Please wait a minute...
Advances in Psychological Science    2020, Vol. 28 Issue (4) : 588-603     DOI: 10.3724/SP.J.1042.2020.00588
Regular Articles |
The integration mechanisms of feedforward and feedback control in speech motor system
CAI Xiao,ZHANG Qingfang()
Department of Psychology, Renmin University of China, Beijing 100872, China
Download: PDF(800 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The final stage in the process of spoken production is articulation, which involves the integration of feedforward and feedback control in speech motor system. Specifically, feedforward control (top-down mechanism) refers to speakers’ ability to retrieve and execute the motor commands responsible for producing target speech sounds, while feedback control (bottom-up mechanism) refers to speakers’ ability to adjust speech movements based on the sensory feedback generated by articulation. Sensory goals and sensory predictions are important hubs linking feedforward and feedback control systems. Based on the neural computational model DIVA (directions into velocities of articulators), the cognitive and neural mechanisms of the integration between feedforward and feedback control are illustrated in the stage of speech acquisition and speech production. On the basis of previous studies, how speakers utilize auditory feedback to control online speech and update feedforward motor representations, and the cognitive significance of the P1-N1-P2 components in the ERP studies are especially discussed. Furthermore, various factors that influence feedforward and feedback control are summarized, including individual variabilities, training experience and task demands. Additionally, some suggestions are proposed for future investigation.

Keywords speech motor system      feedforward control      feedback control      auditory feedback     
ZTFLH:  B842  
Corresponding Authors: Qingfang ZHANG     E-mail: zhang@ruc.edu.cn
Issue Date: 24 February 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao CAI
Qingfang ZHANG
Cite this article:   
Xiao CAI,Qingfang ZHANG. The integration mechanisms of feedforward and feedback control in speech motor system[J]. Advances in Psychological Science, 2020, 28(4): 588-603.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2020.00588     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2020/V28/I4/588
  
1 张清芳, 杨玉芳 . ( 2003). 言语产生中的词汇通达理论. 心理科学进展, 11( 1), 6-11.
2 Alsius A., Mitsuya T., & Munhall K . ( 2013). Does compensation in auditory feedback require attention? Journal of the Acoustical Society of America, 19( 1), 3342.
3 Ballard K. J., Halaki M., Sowman P. F., Kha A., Daliri A., Robin D., .. Guenther F . ( 2018). An investigation of compensation and adaptation to auditory perturbations in individuals with acquired apraxia of speech. Frontiers in Human Neuroscience, 12, 510.
url: http://dx.doi.org/10.3389/fnhum.2018.00510
4 Ballard K. J., Tourville J., & Robin D. A . ( 2014). Behavioral, computational, and neuroimaging studies of acquired apraxia of speech. Frontiers in Human Neuroscience, 8, 892.
5 Bauer J. J., Mittal J., Larson C. R., & Hain T. C . ( 2006). Vocal responses to unanticipated perturbations in voice loudness feedback: An automatic mechanism for stabilizing voice amplitude. Journal of the Acoustical Society of America, 119( 4), 2363-2371.
url: http://dx.doi.org/10.1121/1.2173513
6 Behroozmand R., Ibrahim N., Korzyukov O., Robin D. A., & Larson C. R . ( 2015). Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control. Frontiers in Neuroscience, 9, 109.
7 Behroozmand, R., & Larson, C . ( 2011). Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback. BMC Neuroscience, 12( 1), 54-63.
url: http://dx.doi.org/10.1186/1471-2202-12-54
8 Behroozmand R., Sangtian S., Korzyukov O., & Larson C. R . ( 2016). A temporal predictive code for voice motor control: Evidence from ERP and behavioral responses to pitch-shifted auditory feedback. Brain Research, 1636, 1-12.
url: http://dx.doi.org/10.1016/j.brainres.2016.01.040
9 Bohland, J. W., & Guenther, F. H . ( 2006). An fMRI investigation of syllable sequence production. NeuroImage, 32( 2), 821-841.
url: http://dx.doi.org/10.1016/j.neuroimage.2006.04.173
10 Cai, S . ( 2012). Online control of articulation based on auditory feedback in normal speech and stuttering: Behavioral and modeling studies (Unpublished doctorial dissertation). Massachusetts Institute of Technology, Cambridge.
11 Cai S., Beal D. S., Ghosh S. S., Tiede M. K., Guenther F. H., & Perkell J. S . ( 2012). Weak responses to auditory feedback perturbation during articulation in persons who stutter: Evidence for abnormal auditory-motor transformation. PLoS ONE, 7( 7), e41830.
url: http://dx.doi.org/10.1371/journal.pone.0041830
12 Cai S., Ghosh S. S., Guenther F. H., & Perkell J. S . ( 2010). Adaptive auditory feedback control of the production of formant trajectories in the Mandarin triphthong /iau/ and its pattern of generalization. Journal of the Acoustical Society of America, 128( 4), 2033-2048.
url: http://dx.doi.org/10.1121/1.3479539
13 Cai S., Ghosh S. S., Guenther F. H., & Perkell J. S . ( 2011). Focal manipulations of formant trajectories reveal a role of auditory feedback in the online control of both within- syllable and between-syllable speech timing. Journal of Neuroscience, 31( 45), 16483-16490.
url: http://118.145.16.217/magsci/article/article?id=22042213
14 Cavanagh, J. F., & Frank, M. J . ( 2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18( 8), 414-421.
url: http://118.145.16.217/magsci/article/article?id=23826256
15 Chang E. F., Niziolek C. A., Knight R. T., Nagarajan S. S., & Houde J. F . ( 2013). Human cortical sensorimotor network underlying feedback control of vocal pitch. Proceedings of the National Academy of Sciences, 110( 7), 2653-2658.
url: http://dx.doi.org/10.1073/pnas.1216827110
16 Chen Z., Chen X., Liu P., Huang D., & Liu H . ( 2012). Effect of temporal predictability on the neural processing of self-triggered auditory stimulation during vocalization. BMC Neuroscience, 13( 1), 1-10.
url: http://dx.doi.org/10.1186/1471-2202-13-1
17 Chen Z., Liu P., Jones J. A., Huang D., & Liu H . ( 2010). Sex-related differences in vocal responses to pitch feedback perturbations during sustained vocalization. Journal of the Acoustical Society of America, 128(6), EL355-EL360.
18 Chen Z., Liu P., Wang E. Q., Larson C. R., Huang D., & Liu H . ( 2012). ERP correlates of language-specific processing of auditory pitch feedback during self-vocalization. Brain and Language, 121( 1), 25-34.
url: http://118.145.16.217/magsci/article/article?id=24344474
19 Chen Z., Wong F. C. K., Jones J. A., Li W., Liu P., Chen X., & Liu H . ( 2015). Transfer effect of speech-sound learning on auditory-motor processing of perceived vocal pitch errors. Scientific Reports, 5, 13134.
url: http://dx.doi.org/10.1038/srep13134
20 Civier O., Tasko S. M., & Guenther F. H . ( 2010). Overreliance on auditory feedback may lead to sound/syllable repetitions: simulations of stuttering and fluency-inducing conditions with a neural model of speech production. Journal of Fluency Disorders, 35( 3), 246-279.
url: http://118.145.16.217/magsci/article/article?id=15173543
21 Cowie R., Douglas-Cowie E., & Kerr A. G . ( 1982). A study of speech deterioration in post-lingually deafened adults. The Journal of Laryngology & Otology, 96( 2), 101-112.
url: http://dx.doi.org/ournal of Laryngology
22 Cruikshank L. C., Singhal A., Hueppelsheuser M., & Caplan J. B . ( 2012). Theta oscillations reflect a putative neural mechanism for human sensorimotor integration. Journal of Neurophysiology, 107( 1), 65-77.
url: http://118.145.16.217/magsci/article/article?id=24930577
23 Daliri, A., & Max, L . ( 2015a). Electrophysiological evidence for a general auditory prediction deficit in adults who stutter. Brain and Language, 150, 37-44.
url: http://dx.doi.org/10.1016/j.bandl.2015.08.008
24 Daliri, A., & Max, L . ( 2015b). Modulation of auditory processing during speech movement planning is limited in adults who stutter. Brain and Language, 143, 59-68.
url: http://dx.doi.org/10.1016/j.bandl.2015.03.002
25 Daliri A., Wieland E. A., Cai S., Guenther F. H., & Chang S.-E . ( 2017). Auditory-motor adaptation is reduced in adults who stutter but not in children who stutter. Developmental Science, 21( 2), e12521.
26 Delvaux, V., & Soquet, A . ( 2007). The influence of ambient speech on adult speech productions through unintentional imitation. Phonetica, 64( 2-3), 145-173.
url: http://dx.doi.org/10.1159/000107914
27 Franken M. K., Acheson D. J., Mcqueen J. M., Peter H., & Frank E . ( 2018). Opposing and following responses in sensorimotor speech control: Why responses go both ways. Psychonomic Bulletin & Review, 25( 4), 1458-1467.
url: http://dx.doi.org/onomic Bulletin
28 Franken M. K., Frank E., Acheson D. J., Mcqueen J. M., Peter H., & Jan-Mathijs S . ( 2018). Self-monitoring in the cerebral cortex: Neural responses to small pitch shifts in auditory feedback during speech production. NeuroImage, 179, 326-336.
url: http://dx.doi.org/10.1016/j.neuroimage.2018.06.061
29 Franklin, D. W., & Wolpert, D. M . ( 2011). Computational mechanisms of sensorimotor control. Neuron, 72( 3), 425-442.
url: http://118.145.16.217/magsci/article/article?id=15246056
30 Fu C. H., Vythelingum G. N., Brammer M. J., Williams S. C., Amaro E., Jr., Andrew C. M., … McGuire K. P . ( 2006). An fMRI study of verbal self-monitoring: Neural correlates of auditory verbal feedback. Cerebral Cortex, 16( 7), 969-977.
url: http://dx.doi.org/10.1093/cercor/bhj039
31 Golfinopoulos E., Tourville J. A., Bohland J. W., Ghosh S. S., Nieto-Castanon A., & Guenther F. H . ( 2011). fMRI investigation of unexpected somatosensory feedback perturbation during speech. NeuroImage, 55( 3), 1324-1338.
url: http://118.145.16.217/magsci/article/article?id=15242377
32 Golfinopoulos E., Tourville J. A., & Guenther F. H . ( 2010). The integration of large-scale neural network modeling and functional brain imaging in speech motor control. NeuroImage, 52( 3), 862-874.
url: http://118.145.16.217/magsci/article/article?id=15273944
33 Gould J., Lane H., Vick J., Perkell J. S., Matthies M. L., & Zandipour M . ( 2001). Changes in speech intelligibility of postlingually deaf adults after cochlear implantation. Ear and Hearing, 22( 6), 453-460.
url: http://dx.doi.org/10.1097/00003446-200112000-00002
34 Grafton S. T., Schmitt P., van Horn J., & Diedrichsen J . ( 2008). Neural substrates of visuomotor learning based on improved feedback control and prediction. NeuroImage, 39( 3), 1383-1395.
url: http://118.145.16.217/magsci/article/article?id=14349005
35 Guenther, F. H . ( 1994). A neural network model of speech acquisition and motor equivalent speech production. Biological Cybernetics, 72( 1), 43-53.
url: http://dx.doi.org/10.1007/BF00206237
36 Guenther, F. H . ( 1995). Speech sound acquisition, coarticulation, and rate effects in a neural network model of speech production. Psychological Review, 102( 3), 594-621.
url: http://dx.doi.org/10.1037/0033-295X.102.3.594
37 Guenther, F . ( 2006). Cortical interactions underlying the production of speech sounds. Journal of Communication Disorders, 39( 5), 350-365.
url: http://dx.doi.org/10.1016/j.jcomdis.2006.06.013
38 Guenther F. H. ( 2006). Neural control of speech . Cambridge, MA: MIT Press.
39 Guenther F. H., Ghosh S. S., & Tourville J. A . ( 2006). Neural modeling and imaging of the cortical interactions underlying syllable production. Brain and Language, 96( 3), 280-301.
url: http://118.145.16.217/magsci/article/article?id=15510195
40 Guenther, F., & Vladusich, T . ( 2012). A neural theory of speech acquisition and production. Journal of Neurolinguistics, 25( 5), 408-422.
url: http://118.145.16.217/magsci/article/article?id=24874251
41 Heinks‐Maldonado T. H., Mathalon D. H., Gray M., & Ford J. M . ( 2005). Fine‐tuning of auditory cortex during speech production. Psychophysiology, 42( 2), 180-190.
url: http://dx.doi.org/10.1111/j.1469-8986.2005.00272.x
42 Heinks-Maldonado T. H., Nagarajan S. S., & Houde J. F . ( 2006). Magnetoencephalographic evidence for a precise forward model in speech production. Neuroreport, 17( 13), 1375-1379.
url: http://dx.doi.org/10.1097/01.wnr.0000233102.43526.e9
43 Hickok, G . ( 2012). Computational neuroanatomy of speech production. Nature Reviews Neuroscience, 13( 2), 135-145.
url: http://118.145.16.217/magsci/article/article?id=25117193
44 Hickok G., Houde J., & Rong F . ( 2011). Sensorimotor integration in speech processing: Computational basis and neural organization. Neuron, 69( 3), 407-422.
url: http://118.145.16.217/magsci/article/article?id=15245177
45 Hickok G., Okada K., & Serences J. T . ( 2009). Area Spt in the human planum temporale supports sensory-motor integration for speech processing. Journal of Neurophysiology, 101( 5), 2725-2732.
url: http://dx.doi.org/10.1152/jn.91099.2008
46 Houde, J. F., & Chang, E. F . ( 2015). The cortical computations underlying feedback control in vocal production. Current Opinion in Neurobiology, 33, 174-181.
url: http://dx.doi.org/10.1016/j.conb.2015.04.006
47 Houde, J. F., & Nagarajan, S. S . ( 2011). Speech production as state feedback control. Frontiers in Human Neuroscience, 5, 82.
48 Houde J. F., Nagarajan S. S., Sekihara K., & Merzenich M. M . ( 2002). Modulation of the auditory cortex during speech: An MEG study. Journal of Cognitive Neuroscience, 14( 8), 1125-1138.
url: http://dx.doi.org/10.1162/089892902760807140
49 Indefrey, P . ( 2011). The spatial and temporal signatures of word production components: A critical update. Frontiers in Psychology, 2, 255.
50 Indefrey, P., & Levelt, W. J. M . ( 2004). The spatial and temporal signatures of word production components. Cognition, 92( 1-2), 101-144.
url: http://dx.doi.org/10.1016/j.cognition.2002.06.001
51 Ito, M . ( 2000). Mechanisms of motor learning in the cerebellum. Brain Research, 886( 1-2), 237-245.
url: http://dx.doi.org/10.1016/S0006-8993(00)03142-5
52 Iuzzini-Seigel J., Hogan T. P., Guarino A. J., & Green J. R . ( 2015). Reliance on auditory feedback in children with childhood apraxia of speech. Journal of Communication Disorders, 54, 32-42.
url: http://dx.doi.org/10.1016/j.jcomdis.2015.01.002
53 Jones, J. A., & Keough, D . ( 2008). Auditory-motor mapping for pitch control in singers and nonsingers. Experimental Brain Research, 190( 3), 279-287.
url: http://118.145.16.217/magsci/article/article?id=16861543
54 Jones J. A., Scheerer N., & Tumber A . ( 2013). The relationship between vocal pitch feedback error and event-related brain potentials. In Proceedings of Meetings on Acoustics, Vol. 19, 060151.
55 Kakimoto A., Ito S., Okada H., Nishizawa S., Minoshima S., & Ouchi Y . ( 2016). Age-related sex-specific changes in brain metabolism and morphology. Journal of Nuclear Medicine, 57( 2), 221-225.
url: http://dx.doi.org/10.2967/jnumed.115.166439
56 Kalpouzos G., Nyberg L., . ( 2010). Asymmetry of memory in the brain. In K. Hugdahl, R. Westerhausen, (Eds). The two halves of the brain: Information processing in the cerebral hemispheres. MIT Press, Cambridge, MA, USA. 499-530.
57 Kearney, E., & Guenther, F. H . ( 2019). Articulating: The neural mechanisms of speech production. Language, Cognition and Neuroscience, 34( 9), 1-16.
url: http://dx.doi.org/10.1080/23273798.2018.1484149
58 Kearney E., Nieto-Caston?o?n A., Weerathunge H. R., Falsini R., Daliri A., Abur D., .. Guenther F. H . ( 2020). A simple 3-parameter model for examining adaptation in speech and voice production. Frontiers in Psychology, 10, 2995.
url: http://dx.doi.org/10.3389/fpsyg.2019.02995
59 Keough D., Hawco C., & Jones J. A . ( 2013). Auditory-motor adaptation to frequency-altered auditory feedback occurs when participants ignore feedback. BMC Neuroscience, 14( 1), 25-35.
url: http://dx.doi.org/10.1186/1471-2202-14-25
60 Kort N. S., Nagarajan S. S., & Houde J. F . ( 2014). A bilateral cortical network responds to pitch perturbations in speech feedback. NeuroImage, 86, 525-535.
url: http://118.145.16.217/magsci/article/article?id=23467988
61 Korzyukov O., Karvelis L., Behroozmand R., & Larson C. R . ( 2012). ERP correlates of auditory processing during automatic correction of unexpected perturbations in voice auditory feedback. International Journal of Psychophysiology, 83( 1), 71-78.
url: http://118.145.16.217/magsci/article/article?id=15086189
62 Korzyukov O., Sattler L., Behroozmand R., & Larson C. R . ( 2012). Neuronal mechanisms of voice control are affected by implicit expectancy of externally triggered perturbations in auditory feedback. PLoS One, 7( 7), e41216.
url: http://dx.doi.org/10.1371/journal.pone.0041216
63 Lametti D. R., Krol S. A., Shiller D. M., & Ostry D. J . ( 2014). Brief periods of auditory perceptual training can determine the sensory targets of speech motor learning. Psychological Science, 25( 7), 1325-1336.
url: http://dx.doi.org/10.1177/0956797614529978
64 Lametti D. R., Nasir S. M., & Ostry D. J . ( 2012). Sensory preference in speech production revealed by simultaneous alteration of auditory and somatosensory feedback. Journal of Neuroscience, 32( 27), 9351-9358.
url: http://118.145.16.217/magsci/article/article?id=24880939
65 Lane, H., & Webster, J. W . ( 1991). Speech deterioration in postlingually deafened adults. Journal of the Acoustical Society of America, 89( 2), 859-866.
url: http://dx.doi.org/10.1121/1.1894647
66 Levelt W. J. M., Roelofs A., & Meyer A. S . ( 1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22( 1), 1-75.
67 Li J., Hu H., Chen N., Jones J. A., Wu D., Liu P., & Liu H . ( 2018). Aging and sex influence cortical auditory-motor integration for speech control. Frontiers in Neuroscience, 12, 749.
url: http://dx.doi.org/10.3389/fnins.2018.00749
68 Liu H., Meshman M., Behroozmand R., & Larson C. R . ( 2011). Differential effects of perturbation direction and magnitude on the neural processing of voice pitch feedback. Clinical Neurophysiology, 122( 5), 951-957.
url: http://118.145.16.217/magsci/article/article?id=21354712
69 Liu H., Russo N., & Larson C. R . ( 2010). Age-related differences in vocal responses to pitch feedback perturbations: A preliminary study. Journal of the Acoustical Society of America, 127( 2), 1042-1046.
url: http://dx.doi.org/10.1121/1.3273880
70 Liu H., Wang E. Q., Chen Z., Liu P., Larson C. R., & Huang D . ( 2010). Effect of tonal native language on voice fundamental frequency responses to pitch feedback perturbations during sustained vocalizations. Journal of the Acoustical Society of America, 128( 6), 3739-3746.
url: http://dx.doi.org/10.1121/1.3500675
71 Liu, X., & Tian, X . ( 2018). The functional relations among motor-based prediction, sensory goals and feedback in learning non-native speech sounds: Evidence from adult Mandarin Chinese speakers with an auditory feedback masking paradigm. Scientific Reports, 8( 1), 11910.
url: http://dx.doi.org/10.1038/s41598-018-30399-5
72 Liu Y., Hu H., Jones J., Guo Z., Li W., Chen X., … Liu H . ( 2015). Selective and divided attention modulates auditory-vocal integration in the processing of pitch feedback errors. European Journal of Neuroscience, 42( 3), 1895-1904.
url: http://dx.doi.org/10.1111/ejn.12949
73 Maas E., Mailend M. L., & Guenther F. H . ( 2015). Feedforward and feedback control in apraxia of speech: Effects of noise masking on vowel production. Journal of Speech, Language, and Hearing Research, 58( 2), 185-200.
74 Mitsuya T., Munhall K. G., & Purcell D. W . ( 2017). Modulation of auditory-motor learning in response to formant perturbation as a function of delayed auditory feedback. Journal of the Acoustical Society of America, 141( 4), 2758-2767.
url: http://dx.doi.org/10.1121/1.4981139
75 Munhall K. G., Macdonald E. N., Byrne S. K., & Johnsrude I . ( 2009). Talkers alter vowel production in response to real-time formant perturbation even when instructed not to compensate. Journal of the Acoustical Society of America, 125( 1), 384-390.
url: http://dx.doi.org/10.1121/1.3035829
76 New A. B., Robin D. A., Parkinson A. L., Duffy J. R., McNeil M. R., Piguet O., … Ballard K . ( 2015). Altered resting-state network connectivity in stroke patients with and without apraxia of speech. NeuroImage: Clinical, 8, 429-439.
url: http://dx.doi.org/10.1016/j.nicl.2015.03.013
77 Ning L.-H., Loucks T. M., & Shih C . ( 2015). The effects of language learning and vocal training on sensorimotor control of lexical tone. Journal of Phonetics, 51, 50-69.
url: http://dx.doi.org/10.1016/j.wocn.2014.12.003
78 Ning L.-H., Shih C., & Loucks T. M . ( 2014). Mandarin tone learning in L2 adults: A test of perceptual and sensorimotor contributions. Speech Communication, 63-64, 55-69.
url: http://118.145.16.217/magsci/article/article?id=23675326
79 Niziolek C. A., Nagarajan S. S., & Houde J. F . ( 2013). What does motor efference copy represent? Evidence from speech production. Journal of Neuroscience, 33( 41), 16110-16116.
url: http://dx.doi.org/10.1523/JNEUROSCI.2137-13.2013
80 Oller, D. K., & Eilers, R. E . ( 1988). The role of audition in infant babbling. Child Development, 59( 2), 441-449.
url: http://dx.doi.org/10.2307/1130323
81 O’Reilly J. X., Mesulam M. M., & Nobre A. C . ( 2008). The cerebellum predicts the timing of perceptual events. Journal of Neuroscience, 28( 9), 2252-2260.
url: http://dx.doi.org/10.1523/JNEUROSCI.2742-07.2008
82 Parkinson A. L., Flagmeier S. G., Manes J. L., Larson C. R., Rogers B., & Robin D. A . ( 2012). Understanding the neural mechanisms involved in sensory control of voice production. NeuroImage, 61( 1), 314-322.
url: http://118.145.16.217/magsci/article/article?id=25102413
83 Parrell B., Agnew Z., Nagarajan S., Houde J., & Ivry R. B . ( 2017). Impaired feedforward control and enhanced feedback control of speech in patients with cerebellar degeneration. The Journal of Neuroscience, 37( 38), 9249-9258.
url: http://dx.doi.org/10.1523/JNEUROSCI.3363-16.2017
84 Parrell B., Lammert A. C., Ciccarelli G., & Quatieri T. F . ( 2019). Current models of speech motor control: A control-theoretic overview of architectures and properties. Journal of the Acoustical Society of America, 145( 3), 1456-1481.
url: http://dx.doi.org/10.1121/1.5092807
85 Patel R., Reilly K. J., Archibald E., Cai S., & Guenther F. H . ( 2015). Responses to intensity-shifted auditory feedback during running speech. Journal of Speech Language and Hearing Research, 58( 6), 1687-1694.
url: http://dx.doi.org/10.1044/2015_JSLHR-S-15-0164
86 Perkell, J. S . ( 2012). Movement goals and feedback and feedforward control mechanisms in speech production. Journal of Neurolinguistics, 25( 5), 382-407.
url: http://118.145.16.217/magsci/article/article?id=24874250
87 Reilly, K. J., & Pettibone, C . ( 2017). Vowel generalization and its relation to adaptation during perturbations of auditory feedback. Journal of Neurophysiology, 118( 5), 2925-2934.
url: http://dx.doi.org/10.1152/jn.00702.2016
88 Saltzman, E., & Munhall, K . ( 1989). A dynamical approach to gestural patterning in speech production. Ecological Psychology, 1( 4), 333-382.
url: http://dx.doi.org/10.1207/s15326969eco0104_2
89 Scheerer N. E., Behich J., Liu H., & Jones J. A . ( 2013). ERP correlates of the magnitude of pitch errors detected in the human voice. Neuroscience, 240, 176-185.
url: http://dx.doi.org/10.1016/j.neuroscience.2013.02.054
90 Scheerer, N. E., & Jones, J. A . ( 2012). The relationship between vocal accuracy and variability to the level of compensation to altered auditory feedback. Neuroscience Letters, 529( 2), 128-132.
url: http://118.145.16.217/magsci/article/article?id=25113842
91 Scheerer, N. E., & Jones, J. A . ( 2014). The predictability of frequency-altered auditory feedback changes the weighting of feedback and feedforward input for speech motor control. European Journal of Neuroscience, 40( 12), 3793-3806.
url: http://118.145.16.217/magsci/article/article?id=22769992
92 Scheerer, N. E., & Jones, J. A . ( 2018). Detecting our own vocal errors: An event-related study of the thresholds for perceiving and compensating for vocal pitch errors. Neuropsychologia, 114, 158-167.
url: http://dx.doi.org/10.1016/j.neuropsychologia.2017.12.007
93 Scheerer N. E., Liu H., & Jones J. A . ( 2013). The developmental trajectory of vocal and event-related potential responses to frequency-altered auditory feedback. European Journal of Neuroscience, 38( 8), 3189-3200.
url: http://118.145.16.217/magsci/article/article?id=19834184
94 Simmonds A. J., Wise R. J., & Leech R . ( 2011). Two tongues, one brain: Imaging bilingual speech production. Frontiers in Psychology, 2, 166.
95 Swink, S., & Stuart, A . ( 2012). The effect of gender on the N1-P2 auditory complex while listening and speaking with altered auditory feedback. Brain and Language, 122( 1), 25-33.
url: http://118.145.16.217/magsci/article/article?id=24327581
96 Terband H., Rodd J., & Maas E . ( 2015). Simulations of feedforward and feedback control in apraxia of speech (AOS): Effects of noise masking on vowel production in the DIVA model. In The 18th International Congress of Phonetic Sciences (ICPhS 2015). Glasgow, UK.
97 Tian, X., & Poeppel, D . ( 2010). Mental imagery of speech and movement implicates the dynamics of internal forward models. Frontiers in Psychology, 1, 166.
98 Tian, X., & Poeppel, D . ( 2012). Mental imagery of speech: Linking motor and perceptual systems through internal simulation and estimation. Frontiers in Human Neuroscience, 6, 314.
99 Tian, X., & Poeppel, D . ( 2015). Dynamics of self-monitoring and error detection in speech production: Evidence from mental imagery and MEG. Journal of Cognitive Neuroscience, 27( 2), 352-364.
url: http://dx.doi.org/10.1162/jocn_a_00692
100 Tian X., Zarate J. M., & Poeppel D . ( 2016). Mental imagery of speech implicates two mechanisms of perceptual reactivation. Cortex, 77( 7), 1-12.
url: http://dx.doi.org/10.1016/j.cortex.2016.01.002
101 Tourville, J. A., & Guenther, F. H . ( 2011). The DIVA model: A neural theory of speech acquisition and production. Language and Cognitive Processes, 26( 7), 952-981.
url: http://118.145.16.217/magsci/article/article?id=21844422
102 Tourville J. A., Reilly K. J., & Guenther F. H . ( 2008). Neural mechanisms underlying auditory feedback control of speech. NeuroImage, 39( 3), 1429-1443.
url: http://118.145.16.217/magsci/article/article?id=14349009
103 Toyomura A., Koyama S., Miyamaoto T., Terao A., Omori T., Murohashi H., & Kurikl S . ( 2007). Neural correlates of auditory feedback control in human. Neuroscience, 146( 2), 499-503.
url: http://dx.doi.org/10.1016/j.neuroscience.2007.02.023
104 Tumber A. K., Scheerer N. E., & Jones J. A . ( 2014). Attentional demands influence vocal compensations to pitch errors heard in auditory feedback. PLoS ONE, 9( 10), e109968.
url: http://dx.doi.org/10.1371/journal.pone.0109968
105 Tye-Murray, N, & Spencer, L . ( 1995). Acquisition of speech by children who have prolonged cochlear implant experience. Journal of Speech and Hearing Research, 38( 2), 327-337.
url: http://dx.doi.org/10.1044/jshr.3802.327
106 Wolpert D. M., Diedrichsen J., & Flanagan J. R . ( 2011). Principles of sensorimotor learning. Nature Reviews Neuroscience, 12( 12), 739-751.
url: http://dx.doi.org/10.1038/nrn3112
107 Zheng Z. Z., Munhall K. G., & Johnsrude I. S . ( 2010). Functional overlap between regions involved in speech perception and in monitoring one?s own voice during speech production. Journal of Cognitive Neuroscience, 22( 8), 1770-1781.
url: http://dx.doi.org/10.1162/jocn.2009.21324
[1] ZHANG Jingjing, LIANG Xiaoyue, CHEN Yidi, CHEN Qingrong. The cognitive mechanism of music syntactic processing and the influence of music structure on its processing[J]. Advances in Psychological Science, 2020, 28(6): 883-892.
[2] ZHANG Manman, ZANG Chuanli, BAI Xuejun. The spatial extent and depth of parafoveal pre-processing during Chinese reading[J]. Advances in Psychological Science, 2020, 28(6): 871-882.
[3] HE Tingyu, DING Yi, LI Haokun, CHENG Xiaorong, FAN Zhao, DING Xianfeng. The multidimensional spatial representation of time: Dissociations on its ontogenetic origin and activation mechanism[J]. Advances in Psychological Science, 2020, 28(6): 935-944.
[4] ZHONG Chupeng, QU Zhe, DING Yulong. The influences of prestimulus alpha oscillation on visual perception[J]. Advances in Psychological Science, 2020, 28(6): 945-958.
[5] ZHAO Ying, WU Xinchun, XIE Ruibo, FENG Jie, SUN Peng, CHEN Hongjun. Effects of visual language on reading among people who are deaf and hard of hearing and the underlying mechanisms[J]. Advances in Psychological Science, 2020, 28(6): 969-977.
[6] HE Zeyu,ZHANG Ziqi,LI Kexuan,HE Weiqi. Spatial frequencies affect the processing of fearful facial expression in neural pathways[J]. Advances in Psychological Science, 2020, 28(4): 579-587.
[7] HUANG Zili,DING Yulong,QU Zhe. The global modulation of feature-based attention: Enhancement or suppression?[J]. Advances in Psychological Science, 2020, 28(4): 566-578.
[8] ZHANG Ziqi,HE Zeyu,LUO Wenbo,WU Haiyan. The predictive effect of metacognitive confidence on joint decision making[J]. Advances in Psychological Science, 2020, 28(4): 604-611.
[9] WAN Nan,ZHU Shuqing,JIA Shiwei. The effect of feedback interval on feedback processing: A perspective of integrating behavioral and electrophysiological researches[J]. Advances in Psychological Science, 2020, 28(2): 230-239.
[10] CHEN Xiaowen,CAI Wenshu,XIE Tong,FU Shimin. The characteristics and neural mechanisms of visual orienting and visual search in autism spectrum disorders[J]. Advances in Psychological Science, 2020, 28(1): 98-109.
[11] WANG Xin,HANG Mingli,LIANG Dandan. The cognitive neural mechanisms of verb argument structure complexity processing[J]. Advances in Psychological Science, 2020, 28(1): 62-74.
[12] WEI Tongqi,CAO Hui,BI Hong-Yan,YANG Yang. Writing deficits in developmental dyslexia and its neural mechanisms[J]. Advances in Psychological Science, 2020, 28(1): 75-84.
[13] DING Xiaobin,LIU Jianyi,WANG Yapeng,KANG Tiejun,DANG Chen. The automatic processing of changes in emotion: Implications from EMMN[J]. Advances in Psychological Science, 2020, 28(1): 85-97.
[14] LAI Yanqun,YANG Qi,HUANG Baozhen,SAI Liyang. The promoting effect of insight on memory[J]. Advances in Psychological Science, 2019, 27(12): 2034-2042.
[15] OUYANG Mingkun,CAI Xiao,ZHANG Qingfang. Cognition or metacognition: The psychological mechanism of tip-of-the-tongue in spoken production[J]. Advances in Psychological Science, 2019, 27(12): 2052-2063.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech