心理学报 ›› 2023, Vol. 55 ›› Issue (1): 22-35.doi: 10.3724/SP.J.1041.2023.00022
收稿日期:
2021-05-28
发布日期:
2022-10-13
出版日期:
2023-01-25
通讯作者:
方卫宁
E-mail:wnfang@bjtu.edu.cn
基金资助:
CHEN Yueyuan1,2, FANG Weining1(), GUO Beiyuan1, BAO Haifeng1
Received:
2021-05-28
Online:
2022-10-13
Published:
2023-01-25
Contact:
FANG Weining
E-mail:wnfang@bjtu.edu.cn
摘要:
作业中断会对中断后行为绩效产生影响, 探讨不同疲劳状态下中断对作业绩效影响的认知机制将有助于完善和发展中断的认知理论。本研究采用事件相关电位(ERP), 通过在不同心理疲劳状态下执行数学题任务中断、暂停中断和不中断的空间2-back任务, 结合行为数据和ERPs结果, 分析作业中断对任务绩效的影响以及心理疲劳在其中的调节作用。实验结果发现, 中断后诱发的P200和P300振幅显著提高, 作业中断使得主任务的注意力资源下降, 任务中断的无关信息干扰了主任务工作记忆, 而疲劳状态则进一步加剧了中断对注意资源、工作记忆及行为绩效的负面效应。本研究在揭示作业中断认知过程及疲劳对其影响机理的同时, 也支持了中断的目标记忆模型。
中图分类号:
陈悦源, 方卫宁, 郭北苑, 鲍海峰. (2023). 作业中断对任务绩效的影响及心理疲劳的调节作用. 心理学报, 55(1), 22-35.
CHEN Yueyuan, FANG Weining, GUO Beiyuan, BAO Haifeng. (2023). Effects of interruption on work performance and the moderating effects of mental fatigue. Acta Psychologica Sinica, 55(1), 22-35.
疲劳状态 | 任务类型 | 试次类型 | 正确率 (%, M ± SD) | 反应时 (ms, M ± SD) |
---|---|---|---|---|
不疲劳 | 任务中断 | 中断前 | 98 ± 3 | 594.55 ± 143.29 |
中断后 | 89 ± 11 | 722.95 ± 132.38 | ||
暂停中断 | 中断前 | 97 ± 3 | 604.17 ± 142.46 | |
中断后 | 92 ± 12 | 696.47 ± 146.45 | ||
基线任务 | —— | 95 ± 5 | 621.67 ± 157.42 | |
疲劳 | 任务中断 | 中断前 | 95 ± 5 | 685.48 ± 146.06 |
中断后 | 83 ± 17 | 848.49 ± 193.35 | ||
暂停中断 | 中断前 | 95 ± 4 | 710.20 ± 154.31 | |
中断后 | 85 ± 14 | 782.04 ± 153.78 | ||
基线任务 | —— | 92 ± 8 | 712.86 ± 143.32 |
表1 行为绩效描述性统计结果
疲劳状态 | 任务类型 | 试次类型 | 正确率 (%, M ± SD) | 反应时 (ms, M ± SD) |
---|---|---|---|---|
不疲劳 | 任务中断 | 中断前 | 98 ± 3 | 594.55 ± 143.29 |
中断后 | 89 ± 11 | 722.95 ± 132.38 | ||
暂停中断 | 中断前 | 97 ± 3 | 604.17 ± 142.46 | |
中断后 | 92 ± 12 | 696.47 ± 146.45 | ||
基线任务 | —— | 95 ± 5 | 621.67 ± 157.42 | |
疲劳 | 任务中断 | 中断前 | 95 ± 5 | 685.48 ± 146.06 |
中断后 | 83 ± 17 | 848.49 ± 193.35 | ||
暂停中断 | 中断前 | 95 ± 4 | 710.20 ± 154.31 | |
中断后 | 85 ± 14 | 782.04 ± 153.78 | ||
基线任务 | —— | 92 ± 8 | 712.86 ± 143.32 |
疲劳状态 | 任务类型 | 试次类型 | P200平均振幅 (μV, M ± SD) | P200峰值潜伏期 (ms, M ± SD) | P300平均振幅 (μV, M ± SD) | P300峰值潜伏期 (ms, M ± SD) |
---|---|---|---|---|---|---|
不疲劳 | 任务中断 | 中断前 | 3.35 ± 3.45 | 233 ± 25 | 4.63 ± 3.19 | 360 ± 34 |
中断后 | 4.37 ± 3.60 | 235 ± 25 | 7.31 ± 3.41 | 369 ± 28 | ||
暂停中断 | 中断前 | 3.55 ± 3.72 | 235 ± 27 | 5.31 ± 3.32 | 360 ± 35 | |
中断后 | 4.71 ± 3.84 | 237 ± 22 | 4.96 ± 3.67 | 359 ± 38 | ||
基线任务 | —— | 3.51 ± 3.57 | 234 ± 26 | 4.56 ± 3.50 | 362 ± 30 | |
疲劳 | 任务中断 | 中断前 | 3.90 ± 2.89 | 228 ± 18 | 4.04 ± 2.91 | 359 ± 34 |
中断后 | 4.78 ± 3.22 | 235 ± 26 | 6.91 ± 3.80 | 362 ± 31 | ||
暂停中断 | 中断前 | 3.67 ± 2.82 | 227 ± 22 | 3.94 ± 3.44 | 355 ± 32 | |
中断后 | 4.68 ± 2.85 | 235 ± 22 | 4.47 ± 3.39 | 362 ± 37 | ||
基线任务 | —— | 3.97 ± 2.69 | 228 ± 22 | 4.16 ± 3.12 | 357 ± 31 |
表2 P200和P300平均振幅和峰值潜伏期描述性统计结果
疲劳状态 | 任务类型 | 试次类型 | P200平均振幅 (μV, M ± SD) | P200峰值潜伏期 (ms, M ± SD) | P300平均振幅 (μV, M ± SD) | P300峰值潜伏期 (ms, M ± SD) |
---|---|---|---|---|---|---|
不疲劳 | 任务中断 | 中断前 | 3.35 ± 3.45 | 233 ± 25 | 4.63 ± 3.19 | 360 ± 34 |
中断后 | 4.37 ± 3.60 | 235 ± 25 | 7.31 ± 3.41 | 369 ± 28 | ||
暂停中断 | 中断前 | 3.55 ± 3.72 | 235 ± 27 | 5.31 ± 3.32 | 360 ± 35 | |
中断后 | 4.71 ± 3.84 | 237 ± 22 | 4.96 ± 3.67 | 359 ± 38 | ||
基线任务 | —— | 3.51 ± 3.57 | 234 ± 26 | 4.56 ± 3.50 | 362 ± 30 | |
疲劳 | 任务中断 | 中断前 | 3.90 ± 2.89 | 228 ± 18 | 4.04 ± 2.91 | 359 ± 34 |
中断后 | 4.78 ± 3.22 | 235 ± 26 | 6.91 ± 3.80 | 362 ± 31 | ||
暂停中断 | 中断前 | 3.67 ± 2.82 | 227 ± 22 | 3.94 ± 3.44 | 355 ± 32 | |
中断后 | 4.68 ± 2.85 | 235 ± 22 | 4.47 ± 3.39 | 362 ± 37 | ||
基线任务 | —— | 3.97 ± 2.69 | 228 ± 22 | 4.16 ± 3.12 | 357 ± 31 |
[1] |
Altmann E. M., & Trafton J. G. (2002). Memory for goals: An activation-based model. Cognitive Science, 26(1), 39-83.
doi: 10.1207/s15516709cog2601_2 URL |
[2] |
Altmann E. M., Trafton J. G., & Hambrick D. Z. (2017). Effects of interruption length on procedural errors. Journal of Experimental Psychology: Applied, 23(2), 216-229.
doi: 10.1037/xap0000117 URL |
[3] | Anderson J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press. |
[4] |
Basoglu K. A., Fuller M. A., & Sweeney J. T. (2009). Investigating the effects of computer mediated interruptions: An analysis of task characteristics and interruption frequency on financial performance. International Journal of Accounting Information Systems, 10(4), 177-189.
doi: 10.1016/j.accinf.2009.10.003 URL |
[5] |
Berry A. S., Zanto T. P., Rutman A. M., Clapp W. C., & Gazzaley A. (2009). Practice-related improvement in working memory is modulated by changes in processing external interference. Journal of Neurophysiology, 102(3), 1779-1789.
doi: 10.1152/jn.00179.2009 pmid: 19587320 |
[6] |
Boksem M., Meijman T. F., & Lorist M. M. (2005). Effects of mental fatigue on attention: An ERP study. Cognitive Brain Research, 25(1), 107-116.
pmid: 15913965 |
[7] | Brouwer A.-M., Hogervorst M. A., van Erp J. B., Heffelaar T., Zimmerman P. H., & Oostenveld R. (2012). Estimating workload using EEG spectral power and ERPs in the n-back task. Journal of Neural Engineering, 9(4), 045008. |
[8] |
Cellier J.-M., & Eyrolle H. (1992). Interference between switched tasks. Ergonomics, 35(1), 25-36.
doi: 10.1080/00140139208967795 URL |
[9] | Chen Y. N. (2007). Working memory in n-back tasks : ERP studies (Unpublished doctorial dissertation). University of Warwick. |
[10] |
Ciecko-Michalska I., Wójcik J., Wyczesany M., Binder M., Szewczyk J., Senderecka M., Dziedzic T., Slowik A., & Mach T. (2012). Cognitive evoked response potentials in patients with liver cirrhosis without diagnosis of minimal or overt hepatic encephalopathy. a pilot study. Journal of Physiology and Pharmacology, 63(3), 271-276.
pmid: 22791641 |
[11] |
Clapp W. C., Rubens M. T., & Gazzaley A. (2010). Mechanisms of working memory disruption by external interference. Cerebral Cortex, 20(4), 859-872.
doi: 10.1093/cercor/bhp150 URL |
[12] |
Couffe C., & Michael G. A. (2017). Failures due to interruptions or distractions: A review and a new framework. American Journal of Psychology, 130(2), 163-181.
pmid: 29461714 |
[13] |
Crowley K. E., & Colrain I. M. (2004). A review of the evidence for P2 being an independent component process: Age, sleep and modality. Clinical Neurophysiology, 115(4), 732-744.
pmid: 15003751 |
[14] |
Dunn B. R., Dunn D. A., Languis M., & Andrews D. (1998). The relation of ERP components to complex memory processing. Brain and Cognition, 36(3), 355-376.
pmid: 9647684 |
[15] | Faber L. G., Maurits N. M., Lorist M. M., & Lange F. D. (2012). Mental fatigue affects visual selective attention. Plos One, 7(10), e48073. |
[16] | Fan X. L., Zhao C. Y., Luo H., & Zhang W. (2018). An event-related potential objective evaluation study of mental fatigue based on 2-back task. Journal of Biomedical Engineering, 35(6), 837-844. |
[范晓丽, 赵朝义, 罗虹, 张伟. (2018). 基于2-back任务下ERP特征的脑力疲劳客观评价研究. 生物医学工程学杂志, 35(6), 837-844.] | |
[17] |
Forester G., Halbeisen G., Walther E., & Kamp S.-M. (2020). Frontal ERP slow waves during memory encoding are associated with affective attitude formation. International Journal of Psychophysiology, 158, 389-399.
doi: 10.1016/j.ijpsycho.2020.11.003 pmid: 33181190 |
[18] |
Grech M. R., Neal N., Yeo G., Smith S., & Humphreys M. (2009). An examination of the relationship between workload and fatigue within and across consecutive days of work: Is the relationship static or dynamic? Journal of Occupational Health Psychology, 14(3), 231-242.
doi: 10.1037/a0014952 pmid: 19586219 |
[19] |
Hakim N., Feldmann-Wüstefeld T., Awh E., & Vogel E. K. (2020). Perturbing neural representations of working memory with task-irrelevant interruption. Journal of Cognitive Neuroscience, 32(3), 558-569.
doi: 10.1162/jocn_a_01481 pmid: 31617823 |
[20] | Han L., Liu Y., Zhang D., Jin Y., & Luo Y. (2013). Low-arousal speech noise improves performance in n-back task: An ERP study. PLoS One, 8(10), e76261. |
[21] |
Heath C., Larrick R. P., & Wu G. (1999). Goals as reference points. Cognitive Psychology, 38(1), 79-109.
pmid: 10090799 |
[22] |
Hockey G. R. (1997). Compensatory control in the regulation of human performance under stress and high workload; a cognitive-energetical framework. Biological Psychology, 45(1-3), 73-93.
doi: 10.1016/s0301-0511(96)05223-4 pmid: 9083645 |
[23] | Hruby T., & Marsalek P. (2002). Event-related potentials-the P3 wave. Acta Neurobiologiae Experimentalis, 63(1), 55-63. |
[24] | Iqbal S. T., & Bailey B. P. (2005). Investigating the effectiveness of mental workload as a predictor of opportune moments for interruption. CHI'05 extended abstracts on Human factors in computing systems, Portland, Oregon, USA, (pp.1489-1492). |
[25] |
Kalgotra P., Sharda R., & McHaney R. (2019). Don't disturb me! Understanding the impact of interruptions on knowledge work: An exploratory neuroimaging study. Information Systems Frontiers, 21(5), 1019-1030.
doi: 10.1007/s10796-017-9812-9 |
[26] |
Kok A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557-577.
pmid: 11352145 |
[27] | Laarni J. (2021). Multitasking and interruption handling in control room operator work. In: A.-M. Teperi & N. Gotcheva (Eds.). Human factors in the nuclear industry (pp. 127-149). Elsevier. |
[28] | Lenartowicz A., Escobedo-Quiroz R., & Cohen J. D. (2010). Updating of context in working memory: An event-related potential study. Cognitive, Affective, & Behavioral Neuroscience, 10(2), 298-315. |
[29] | Liao H. Y. (2017). The effect of mental fatigue on working memory capacity in different-aged males (Unpublished master’s thesis). Gannan Normal University, China. |
[廖慧云. (2017). 认知疲劳对不同年龄男性工作记忆广度的影响 (硕士学位论文). 赣南师范大学, 赣州.] | |
[30] |
Lin L., Leung A. W., Wu J., & Zhang L. (2020). Individual differences under acute stress: Higher cortisol responders performs better on n-back task in young men. International Journal of Psychophysiology, 150, 20-28.
doi: S0167-8760(20)30019-2 pmid: 31987870 |
[31] | Luck S. J. (2014). An introduction to the event-related potential technique. MIT press. |
[32] |
Magliero A., Bashore T. R., Coles M. G., & Donchin E. (1984). On the dependence of P300 latency on stimulus evaluation processes. Psychophysiology, 21(2), 171-186.
pmid: 6728983 |
[33] |
Marcora S. M., Staiano W., & Manning V. (2009). Mental fatigue impairs physical performance in humans. Journal of Applied Physiology, 106(3), 857-864.
doi: 10.1152/japplphysiol.91324.2008 pmid: 19131473 |
[34] |
McFarlane D. C. (2002). Comparison of four primary methods for coordinating the interruption of people in human-computer interaction. Human-Computer Interaction, 17(1), 63-139.
doi: 10.1207/S15327051HCI1701_2 URL |
[35] | Meys H. L., & Sanderson P. M. (2013). The effect of individual differences on how people handle interruptions. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 57(1), 868-872. |
[36] |
Monk C. A., Boehm-Davis D. A., & Trafton J. G. (2004). Recovering from interruptions: Implications for driver distraction research. Human Factors, 46(4), 650-663.
pmid: 15709327 |
[37] |
Monk C. A., Trafton J. G., & Boehm-Davis D. A. (2008). The effect of interruption duration and demand on resuming suspended goals. Journal of Experimental Psychology Applied, 14(4), 299-313.
doi: 10.1037/a0014402 URL |
[38] |
Owen A. M., McMillan K. M., Laird A. R., & Bullmore E. (2005). N-back working memory paradigm: A meta - analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46-59.
doi: 10.1002/hbm.20131 URL |
[39] |
Polich J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148.
doi: 10.1016/j.clinph.2007.04.019 pmid: 17573239 |
[40] |
Potts G. F. (2004). An ERP index of task relevance evaluation of visual stimuli. Brain and Cognition, 56(1), 5-13.
pmid: 15380870 |
[41] |
Puranik H., Koopman J., & Vough H. C. (2020). Pardon the interruption: An integrative review and future research agenda for research on work interruptions. Journal of Management, 46(6), 806-842.
doi: 10.1177/0149206319887428 URL |
[42] | Ratwani R. M., Trafton J. G., & Myers C. (2006). Helpful or harmful? Examining the effects of interruptions on task performance. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, San Francisco, California, 50( 3), 372-375. |
[43] |
Rejer I., & Jankowski J. (2017). Brain activity patterns induced by interrupting the cognitive processes with online advertising. Cognitive Processing, 18(4), 419-430.
doi: 10.1007/s10339-017-0815-8 pmid: 28603804 |
[44] |
Saxby D. J., Matthews G., Warm J. S., Hitchcock E. M., & Neubauer C. (2013). Active and passive fatigue in simulated driving: Discriminating styles of workload regulation and their safety impacts. Journal of Experimental Psychology: Applied, 19(4), 287-321.
doi: 10.1037/a0034386 URL |
[45] |
Singh K. A., Gignac G. E., Brydges C. R., & Ecker U. K. (2018). Working memory capacity mediates the relationship between removal and fluid intelligence. Journal of Memory and Language, 101, 18-36.
doi: 10.1016/j.jml.2018.03.002 URL |
[46] |
Smith J. L., Jamadar S., Provost A. L., & Michie P. T. (2013). Motor and non-motor inhibition in the Go/NoGo task: An ERP and fMRI study. International Journal of Psychophysiology, 87(3), 244-253.
doi: 10.1016/j.ijpsycho.2012.07.185 pmid: 22885679 |
[47] |
Speier C., Valacich J. S., & Vessey I. (1999). The influence of task interruption on individual decision making: An information overload perspective. Decision Sciences, 30(2), 337-360.
doi: 10.1111/j.1540-5915.1999.tb01613.x URL |
[48] |
Speier C., Vessey I., & Valacich J. S. (2003). The effects of interruptions, task complexity, and information presentation on computer-supported decision-making performance. Decision Sciences, 34(4), 771-797.
doi: 10.1111/j.1540-5414.2003.02292.x URL |
[49] |
Stefanics G., Kremláček J., & Czigler I. (2014). Visual mismatch negativity: A predictive coding view. Frontiers in Human Neuroscience, 8, 666.
doi: 10.3389/fnhum.2014.00666 pmid: 25278859 |
[50] | Trafton G. J., & Monk C. A. (2007). Task Interruptions. Reviews of Human Factors & Ergonomics, 3(1), 111-126. |
[51] |
van der Linden D., Frese M., & Meijman T. F. (2003). Mental fatigue and the control of cognitive processes: Effects on perseveration and planning. Acta Psychologica, 113(1), 45-65.
pmid: 12679043 |
[52] |
van der Linden D., Massar S. A. A., Schellekens A. F. A., Ellenbroek B. A., & Verkes R.-J. (2006). Disrupted sensorimotor gating due to mental fatigue: Preliminary evidence. International Journal of Psychophysiology, 62(1), 168-174.
pmid: 16730824 |
[53] |
Vilà-Balló A., Salmi J., Soveri A., Rodríguez-Fornells A., Lehtonen M., & Laine M. (2018). Neural signatures for active maintenance and interference during working memory updating. Biological Psychology, 132, 233-243.
doi: S0301-0511(18)30025-5 pmid: 29339147 |
[54] | Wang L., & Wu L. (2012). Task interruptions of human- computer interaction: New issues in the new environment. Journal of Psychological Science, 35(1), 88-92. |
[王磊, 伍麟. (2012). 人机互动中的任务中断: 新环境中的新问题. 心理科学, 35(1), 88-92.] | |
[55] | Wang S. Z., Ma H. Y., Liu T. F., & Zhou Z. K. (2014). Review of task interruption management: Based on human- computer interaction research. Journal of Psychological Science, 37(6), 189-194. |
[王水珍, 马红宇, 刘腾飞, 周宗奎. (2014). 基于人机互动的任务中断管理研究述评. 心理科学, 37(6), 189-194.] | |
[56] | Westbrook J. I., Raban M. Z., Walter S. R., & Douglas H. (2018). Task errors by emergency physicians are associated with interruptions, multitasking, fatigue and working memory capacity: A prospective, direct observation study. BMJ Quality & Safety, 27(8), 655-663. |
[57] |
Wongupparaj P., Sumich A., Wickens M., Kumari V., & Morris R. G. (2018). Individual differences in working memory and general intelligence indexed by P200 and P300: A latent variable model. Biological Psychology, 139, 96-105.
doi: S0301-0511(18)30268-0 pmid: 30392828 |
[58] | Xiao Y. X. (2015). P300 and cognitive process: Method, mechanism and application. China Journal of Health Psychology, 23(9), 1425-1430. |
[肖英霞. (2015). P300与认知加工:方法, 机制和应用. 中国健康心理学杂志, 23(9), 1425-1430.] | |
[59] | Yang P. (2018). Research on the maintenance and retrieval of object information in visual working memory (Unpublished doctor’s dissertation). University of Electronic Science and Technology of China. |
[杨平. (2018). 客体信息在视觉工作记忆中的维持与提取研究 (博士学位论文). 电子科技大学.] | |
[60] | Zhang Y. (2009). Effects of mental fatigue on attentional feature (Unpublished doctor’s dissertation). The Fourth Military Medical University, China. |
[张焱. (2009). 脑力疲劳对注意特征的影响 (博士学位论文). 第四军医大学.] | |
[61] | Zickerick B., Kobald S. O., Thönes S., Küper K., Wascher E., & Schneider D. (2021). Don't stop me now: Hampered retrieval of action plans following interruptions. Psychophysiology, 58(2), e13725. |
[62] |
Zickerick B., Thönes S., Kobald S. O., Wascher E., Schneider D., & Küper K. (2020). Differential effects of interruptions and distractions on working memory processes in an ERP study. Frontiers in Human Neuroscience, 14, 84.
doi: 10.3389/fnhum.2020.00084 pmid: 32231527 |
[1] | 庞超, 陈颜璋, 王莉, 杨喜端, 贺雅, 李芷莹, 欧阳小钰, 傅世敏, 南威治. 客体信息在视觉工作记忆编码和维持阶段的不同注意选择模式[J]. 心理学报, 2023, 55(9): 1397-1410. |
[2] | 李海峰, 林世卿, 万博温. 价值导向的注意刷新及其机制[J]. 心理学报, 2023, 55(8): 1234-1242. |
[3] | 董天天, 徐璐璐, 贺雯. 积极总是好的吗?积极元刻板印象对工作记忆的影响及其机制[J]. 心理学报, 2023, 55(8): 1344-1357. |
[4] | 王强强, 张琦, 石文典, 王志伟, 章鹏程. 数字空间表征的在线建构:来自干扰情境中数字SNARC效应的证据[J]. 心理学报, 2022, 54(7): 761-771. |
[5] | 贾世伟, 齐丛丛, 陈乐乐, 任衍具. 工作记忆负荷对反馈加工过程的影响: 来自脑电研究的证据[J]. 心理学报, 2022, 54(3): 248-258. |
[6] | 王铭, 孙启武, 柳静, 任志洪, 江光荣. PTSD易感性人格特质、工作记忆能力和创伤期间认知加工对模拟创伤闪回的影响[J]. 心理学报, 2022, 54(2): 168-181. |
[7] | 李婉悦, 刘燊, 韩尚锋, 张林, 徐强. 特质焦虑在面部表情前注意加工阶段的影响:来自ERP的证据[J]. 心理学报, 2022, 54(1): 1-11. |
[8] | 车晓玮, 徐慧云, 王凯旋, 张倩, 李寿欣. 工作记忆表征精度加工需求对注意引导的影响[J]. 心理学报, 2021, 53(7): 694-713. |
[9] | 孙彦良, 宋佳汝, 辛晓雯, 丁晓伟, 李寿欣. 视觉工作记忆的同类别存储优势[J]. 心理学报, 2021, 53(11): 1189-1202. |
[10] | 黄月胜, 张豹, 范兴华, 黄杰. 无关工作记忆表征的负性情绪信息能否捕获视觉注意?一项眼动研究[J]. 心理学报, 2021, 53(1): 26-37. |
[11] | 张引, 梁腾飞, 叶超雄, 刘强. 长时联结表征对工作记忆的抑制效应[J]. 心理学报, 2020, 52(5): 562-571. |
[12] | 叶超雄, 胡中华, 梁腾飞, 张加峰, 许茜如, 刘强. 视觉工作记忆回溯线索效应的产生机制:认知阶段分离[J]. 心理学报, 2020, 52(4): 399-413. |
[13] | 张頔, 郝仁宁, 刘强. 注意范围分布对视觉工作记忆巩固过程的影响[J]. 心理学报, 2019, 51(7): 772-780. |
[14] | 彭婉晴, 罗帏, 周仁来. 工作记忆刷新训练改善抑郁倾向大学生情绪调节能力的HRV证据[J]. 心理学报, 2019, 51(6): 648-661. |
[15] | 李寿欣, 车晓玮, 李彦佼, 王丽, 陈恺盛. 视觉工作记忆负载类型对注意选择的影响[J]. 心理学报, 2019, 51(5): 527-542. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||