应用[J]. 心理科学进展, 2023, 31(5): 783-799. |
[8] | 张伟霞, 席敏, 阴甜甜, 王成, 司书宾. 基于网络分析的抑郁症产生与演变预测[J]. 心理科学进展, 2023, 31(11): 2129-2141. |
[9] | 陈祥和, 李文秀, 刘波, 殷荣宾. 骨源性因子ucOCN在运动抗抑郁中的作用机制[J]. 心理科学进展, 2022, 30(2): 375-388. |
[10] | 黄观澜, 周晓璐. 抑郁症患者的语言使用模式[J]. 心理科学进展, 2021, 29(5): 838-848. |
[11] | 黎穗卿, 陈新玲, 翟瑜竹, 张怡洁, 章植鑫, 封春亮. 人际互动中社会学习的计算神经机制[J]. 心理科学进展, 2021, 29(4): 677-696. |
[12] | 秦浩方, 黄蓉, 贾世伟. 反馈相关负波:一种抑郁症的生物标记物[J]. 心理科学进展, 2021, 29(3): 404-413. |
[13] | 周璨, 周临舒, 蒋存梅. 音乐愉悦体验的神经机制[J]. 心理科学进展, 2021, 29(1): 123-130. |
[14] | 高青林, 周媛. 计算模型视角下信任形成的心理和神经机制——基于信任博弈中投资者的角度[J]. 心理科学进展, 2021, 29(1): 178-189. |
[15] | 张银花, 李红, 吴寅. 计算模型在道德认知研究中的应用[J]. 心理科学进展, 2020, 28(7): 1042-1055. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||