心理学报 ›› 2022, Vol. 54 ›› Issue (8): 996-1008.doi: 10.3724/SP.J.1041.2022.00996
• 研究报告 • 上一篇
收稿日期:
2021-06-30
发布日期:
2022-06-23
出版日期:
2022-08-25
通讯作者:
毛秀珍
E-mail:maomao_wanli@163.com
基金资助:
LI Jia, MAO Xiuzhen(), WEI Jia
Received:
2021-06-30
Online:
2022-06-23
Published:
2022-08-25
Contact:
MAO Xiuzhen
E-mail:maomao_wanli@163.com
摘要:
Q矩阵的正确性是影响题目参数估计和被试分类准确性的重要因素。针对Q矩阵修正问题, 首先提出了一种简单有效的新方法(ORDP)。然后, 模拟研究通过改变被试知识状态的分布、样本容量(N)、测验长度(L)、Q矩阵错误率(M)、项目质量(Iq)和属性层级结构, 比较了ORDP与已有方法(R、RMSEA和HD)的表现。研究表明:(1) 当知识状态服从均匀分布时, ORDP方法在所有层级结构下最优; 当知识状态服从多元正态分布时, RMSEA和ORDP表现没有明显差异, 除独立结构外, RMSEA方法均稍优于ORDP方法; (2) 各方法在多元正态分布下的修正效果不及均匀分布时的修正结果; (3) N、L、M、Iq和属性层级结构对4种方法的表现均有明显影响; (4) 基于Tatsuoka (1984)分数减法数据的修正结果表明, 采用ORDP方法修正的Q矩阵与数据拟合最优。
中图分类号:
李佳, 毛秀珍, 韦嘉. (2022). 一种简单有效的Q矩阵修正新方法. 心理学报, 54(8), 996-1008.
LI Jia, MAO Xiuzhen, WEI Jia. (2022). A simple and effective new method of Q-matrix validation. Acta Psychologica Sinica, 54(8), 996-1008.
反应类别 | (O1, E1) | (O1, E0) | (O0, E1) | (O0, E0) |
---|---|---|---|---|
期望人数比例 | flj(1,1) | flj(1,0) | flj(0,1) | flj(0,0) |
表1 αl类被试在项目j上4种反应类别的人数比例分布
反应类别 | (O1, E1) | (O1, E0) | (O0, E1) | (O0, E0) |
---|---|---|---|---|
期望人数比例 | flj(1,1) | flj(1,0) | flj(0,1) | flj(0,0) |
反应类别 | (O1, E1) | (O1, E0) | (O0, E1) | (O0, E0) |
---|---|---|---|---|
期望人数比例 | | | | |
表2 被试αlu在项目j上4种反应类别的人数比例分布
反应类别 | (O1, E1) | (O1, E0) | (O0, E1) | (O0, E0) |
---|---|---|---|---|
期望人数比例 | | | | |
反应类别 | (O1, E1) | (O1, E0) | (O0, E1) | (O0, E0) |
---|---|---|---|---|
期望人数比例 | | | | |
表3 被试αlv在项目j上4种反应类别的人数比例分布
反应类别 | (O1, E1) | (O1, E0) | (O0, E1) | (O0, E0) |
---|---|---|---|---|
期望人数比例 | | | | |
候选q向量 | KS | (O1, E1) | (O1, E0) | (O0, E1) | (O0, E0) | Gini | ORDP |
---|---|---|---|---|---|---|---|
q1=(1,1) | α1=(1,1) | 0.202 | 0.074 | 0.148 | 0.020 | 0.444 | 2.285 |
α2=(1,0) | 0.106 | 0.250 | 0.074 | 0.218 | 0.648 | ||
α3=(0,1) | 0.074 | 0.218 | 0.106 | 0.259 | 0.657 | ||
α4=(0,0) | 0.038 | 0.134 | 0.134 | 0.230 | 0.536 | ||
q2=(1,0) | α1=(1,1) | 0.202 | 0.074 | 0.148 | 0.020 | 0.444 | 2.209 |
α2=(1,0) | 0.248 | 0.056 | 0.230 | 0.038 | 0.572 | ||
α3=(0,1) | 0.074 | 0.218 | 0.106 | 0.259 | 0.657 | ||
α4=(0,0) | 0.038 | 0.134 | 0.134 | 0.230 | 0.536 | ||
q3=(0,1) | α1=(1,1) | 0.202 | 0.074 | 0.148 | 0.020 | 0.444 | 2.196 |
α2=(1,0) | 0.106 | 0.250 | 0.074 | 0.218 | 0.648 | ||
α3=(0,1) | 0.230 | 0.038 | 0.248 | 0.056 | 0.572 | ||
α4=(0,0) | 0.038 | 0.134 | 0.134 | 0.230 | 0.536 |
表4 被试总体在项目j不同候选q向量下的基尼系数
候选q向量 | KS | (O1, E1) | (O1, E0) | (O0, E1) | (O0, E0) | Gini | ORDP |
---|---|---|---|---|---|---|---|
q1=(1,1) | α1=(1,1) | 0.202 | 0.074 | 0.148 | 0.020 | 0.444 | 2.285 |
α2=(1,0) | 0.106 | 0.250 | 0.074 | 0.218 | 0.648 | ||
α3=(0,1) | 0.074 | 0.218 | 0.106 | 0.259 | 0.657 | ||
α4=(0,0) | 0.038 | 0.134 | 0.134 | 0.230 | 0.536 | ||
q2=(1,0) | α1=(1,1) | 0.202 | 0.074 | 0.148 | 0.020 | 0.444 | 2.209 |
α2=(1,0) | 0.248 | 0.056 | 0.230 | 0.038 | 0.572 | ||
α3=(0,1) | 0.074 | 0.218 | 0.106 | 0.259 | 0.657 | ||
α4=(0,0) | 0.038 | 0.134 | 0.134 | 0.230 | 0.536 | ||
q3=(0,1) | α1=(1,1) | 0.202 | 0.074 | 0.148 | 0.020 | 0.444 | 2.196 |
α2=(1,0) | 0.106 | 0.250 | 0.074 | 0.218 | 0.648 | ||
α3=(0,1) | 0.230 | 0.038 | 0.248 | 0.056 | 0.572 | ||
α4=(0,0) | 0.038 | 0.134 | 0.134 | 0.230 | 0.536 |
评价指标 | 层级结构 | N | 高Iq | 低Iq | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L = 20 | L = 30 | L = 20 | L = 30 | |||||||||||||||
ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | |||
PMR | 独立 | 300 | 0.933 | 0.830 | 0.893 | 0.930 | 0.976 | 0.908 | 0.969 | 0.971 | 0.735 | 0.590 | 0.732 | 0.733 | 0.864 | 0.738 | 0.861 | 0.862 |
1000 | 0.937 | 0.897 | 0.918 | 0.935 | 0.991 | 0.968 | 0.981 | 0.983 | 0.822 | 0.636 | 0.818 | 0.821 | 0.946 | 0.833 | 0.936 | 0.941 | ||
直线 | 300 | 0.980 | 0.859 | 0.970 | 0.974 | 0.996 | 0.886 | 0.994 | 0.994 | 0.949 | 0.805 | 0.944 | 0.946 | 0.972 | 0.821 | 0.971 | 0.972 | |
1000 | 0.988 | 0.877 | 0.986 | 0.988 | 0.999 | 0.900 | 0.998 | 0.999 | 0.967 | 0.817 | 0.967 | 0.966 | 0.994 | 0.849 | 0.993 | 0.994 | ||
收敛 | 300 | 0.982 | 0.876 | 0.975 | 0.977 | 0.996 | 0.897 | 0.995 | 0.995 | 0.938 | 0.769 | 0.936 | 0.937 | 0.975 | 0.813 | 0.980 | 0.973 | |
1000 | 0.990 | 0.894 | 0.983 | 0.990 | 0.998 | 0.920 | 0.996 | 0.997 | 0.961 | 0.813 | 0.963 | 0.961 | 0.985 | 0.840 | 0.987 | 0.984 | ||
分支 | 300 | 0.973 | 0.883 | 0.966 | 0.969 | 0.993 | 0.911 | 0.987 | 0.991 | 0.916 | 0.756 | 0.907 | 0.911 | 0.955 | 0.799 | 0.958 | 0.955 | |
1000 | 0.990 | 0.912 | 0.984 | 0.985 | 0.997 | 0.952 | 0.996 | 0.997 | 0.950 | 0.806 | 0.949 | 0.950 | 0.987 | 0.851 | 0.981 | 0.984 | ||
TPR | 独立 | 300 | 0.991 | 0.964 | 0.986 | 0.988 | 0.997 | 0.981 | 0.998 | 0.994 | 0.943 | 0.905 | 0.933 | 0.940 | 0.972 | 0.940 | 0.970 | 0.971 |
1000 | 0.994 | 0.979 | 0.992 | 0.992 | 0.999 | 0.993 | 0.999 | 0.999 | 0.968 | 0.918 | 0.961 | 0.961 | 0.993 | 0.966 | 0.992 | 0.991 | ||
直线 | 300 | 0.998 | 0.974 | 0.990 | 0.995 | 0.999 | 0.979 | 0.998 | 0.998 | 0.996 | 0.960 | 0.989 | 0.992 | 0.996 | 0.962 | 0.995 | 0.995 | |
1000 | 0.999 | 0.980 | 0.999 | 0.999 | 1 | 0.983 | 1 | 1 | 0.999 | 0.966 | 0.996 | 0.997 | 1 | 0.969 | 1 | 0.999 | ||
收敛 | 300 | 0.998 | 0.977 | 0.996 | 0.996 | 0.999 | 0.981 | 1 | 0.999 | 0.993 | 0.956 | 0.989 | 0.991 | 0.996 | 0.963 | 0.997 | 0.996 | |
1000 | 0.999 | 0.982 | 0.998 | 0.999 | 1 | 0.985 | 1 | 1 | 0.999 | 0.964 | 0.998 | 0.999 | 0.999 | 0.968 | 0.999 | 0.999 | ||
分支 | 300 | 0.996 | 0.978 | 0.996 | 0.996 | 0.999 | 0.981 | 0.998 | 0.997 | 0.988 | 0.948 | 0.984 | 0.985 | 0.992 | 0.960 | 0.994 | 0.991 | |
1000 | 0.998 | 0.981 | 0.999 | 0.998 | 1 | 0.991 | 1 | 1 | 0.996 | 0.963 | 0.995 | 0.996 | 0.999 | 0.970 | 0.998 | 0.999 | ||
FPR | 独立 | 300 | 0.946 | 0.955 | 0.916 | 0.936 | 0.981 | 0.981 | 0.974 | 0.979 | 0.787 | 0.847 | 0.803 | 0.790 | 0.826 | 0.910 | 0.908 | 0.825 |
1000 | 0.954 | 0.978 | 0.946 | 0.951 | 0.993 | 0.993 | 0.981 | 0.992 | 0.819 | 0.893 | 0.876 | 0.818 | 0.897 | 0.950 | 0.955 | 0.891 | ||
直线 | 300 | 0.989 | 0.956 | 0.974 | 0.979 | 0.997 | 0.966 | 0.994 | 0.996 | 0.955 | 0.932 | 0.952 | 0.950 | 0.976 | 0.948 | 0.978 | 0.976 | |
1000 | 0.995 | 0.959 | 0.988 | 0.993 | 0.999 | 0.970 | 0.999 | 0.998 | 0.964 | 0.937 | 0.964 | 0.962 | 0.994 | 0.957 | 0.995 | 0.993 | ||
收敛 | 300 | 0.988 | 0.966 | 0.984 | 0.983 | 0.997 | 0.972 | 0.996 | 0.995 | 0.946 | 0.930 | 0.946 | 0.946 | 0.983 | 0.945 | 0.986 | 0.979 | |
1000 | 0.994 | 0.968 | 0.987 | 0.990 | 0.999 | 0.981 | 0.996 | 0.996 | 0.958 | 0.948 | 0.960 | 0.958 | 0.988 | 0.959 | 0.988 | 0.988 | ||
分支 | 300 | 0.984 | 0.967 | 0.970 | 0.973 | 0.997 | 0.986 | 0.989 | 0.994 | 0.936 | 0.930 | 0.932 | 0.933 | 0.971 | 0.952 | 0.971 | 0.970 | |
1000 | 0.995 | 0.985 | 0.986 | 0.988 | 0.998 | 0.989 | 0.998 | 0.995 | 0.953 | 0.947 | 0.954 | 0.952 | 0.993 | 0.970 | 0.991 | 0.992 |
表5 KS服从均匀分布且M = 20%时各方法在不同实验条件下的PMR、TPR和FPR
评价指标 | 层级结构 | N | 高Iq | 低Iq | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L = 20 | L = 30 | L = 20 | L = 30 | |||||||||||||||
ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | |||
PMR | 独立 | 300 | 0.933 | 0.830 | 0.893 | 0.930 | 0.976 | 0.908 | 0.969 | 0.971 | 0.735 | 0.590 | 0.732 | 0.733 | 0.864 | 0.738 | 0.861 | 0.862 |
1000 | 0.937 | 0.897 | 0.918 | 0.935 | 0.991 | 0.968 | 0.981 | 0.983 | 0.822 | 0.636 | 0.818 | 0.821 | 0.946 | 0.833 | 0.936 | 0.941 | ||
直线 | 300 | 0.980 | 0.859 | 0.970 | 0.974 | 0.996 | 0.886 | 0.994 | 0.994 | 0.949 | 0.805 | 0.944 | 0.946 | 0.972 | 0.821 | 0.971 | 0.972 | |
1000 | 0.988 | 0.877 | 0.986 | 0.988 | 0.999 | 0.900 | 0.998 | 0.999 | 0.967 | 0.817 | 0.967 | 0.966 | 0.994 | 0.849 | 0.993 | 0.994 | ||
收敛 | 300 | 0.982 | 0.876 | 0.975 | 0.977 | 0.996 | 0.897 | 0.995 | 0.995 | 0.938 | 0.769 | 0.936 | 0.937 | 0.975 | 0.813 | 0.980 | 0.973 | |
1000 | 0.990 | 0.894 | 0.983 | 0.990 | 0.998 | 0.920 | 0.996 | 0.997 | 0.961 | 0.813 | 0.963 | 0.961 | 0.985 | 0.840 | 0.987 | 0.984 | ||
分支 | 300 | 0.973 | 0.883 | 0.966 | 0.969 | 0.993 | 0.911 | 0.987 | 0.991 | 0.916 | 0.756 | 0.907 | 0.911 | 0.955 | 0.799 | 0.958 | 0.955 | |
1000 | 0.990 | 0.912 | 0.984 | 0.985 | 0.997 | 0.952 | 0.996 | 0.997 | 0.950 | 0.806 | 0.949 | 0.950 | 0.987 | 0.851 | 0.981 | 0.984 | ||
TPR | 独立 | 300 | 0.991 | 0.964 | 0.986 | 0.988 | 0.997 | 0.981 | 0.998 | 0.994 | 0.943 | 0.905 | 0.933 | 0.940 | 0.972 | 0.940 | 0.970 | 0.971 |
1000 | 0.994 | 0.979 | 0.992 | 0.992 | 0.999 | 0.993 | 0.999 | 0.999 | 0.968 | 0.918 | 0.961 | 0.961 | 0.993 | 0.966 | 0.992 | 0.991 | ||
直线 | 300 | 0.998 | 0.974 | 0.990 | 0.995 | 0.999 | 0.979 | 0.998 | 0.998 | 0.996 | 0.960 | 0.989 | 0.992 | 0.996 | 0.962 | 0.995 | 0.995 | |
1000 | 0.999 | 0.980 | 0.999 | 0.999 | 1 | 0.983 | 1 | 1 | 0.999 | 0.966 | 0.996 | 0.997 | 1 | 0.969 | 1 | 0.999 | ||
收敛 | 300 | 0.998 | 0.977 | 0.996 | 0.996 | 0.999 | 0.981 | 1 | 0.999 | 0.993 | 0.956 | 0.989 | 0.991 | 0.996 | 0.963 | 0.997 | 0.996 | |
1000 | 0.999 | 0.982 | 0.998 | 0.999 | 1 | 0.985 | 1 | 1 | 0.999 | 0.964 | 0.998 | 0.999 | 0.999 | 0.968 | 0.999 | 0.999 | ||
分支 | 300 | 0.996 | 0.978 | 0.996 | 0.996 | 0.999 | 0.981 | 0.998 | 0.997 | 0.988 | 0.948 | 0.984 | 0.985 | 0.992 | 0.960 | 0.994 | 0.991 | |
1000 | 0.998 | 0.981 | 0.999 | 0.998 | 1 | 0.991 | 1 | 1 | 0.996 | 0.963 | 0.995 | 0.996 | 0.999 | 0.970 | 0.998 | 0.999 | ||
FPR | 独立 | 300 | 0.946 | 0.955 | 0.916 | 0.936 | 0.981 | 0.981 | 0.974 | 0.979 | 0.787 | 0.847 | 0.803 | 0.790 | 0.826 | 0.910 | 0.908 | 0.825 |
1000 | 0.954 | 0.978 | 0.946 | 0.951 | 0.993 | 0.993 | 0.981 | 0.992 | 0.819 | 0.893 | 0.876 | 0.818 | 0.897 | 0.950 | 0.955 | 0.891 | ||
直线 | 300 | 0.989 | 0.956 | 0.974 | 0.979 | 0.997 | 0.966 | 0.994 | 0.996 | 0.955 | 0.932 | 0.952 | 0.950 | 0.976 | 0.948 | 0.978 | 0.976 | |
1000 | 0.995 | 0.959 | 0.988 | 0.993 | 0.999 | 0.970 | 0.999 | 0.998 | 0.964 | 0.937 | 0.964 | 0.962 | 0.994 | 0.957 | 0.995 | 0.993 | ||
收敛 | 300 | 0.988 | 0.966 | 0.984 | 0.983 | 0.997 | 0.972 | 0.996 | 0.995 | 0.946 | 0.930 | 0.946 | 0.946 | 0.983 | 0.945 | 0.986 | 0.979 | |
1000 | 0.994 | 0.968 | 0.987 | 0.990 | 0.999 | 0.981 | 0.996 | 0.996 | 0.958 | 0.948 | 0.960 | 0.958 | 0.988 | 0.959 | 0.988 | 0.988 | ||
分支 | 300 | 0.984 | 0.967 | 0.970 | 0.973 | 0.997 | 0.986 | 0.989 | 0.994 | 0.936 | 0.930 | 0.932 | 0.933 | 0.971 | 0.952 | 0.971 | 0.970 | |
1000 | 0.995 | 0.985 | 0.986 | 0.988 | 0.998 | 0.989 | 0.998 | 0.995 | 0.953 | 0.947 | 0.954 | 0.952 | 0.993 | 0.970 | 0.991 | 0.992 |
评价指标 | 层级结构 | N | 高Iq | 低Iq | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L = 20 | L = 30 | L = 20 | L = 30 | |||||||||||||||
ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | |||
PMR | 独立 | 300 | 0.751 | 0.669 | 0.668 | 0.748 | 0.887 | 0.874 | 0.859 | 0.883 | 0.574 | 0.429 | 0.537 | 0.572 | 0.685 | 0.605 | 0.675 | 0.682 |
1000 | 0.764 | 0.708 | 0.702 | 0.760 | 0.952 | 0.922 | 0.930 | 0.945 | 0.599 | 0.452 | 0.588 | 0.593 | 0.788 | 0.706 | 0.773 | 0.784 | ||
直线 | 300 | 0.928 | 0.787 | 0.910 | 0.924 | 0.972 | 0.836 | 0.969 | 0.970 | 0.839 | 0.733 | 0.833 | 0.838 | 0.919 | 0.761 | 0.912 | 0.914 | |
1000 | 0.949 | 0.823 | 0.921 | 0.939 | 0.984 | 0.847 | 0.983 | 0.980 | 0.878 | 0.751 | 0.856 | 0.871 | 0.966 | 0.792 | 0.959 | 0.961 | ||
收敛 | 300 | 0.923 | 0.805 | 0.884 | 0.914 | 0.968 | 0.851 | 0.961 | 0.965 | 0.830 | 0.718 | 0.809 | 0.827 | 0.902 | 0.764 | 0.885 | 0.898 | |
1000 | 0.940 | 0.827 | 0.900 | 0.936 | 0.983 | 0.880 | 0.967 | 0.977 | 0.862 | 0.739 | 0.820 | 0.859 | 0.940 | 0.805 | 0.930 | 0.939 | ||
分支 | 300 | 0.897 | 0.806 | 0.874 | 0.892 | 0.968 | 0.885 | 0.968 | 0.964 | 0.799 | 0.673 | 0.781 | 0.794 | 0.895 | 0.765 | 0.893 | 0.895 | |
1000 | 0.927 | 0.844 | 0.887 | 0.925 | 0.986 | 0.924 | 0.972 | 0.986 | 0.826 | 0.718 | 0.818 | 0.826 | 0.945 | 0.809 | 0.944 | 0.944 | ||
TPR | 独立 | 300 | 0.970 | 0.931 | 0.955 | 0.963 | 0.991 | 0.976 | 0.990 | 0.991 | 0.909 | 0.856 | 0.904 | 0.905 | 0.948 | 0.914 | 0.945 | 0.946 |
1000 | 0.973 | 0.939 | 0.968 | 0.970 | 0.996 | 0.985 | 0.995 | 0.995 | 0.927 | 0.867 | 0.930 | 0.919 | 0.972 | 0.937 | 0.971 | 0.971 | ||
直线 | 300 | 0.995 | 0.967 | 0.984 | 0.994 | 0.998 | 0.973 | 0.993 | 0.996 | 0.990 | 0.956 | 0.979 | 0.985 | 0.993 | 0.954 | 0.990 | 0.991 | |
1000 | 0.997 | 0.973 | 0.990 | 0.995 | 0.999 | 0.976 | 0.999 | 0.999 | 0.993 | 0.958 | 0.985 | 0.991 | 0.998 | 0.962 | 0.998 | 0.998 | ||
收敛 | 300 | 0.993 | 0.969 | 0.982 | 0.984 | 0.997 | 0.976 | 0.995 | 0.994 | 0.985 | 0.952 | 0.969 | 0.980 | 0.991 | 0.958 | 0.985 | 0.990 | |
1000 | 0.994 | 0.974 | 0.991 | 0.992 | 0.999 | 0.982 | 0.999 | 0.999 | 0.991 | 0.957 | 0.980 | 0.988 | 0.998 | 0.968 | 0.995 | 0.995 | ||
分支 | 300 | 0.993 | 0.967 | 0.987 | 0.993 | 0.997 | 0.979 | 0.999 | 0.993 | 0.980 | 0.936 | 0.977 | 0.980 | 0.991 | 0.956 | 0.991 | 0.990 | |
1000 | 0.994 | 0.972 | 0.992 | 0.993 | 0.999 | 0.987 | 0.999 | 0.995 | 0.989 | 0.948 | 0.983 | 0.985 | 0.997 | 0.966 | 0.996 | 0.996 | ||
FPR | 独立 | 300 | 0.854 | 0.880 | 0.820 | 0.850 | 0.939 | 0.962 | 0.923 | 0.934 | 0.728 | 0.766 | 0.731 | 0.723 | 0.810 | 0.850 | 0.818 | 0.812 |
1000 | 0.862 | 0.901 | 0.838 | 0.861 | 0.971 | 0.977 | 0.960 | 0.965 | 0.754 | 0.782 | 0.761 | 0.753 | 0.882 | 0.906 | 0.874 | 0.876 | ||
直线 | 300 | 0.970 | 0.933 | 0.948 | 0.962 | 0.988 | 0.956 | 0.985 | 0.983 | 0.910 | 0.911 | 0.899 | 0.908 | 0.957 | 0.929 | 0.950 | 0.955 | |
1000 | 0.978 | 0.950 | 0.957 | 0.973 | 0.994 | 0.960 | 0.991 | 0.994 | 0.933 | 0.919 | 0.912 | 0.929 | 0.983 | 0.940 | 0.977 | 0.979 | ||
收敛 | 300 | 0.960 | 0.942 | 0.946 | 0.952 | 0.987 | 0.961 | 0.982 | 0.982 | 0.905 | 0.904 | 0.895 | 0.896 | 0.949 | 0.930 | 0.942 | 0.949 | |
1000 | 0.973 | 0.947 | 0.948 | 0.971 | 0.993 | 0.965 | 0.983 | 0.990 | 0.931 | 0.922 | 0.906 | 0.922 | 0.966 | 0.943 | 0.962 | 0.965 | ||
分支 | 300 | 0.947 | 0.940 | 0.932 | 0.940 | 0.987 | 0.971 | 0.982 | 0.982 | 0.885 | 0.898 | 0.875 | 0.885 | 0.944 | 0.935 | 0.943 | 0.942 | |
1000 | 0.964 | 0.956 | 0.938 | 0.960 | 0.993 | 0.987 | 0.985 | 0.989 | 0.903 | 0.917 | 0.892 | 0.896 | 0.969 | 0.950 | 0.969 | 0.968 |
表6 KS服从均匀分布且M = 40%时各方法在不同实验条件下的PMR、TPR和FPR
评价指标 | 层级结构 | N | 高Iq | 低Iq | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L = 20 | L = 30 | L = 20 | L = 30 | |||||||||||||||
ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | |||
PMR | 独立 | 300 | 0.751 | 0.669 | 0.668 | 0.748 | 0.887 | 0.874 | 0.859 | 0.883 | 0.574 | 0.429 | 0.537 | 0.572 | 0.685 | 0.605 | 0.675 | 0.682 |
1000 | 0.764 | 0.708 | 0.702 | 0.760 | 0.952 | 0.922 | 0.930 | 0.945 | 0.599 | 0.452 | 0.588 | 0.593 | 0.788 | 0.706 | 0.773 | 0.784 | ||
直线 | 300 | 0.928 | 0.787 | 0.910 | 0.924 | 0.972 | 0.836 | 0.969 | 0.970 | 0.839 | 0.733 | 0.833 | 0.838 | 0.919 | 0.761 | 0.912 | 0.914 | |
1000 | 0.949 | 0.823 | 0.921 | 0.939 | 0.984 | 0.847 | 0.983 | 0.980 | 0.878 | 0.751 | 0.856 | 0.871 | 0.966 | 0.792 | 0.959 | 0.961 | ||
收敛 | 300 | 0.923 | 0.805 | 0.884 | 0.914 | 0.968 | 0.851 | 0.961 | 0.965 | 0.830 | 0.718 | 0.809 | 0.827 | 0.902 | 0.764 | 0.885 | 0.898 | |
1000 | 0.940 | 0.827 | 0.900 | 0.936 | 0.983 | 0.880 | 0.967 | 0.977 | 0.862 | 0.739 | 0.820 | 0.859 | 0.940 | 0.805 | 0.930 | 0.939 | ||
分支 | 300 | 0.897 | 0.806 | 0.874 | 0.892 | 0.968 | 0.885 | 0.968 | 0.964 | 0.799 | 0.673 | 0.781 | 0.794 | 0.895 | 0.765 | 0.893 | 0.895 | |
1000 | 0.927 | 0.844 | 0.887 | 0.925 | 0.986 | 0.924 | 0.972 | 0.986 | 0.826 | 0.718 | 0.818 | 0.826 | 0.945 | 0.809 | 0.944 | 0.944 | ||
TPR | 独立 | 300 | 0.970 | 0.931 | 0.955 | 0.963 | 0.991 | 0.976 | 0.990 | 0.991 | 0.909 | 0.856 | 0.904 | 0.905 | 0.948 | 0.914 | 0.945 | 0.946 |
1000 | 0.973 | 0.939 | 0.968 | 0.970 | 0.996 | 0.985 | 0.995 | 0.995 | 0.927 | 0.867 | 0.930 | 0.919 | 0.972 | 0.937 | 0.971 | 0.971 | ||
直线 | 300 | 0.995 | 0.967 | 0.984 | 0.994 | 0.998 | 0.973 | 0.993 | 0.996 | 0.990 | 0.956 | 0.979 | 0.985 | 0.993 | 0.954 | 0.990 | 0.991 | |
1000 | 0.997 | 0.973 | 0.990 | 0.995 | 0.999 | 0.976 | 0.999 | 0.999 | 0.993 | 0.958 | 0.985 | 0.991 | 0.998 | 0.962 | 0.998 | 0.998 | ||
收敛 | 300 | 0.993 | 0.969 | 0.982 | 0.984 | 0.997 | 0.976 | 0.995 | 0.994 | 0.985 | 0.952 | 0.969 | 0.980 | 0.991 | 0.958 | 0.985 | 0.990 | |
1000 | 0.994 | 0.974 | 0.991 | 0.992 | 0.999 | 0.982 | 0.999 | 0.999 | 0.991 | 0.957 | 0.980 | 0.988 | 0.998 | 0.968 | 0.995 | 0.995 | ||
分支 | 300 | 0.993 | 0.967 | 0.987 | 0.993 | 0.997 | 0.979 | 0.999 | 0.993 | 0.980 | 0.936 | 0.977 | 0.980 | 0.991 | 0.956 | 0.991 | 0.990 | |
1000 | 0.994 | 0.972 | 0.992 | 0.993 | 0.999 | 0.987 | 0.999 | 0.995 | 0.989 | 0.948 | 0.983 | 0.985 | 0.997 | 0.966 | 0.996 | 0.996 | ||
FPR | 独立 | 300 | 0.854 | 0.880 | 0.820 | 0.850 | 0.939 | 0.962 | 0.923 | 0.934 | 0.728 | 0.766 | 0.731 | 0.723 | 0.810 | 0.850 | 0.818 | 0.812 |
1000 | 0.862 | 0.901 | 0.838 | 0.861 | 0.971 | 0.977 | 0.960 | 0.965 | 0.754 | 0.782 | 0.761 | 0.753 | 0.882 | 0.906 | 0.874 | 0.876 | ||
直线 | 300 | 0.970 | 0.933 | 0.948 | 0.962 | 0.988 | 0.956 | 0.985 | 0.983 | 0.910 | 0.911 | 0.899 | 0.908 | 0.957 | 0.929 | 0.950 | 0.955 | |
1000 | 0.978 | 0.950 | 0.957 | 0.973 | 0.994 | 0.960 | 0.991 | 0.994 | 0.933 | 0.919 | 0.912 | 0.929 | 0.983 | 0.940 | 0.977 | 0.979 | ||
收敛 | 300 | 0.960 | 0.942 | 0.946 | 0.952 | 0.987 | 0.961 | 0.982 | 0.982 | 0.905 | 0.904 | 0.895 | 0.896 | 0.949 | 0.930 | 0.942 | 0.949 | |
1000 | 0.973 | 0.947 | 0.948 | 0.971 | 0.993 | 0.965 | 0.983 | 0.990 | 0.931 | 0.922 | 0.906 | 0.922 | 0.966 | 0.943 | 0.962 | 0.965 | ||
分支 | 300 | 0.947 | 0.940 | 0.932 | 0.940 | 0.987 | 0.971 | 0.982 | 0.982 | 0.885 | 0.898 | 0.875 | 0.885 | 0.944 | 0.935 | 0.943 | 0.942 | |
1000 | 0.964 | 0.956 | 0.938 | 0.960 | 0.993 | 0.987 | 0.985 | 0.989 | 0.903 | 0.917 | 0.892 | 0.896 | 0.969 | 0.950 | 0.969 | 0.968 |
评价指标 | 层级结构 | N | 高Iq | 低Iq | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L = 20 | L = 30 | L = 20 | L = 30 | ||||||||||||||||||||||||||||||||||
ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ||||||||||||||||||||||
PMR | 独立 | 300 | 0.909 | 0.643 | 0.874 | 0.894 | 0.961 | 0.703 | 0.941 | 0.956 | 0.724 | 0.491 | 0.713 | 0.716 | 0.843 | 0.615 | 0.795 | 0.836 | |||||||||||||||||||
1000 | 0.951 | 0.763 | 0.910 | 0.948 | 0.987 | 0.815 | 0.966 | 0.980 | 0.819 | 0.552 | 0.811 | 0.814 | 0.937 | 0.737 | 0.930 | 0.931 | |||||||||||||||||||||
直线 | 300 | 0.918 | 0.613 | 0.923 | 0.913 | 0.978 | 0.635 | 0.985 | 0.974 | 0.860 | 0.570 | 0.869 | 0.858 | 0.917 | 0.616 | 0.925 | 0.915 | ||||||||||||||||||||
1000 | 0.973 | 0.643 | 0.978 | 0.965 | 0.983 | 0.649 | 0.991 | 0.980 | 0.902 | 0.644 | 0.908 | 0.901 | 0.959 | 0.636 | 0.968 | 0.956 | |||||||||||||||||||||
收敛 | 300 | 0.918 | 0.608 | 0.927 | 0.919 | 0.955 | 0.639 | 0.965 | 0.953 | 0.863 | 0.590 | 0.870 | 0.860 | 0.898 | 0.626 | 0.905 | 0.896 | ||||||||||||||||||||
1000 | 0.926 | 0.638 | 0.931 | 0.924 | 0.973 | 0.681 | 0.982 | 0.974 | 0.885 | 0.633 | 0.891 | 0.882 | 0.948 | 0.665 | 0.953 | 0.942 | |||||||||||||||||||||
分支 | 300 | 0.930 | 0.791 | 0.939 | 0.927 | 0.969 | 0.816 | 0.976 | 0.968 | 0.854 | 0.689 | 0.860 | 0.848 | 0.869 | 0.715 | 0.875 | 0.866 | ||||||||||||||||||||
1000 | 0.948 | 0.824 | 0.952 | 0.944 | 0.980 | 0.867 | 0.989 | 0.978 | 0.900 | 0.767 | 0.906 | 0.901 | 0.928 | 0.799 | 0.935 | 0.920 | |||||||||||||||||||||
TPR | 独立 | 300 | 0.992 | 0.928 | 0.985 | 0.984 | 0.998 | 0.941 | 0.994 | 0.994 | 0.952 | 0.872 | 0.940 | 0.948 | 0.965 | 0.915 | 0.955 | 0.960 | |||||||||||||||||||
1000 | 0.996 | 0.954 | 0.995 | 0.995 | 1 | 0.965 | 0.999 | 0.997 | 0.983 | 0.900 | 0.971 | 0.979 | 0.992 | 0.943 | 0.984 | 0.988 | |||||||||||||||||||||
直线 | 300 | 0.990 | 0.898 | 0.980 | 0.984 | 0.996 | 0.904 | 0.999 | 0.996 | 0.977 | 0.862 | 0.980 | 0.973 | 0.984 | 0.875 | 0.990 | 0.982 | ||||||||||||||||||||
1000 | 0.998 | 0.922 | 0.999 | 0.995 | 0.998 | 0.916 | 1 | 0.998 | 0.992 | 0.888 | 0.996 | 0.990 | 0.991 | 0.896 | 0.998 | 0.993 | |||||||||||||||||||||
收敛 | 300 | 0.986 | 0.904 | 0.987 | 0.985 | 0.991 | 0.912 | 0.995 | 0.990 | 0.975 | 0.890 | 0.982 | 0.974 | 0.979 | 0.902 | 0.988 | 0.976 | ||||||||||||||||||||
1000 | 0.991 | 0.927 | 0.988 | 0.988 | 0.997 | 0.928 | 1 | 0.998 | 0.984 | 0.910 | 0.991 | 0.982 | 0.989 | 0.917 | 0.997 | 0.985 | |||||||||||||||||||||
评价指标 | 层级结构 | N | 高Iq | 低Iq | |||||||||||||||||||||||||||||||||
L = 20 | L = 30 | L = 20 | L = 30 | ||||||||||||||||||||||||||||||||||
ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ||||||||||||||||||||||
分支 | 300 | 0.990 | 0.960 | 0.994 | 0.990 | 0.990 | 0.965 | 0.996 | 0.991 | 0.962 | 0.939 | 0.977 | 0.959 | 0.976 | 0.941 | 0.980 | 0.968 | ||||||||||||||||||||
1000 | 0.994 | 0.968 | 0.996 | 0.992 | 0.998 | 0.976 | 1 | 0.998 | 0.982 | 0.955 | 0.991 | 0.987 | 0.989 | 0.959 | 0.994 | 0.982 | |||||||||||||||||||||
FPR | 独立 | 300 | 0.932 | 0.872 | 0.912 | 0.925 | 0.973 | 0.912 | 0.962 | 0.968 | 0.766 | 0.753 | 0.748 | 0.756 | 0.878 | 0.841 | 0.870 | 0.876 | |||||||||||||||||||
1000 | 0.954 | 0.925 | 0.922 | 0.946 | 0.991 | 0.948 | 0.971 | 0.988 | 0.839 | 0.814 | 0.818 | 0.833 | 0.965 | 0.912 | 0.946 | 0.960 | |||||||||||||||||||||
直线 | 300 | 0.945 | 0.855 | 0.950 | 0.942 | 0.985 | 0.874 | 0.989 | 0.986 | 0.879 | 0.824 | 0.888 | 0.871 | 0.935 | 0.844 | 0.941 | 0.932 | ||||||||||||||||||||
1000 | 0.977 | 0.871 | 0.981 | 0.976 | 0.988 | 0.880 | 0.991 | 0.987 | 0.901 | 0.843 | 0.909 | 0.900 | 0.965 | 0.859 | 0.974 | 0.964 | |||||||||||||||||||||
收敛 | 300 | 0.951 | 0.878 | 0.955 | 0.947 | 0.965 | 0.897 | 0.978 | 0.967 | 0.876 | 0.821 | 0.883 | 0.874 | 0.930 | 0.861 | 0.936 | 0.925 | ||||||||||||||||||||
1000 | 0.953 | 0.880 | 0.961 | 0.955 | 0.977 | 0.908 | 0.982 | 0.976 | 0.899 | 0.849 | 0.906 | 0.895 | 0.949 | 0.863 | 0.956 | 0.936 | |||||||||||||||||||||
分支 | 300 | 0.935 | 0.937 | 0.941 | 0.933 | 0.979 | 0.947 | 0.988 | 0.978 | 0.888 | 0.878 | 0.896 | 0.883 | 0.925 | 0.911 | 0.939 | 0.917 | ||||||||||||||||||||
1000 | 0.966 | 0.950 | 0.972 | 0.958 | 0.983 | 0.961 | 0.990 | 0.980 | 0.920 | 0.922 | 0.927 | 0.915 | 0.947 | 0.941 | 0.953 | 0.937 |
表7 KS服从多元正态分布且M = 20%时各方法在不同实验条件下的PMR、TPR和FPR
评价指标 | 层级结构 | N | 高Iq | 低Iq | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L = 20 | L = 30 | L = 20 | L = 30 | ||||||||||||||||||||||||||||||||||
ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ||||||||||||||||||||||
PMR | 独立 | 300 | 0.909 | 0.643 | 0.874 | 0.894 | 0.961 | 0.703 | 0.941 | 0.956 | 0.724 | 0.491 | 0.713 | 0.716 | 0.843 | 0.615 | 0.795 | 0.836 | |||||||||||||||||||
1000 | 0.951 | 0.763 | 0.910 | 0.948 | 0.987 | 0.815 | 0.966 | 0.980 | 0.819 | 0.552 | 0.811 | 0.814 | 0.937 | 0.737 | 0.930 | 0.931 | |||||||||||||||||||||
直线 | 300 | 0.918 | 0.613 | 0.923 | 0.913 | 0.978 | 0.635 | 0.985 | 0.974 | 0.860 | 0.570 | 0.869 | 0.858 | 0.917 | 0.616 | 0.925 | 0.915 | ||||||||||||||||||||
1000 | 0.973 | 0.643 | 0.978 | 0.965 | 0.983 | 0.649 | 0.991 | 0.980 | 0.902 | 0.644 | 0.908 | 0.901 | 0.959 | 0.636 | 0.968 | 0.956 | |||||||||||||||||||||
收敛 | 300 | 0.918 | 0.608 | 0.927 | 0.919 | 0.955 | 0.639 | 0.965 | 0.953 | 0.863 | 0.590 | 0.870 | 0.860 | 0.898 | 0.626 | 0.905 | 0.896 | ||||||||||||||||||||
1000 | 0.926 | 0.638 | 0.931 | 0.924 | 0.973 | 0.681 | 0.982 | 0.974 | 0.885 | 0.633 | 0.891 | 0.882 | 0.948 | 0.665 | 0.953 | 0.942 | |||||||||||||||||||||
分支 | 300 | 0.930 | 0.791 | 0.939 | 0.927 | 0.969 | 0.816 | 0.976 | 0.968 | 0.854 | 0.689 | 0.860 | 0.848 | 0.869 | 0.715 | 0.875 | 0.866 | ||||||||||||||||||||
1000 | 0.948 | 0.824 | 0.952 | 0.944 | 0.980 | 0.867 | 0.989 | 0.978 | 0.900 | 0.767 | 0.906 | 0.901 | 0.928 | 0.799 | 0.935 | 0.920 | |||||||||||||||||||||
TPR | 独立 | 300 | 0.992 | 0.928 | 0.985 | 0.984 | 0.998 | 0.941 | 0.994 | 0.994 | 0.952 | 0.872 | 0.940 | 0.948 | 0.965 | 0.915 | 0.955 | 0.960 | |||||||||||||||||||
1000 | 0.996 | 0.954 | 0.995 | 0.995 | 1 | 0.965 | 0.999 | 0.997 | 0.983 | 0.900 | 0.971 | 0.979 | 0.992 | 0.943 | 0.984 | 0.988 | |||||||||||||||||||||
直线 | 300 | 0.990 | 0.898 | 0.980 | 0.984 | 0.996 | 0.904 | 0.999 | 0.996 | 0.977 | 0.862 | 0.980 | 0.973 | 0.984 | 0.875 | 0.990 | 0.982 | ||||||||||||||||||||
1000 | 0.998 | 0.922 | 0.999 | 0.995 | 0.998 | 0.916 | 1 | 0.998 | 0.992 | 0.888 | 0.996 | 0.990 | 0.991 | 0.896 | 0.998 | 0.993 | |||||||||||||||||||||
收敛 | 300 | 0.986 | 0.904 | 0.987 | 0.985 | 0.991 | 0.912 | 0.995 | 0.990 | 0.975 | 0.890 | 0.982 | 0.974 | 0.979 | 0.902 | 0.988 | 0.976 | ||||||||||||||||||||
1000 | 0.991 | 0.927 | 0.988 | 0.988 | 0.997 | 0.928 | 1 | 0.998 | 0.984 | 0.910 | 0.991 | 0.982 | 0.989 | 0.917 | 0.997 | 0.985 | |||||||||||||||||||||
评价指标 | 层级结构 | N | 高Iq | 低Iq | |||||||||||||||||||||||||||||||||
L = 20 | L = 30 | L = 20 | L = 30 | ||||||||||||||||||||||||||||||||||
ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ||||||||||||||||||||||
分支 | 300 | 0.990 | 0.960 | 0.994 | 0.990 | 0.990 | 0.965 | 0.996 | 0.991 | 0.962 | 0.939 | 0.977 | 0.959 | 0.976 | 0.941 | 0.980 | 0.968 | ||||||||||||||||||||
1000 | 0.994 | 0.968 | 0.996 | 0.992 | 0.998 | 0.976 | 1 | 0.998 | 0.982 | 0.955 | 0.991 | 0.987 | 0.989 | 0.959 | 0.994 | 0.982 | |||||||||||||||||||||
FPR | 独立 | 300 | 0.932 | 0.872 | 0.912 | 0.925 | 0.973 | 0.912 | 0.962 | 0.968 | 0.766 | 0.753 | 0.748 | 0.756 | 0.878 | 0.841 | 0.870 | 0.876 | |||||||||||||||||||
1000 | 0.954 | 0.925 | 0.922 | 0.946 | 0.991 | 0.948 | 0.971 | 0.988 | 0.839 | 0.814 | 0.818 | 0.833 | 0.965 | 0.912 | 0.946 | 0.960 | |||||||||||||||||||||
直线 | 300 | 0.945 | 0.855 | 0.950 | 0.942 | 0.985 | 0.874 | 0.989 | 0.986 | 0.879 | 0.824 | 0.888 | 0.871 | 0.935 | 0.844 | 0.941 | 0.932 | ||||||||||||||||||||
1000 | 0.977 | 0.871 | 0.981 | 0.976 | 0.988 | 0.880 | 0.991 | 0.987 | 0.901 | 0.843 | 0.909 | 0.900 | 0.965 | 0.859 | 0.974 | 0.964 | |||||||||||||||||||||
收敛 | 300 | 0.951 | 0.878 | 0.955 | 0.947 | 0.965 | 0.897 | 0.978 | 0.967 | 0.876 | 0.821 | 0.883 | 0.874 | 0.930 | 0.861 | 0.936 | 0.925 | ||||||||||||||||||||
1000 | 0.953 | 0.880 | 0.961 | 0.955 | 0.977 | 0.908 | 0.982 | 0.976 | 0.899 | 0.849 | 0.906 | 0.895 | 0.949 | 0.863 | 0.956 | 0.936 | |||||||||||||||||||||
分支 | 300 | 0.935 | 0.937 | 0.941 | 0.933 | 0.979 | 0.947 | 0.988 | 0.978 | 0.888 | 0.878 | 0.896 | 0.883 | 0.925 | 0.911 | 0.939 | 0.917 | ||||||||||||||||||||
1000 | 0.966 | 0.950 | 0.972 | 0.958 | 0.983 | 0.961 | 0.990 | 0.980 | 0.920 | 0.922 | 0.927 | 0.915 | 0.947 | 0.941 | 0.953 | 0.937 |
评价指标 | 层级结构 | N | 高Iq | 低Iq | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L = 20 | L = 30 | L = 20 | L = 30 | |||||||||||||||
ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | |||
PMR | 独立 | 300 | 0.718 | 0.527 | 0.670 | 0.713 | 0.874 | 0.641 | 0.845 | 0.870 | 0.561 | 0.352 | 0.525 | 0.556 | 0.691 | 0.501 | 0.668 | 0.689 |
1000 | 0.766 | 0.586 | 0.733 | 0.754 | 0.923 | 0.729 | 0.880 | 0.915 | 0.609 | 0.390 | 0.587 | 0.607 | 0.785 | 0.608 | 0.765 | 0.778 | ||
直线 | 300 | 0.829 | 0.568 | 0.834 | 0.828 | 0.939 | 0.603 | 0.947 | 0.931 | 0.709 | 0.519 | 0.718 | 0.700 | 0.848 | 0.569 | 0.853 | 0.840 | |
1000 | 0.864 | 0.587 | 0.873 | 0.860 | 0.957 | 0.625 | 0.964 | 0.954 | 0.776 | 0.540 | 0.783 | 0.774 | 0.866 | 0.608 | 0.873 | 0.859 | ||
收敛 | 300 | 0.844 | 0.543 | 0.853 | 0.839 | 0.917 | 0.583 | 0.924 | 0.911 | 0.710 | 0.525 | 0.717 | 0.709 | 0.840 | 0.556 | 0.845 | 0.837 | |
1000 | 0.859 | 0.586 | 0.863 | 0.859 | 0.950 | 0.613 | 0.958 | 0.950 | 0.763 | 0.541 | 0.772 | 0.755 | 0.855 | 0.600 | 0.860 | 0.851 | ||
分支 | 300 | 0.811 | 0.706 | 0.816 | 0.807 | 0.934 | 0.809 | 0.943 | 0.930 | 0.700 | 0.602 | 0.709 | 0.693 | 0.776 | 0.673 | 0.783 | 0.775 | |
1000 | 0.840 | 0.754 | 0.848 | 0.839 | 0.953 | 0.825 | 0.961 | 0.948 | 0.740 | 0.630 | 0.746 | 0.735 | 0.840 | 0.719 | 0.848 | 0.838 | ||
TPR | 独立 | 300 | 0.974 | 0.898 | 0.960 | 0.970 | 0.985 | 0.929 | 0.980 | 0.981 | 0.932 | 0.842 | 0.927 | 0.930 | 0.971 | 0.888 | 0.958 | 0.966 |
1000 | 0.981 | 0.917 | 0.978 | 0.981 | 0.994 | 0.946 | 0.991 | 0.994 | 0.943 | 0.854 | 0.932 | 0.937 | 0.989 | 0.922 | 0.980 | 0.983 | ||
直线 | 300 | 0.984 | 0.892 | 0.974 | 0.980 | 0.989 | 0.898 | 0.998 | 0.985 | 0.966 | 0.864 | 0.975 | 0.962 | 0.979 | 0.891 | 0.988 | 0.973 | |
1000 | 0.987 | 0.911 | 0.989 | 0.985 | 0.996 | 0.917 | 1 | 0.995 | 0.983 | 0.891 | 0.983 | 0.980 | 0.989 | 0.898 | 0.994 | 0.984 | ||
收敛 | 300 | 0.984 | 0.904 | 0.989 | 0.984 | 0.989 | 0.905 | 0.994 | 0.986 | 0.959 | 0.881 | 0.967 | 0.954 | 0.980 | 0.896 | 0.985 | 0.974 | |
1000 | 0.991 | 0.917 | 0.990 | 0.986 | 0.994 | 0.920 | 0.999 | 0.990 | 0.981 | 0.900 | 0.989 | 0.979 | 0.985 | 0.902 | 0.991 | 0.985 | ||
分支 | 300 | 0.983 | 0.950 | 0.989 | 0.982 | 0.989 | 0.968 | 0.995 | 0.988 | 0.964 | 0.933 | 0.971 | 0.964 | 0.969 | 0.941 | 0.976 | 0.965 | |
1000 | 0.989 | 0.959 | 0.991 | 0.985 | 0.996 | 0.970 | 0.999 | 0.991 | 0.971 | 0.939 | 0.980 | 0.967 | 0.980 | 0.956 | 0.989 | 0.975 | ||
FPR | 独立 | 300 | 0.834 | 0.816 | 0.808 | 0.829 | 0.945 | 0.893 | 0.925 | 0.941 | 0.717 | 0.688 | 0.692 | 0.710 | 0.804 | 0.784 | 0.801 | 0.800 |
1000 | 0.878 | 0.843 | 0.842 | 0.870 | 0.968 | 0.918 | 0.936 | 0.962 | 0.738 | 0.700 | 0.720 | 0.731 | 0.871 | 0.838 | 0.857 | 0.865 | ||
直线 | 300 | 0.920 | 0.841 | 0.922 | 0.913 | 0.968 | 0.855 | 0.973 | 0.965 | 0.850 | 0.796 | 0.858 | 0.849 | 0.918 | 0.834 | 0.927 | 0.911 | |
1000 | 0.925 | 0.844 | 0.938 | 0.922 | 0.974 | 0.875 | 0.981 | 0.971 | 0.862 | 0.801 | 0.864 | 0.860 | 0.935 | 0.839 | 0.941 | 0.933 | ||
收敛 | 300 | 0.925 | 0.843 | 0.930 | 0.920 | 0.955 | 0.870 | 0.963 | 0.947 | 0.853 | 0.820 | 0.857 | 0.853 | 0.911 | 0.850 | 0.917 | 0.910 | |
1000 | 0.932 | 0.862 | 0.935 | 0.925 | 0.969 | 0.887 | 0.978 | 0.966 | 0.863 | 0.831 | 0.866 | 0.861 | 0.915 | 0.860 | 0.920 | 0.914 | ||
分支 | 300 | 0.900 | 0.888 | 0.906 | 0.894 | 0.967 | 0.948 | 0.976 | 0.960 | 0.820 | 0.818 | 0.825 | 0.820 | 0.889 | 0.880 | 0.893 | 0.881 | |
1000 | 0.917 | 0.894 | 0.919 | 0.915 | 0.975 | 0.955 | 0.980 | 0.969 | 0.855 | 0.842 | 0.863 | 0.849 | 0.913 | 0.903 | 0.922 | 0.913 |
表8 KS服从多元正态分布且M = 40%时各方法在不同实验条件下的PMR、TPR和FPR
评价指标 | 层级结构 | N | 高Iq | 低Iq | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L = 20 | L = 30 | L = 20 | L = 30 | |||||||||||||||
ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | ORDP | R | RMSEA | HD | |||
PMR | 独立 | 300 | 0.718 | 0.527 | 0.670 | 0.713 | 0.874 | 0.641 | 0.845 | 0.870 | 0.561 | 0.352 | 0.525 | 0.556 | 0.691 | 0.501 | 0.668 | 0.689 |
1000 | 0.766 | 0.586 | 0.733 | 0.754 | 0.923 | 0.729 | 0.880 | 0.915 | 0.609 | 0.390 | 0.587 | 0.607 | 0.785 | 0.608 | 0.765 | 0.778 | ||
直线 | 300 | 0.829 | 0.568 | 0.834 | 0.828 | 0.939 | 0.603 | 0.947 | 0.931 | 0.709 | 0.519 | 0.718 | 0.700 | 0.848 | 0.569 | 0.853 | 0.840 | |
1000 | 0.864 | 0.587 | 0.873 | 0.860 | 0.957 | 0.625 | 0.964 | 0.954 | 0.776 | 0.540 | 0.783 | 0.774 | 0.866 | 0.608 | 0.873 | 0.859 | ||
收敛 | 300 | 0.844 | 0.543 | 0.853 | 0.839 | 0.917 | 0.583 | 0.924 | 0.911 | 0.710 | 0.525 | 0.717 | 0.709 | 0.840 | 0.556 | 0.845 | 0.837 | |
1000 | 0.859 | 0.586 | 0.863 | 0.859 | 0.950 | 0.613 | 0.958 | 0.950 | 0.763 | 0.541 | 0.772 | 0.755 | 0.855 | 0.600 | 0.860 | 0.851 | ||
分支 | 300 | 0.811 | 0.706 | 0.816 | 0.807 | 0.934 | 0.809 | 0.943 | 0.930 | 0.700 | 0.602 | 0.709 | 0.693 | 0.776 | 0.673 | 0.783 | 0.775 | |
1000 | 0.840 | 0.754 | 0.848 | 0.839 | 0.953 | 0.825 | 0.961 | 0.948 | 0.740 | 0.630 | 0.746 | 0.735 | 0.840 | 0.719 | 0.848 | 0.838 | ||
TPR | 独立 | 300 | 0.974 | 0.898 | 0.960 | 0.970 | 0.985 | 0.929 | 0.980 | 0.981 | 0.932 | 0.842 | 0.927 | 0.930 | 0.971 | 0.888 | 0.958 | 0.966 |
1000 | 0.981 | 0.917 | 0.978 | 0.981 | 0.994 | 0.946 | 0.991 | 0.994 | 0.943 | 0.854 | 0.932 | 0.937 | 0.989 | 0.922 | 0.980 | 0.983 | ||
直线 | 300 | 0.984 | 0.892 | 0.974 | 0.980 | 0.989 | 0.898 | 0.998 | 0.985 | 0.966 | 0.864 | 0.975 | 0.962 | 0.979 | 0.891 | 0.988 | 0.973 | |
1000 | 0.987 | 0.911 | 0.989 | 0.985 | 0.996 | 0.917 | 1 | 0.995 | 0.983 | 0.891 | 0.983 | 0.980 | 0.989 | 0.898 | 0.994 | 0.984 | ||
收敛 | 300 | 0.984 | 0.904 | 0.989 | 0.984 | 0.989 | 0.905 | 0.994 | 0.986 | 0.959 | 0.881 | 0.967 | 0.954 | 0.980 | 0.896 | 0.985 | 0.974 | |
1000 | 0.991 | 0.917 | 0.990 | 0.986 | 0.994 | 0.920 | 0.999 | 0.990 | 0.981 | 0.900 | 0.989 | 0.979 | 0.985 | 0.902 | 0.991 | 0.985 | ||
分支 | 300 | 0.983 | 0.950 | 0.989 | 0.982 | 0.989 | 0.968 | 0.995 | 0.988 | 0.964 | 0.933 | 0.971 | 0.964 | 0.969 | 0.941 | 0.976 | 0.965 | |
1000 | 0.989 | 0.959 | 0.991 | 0.985 | 0.996 | 0.970 | 0.999 | 0.991 | 0.971 | 0.939 | 0.980 | 0.967 | 0.980 | 0.956 | 0.989 | 0.975 | ||
FPR | 独立 | 300 | 0.834 | 0.816 | 0.808 | 0.829 | 0.945 | 0.893 | 0.925 | 0.941 | 0.717 | 0.688 | 0.692 | 0.710 | 0.804 | 0.784 | 0.801 | 0.800 |
1000 | 0.878 | 0.843 | 0.842 | 0.870 | 0.968 | 0.918 | 0.936 | 0.962 | 0.738 | 0.700 | 0.720 | 0.731 | 0.871 | 0.838 | 0.857 | 0.865 | ||
直线 | 300 | 0.920 | 0.841 | 0.922 | 0.913 | 0.968 | 0.855 | 0.973 | 0.965 | 0.850 | 0.796 | 0.858 | 0.849 | 0.918 | 0.834 | 0.927 | 0.911 | |
1000 | 0.925 | 0.844 | 0.938 | 0.922 | 0.974 | 0.875 | 0.981 | 0.971 | 0.862 | 0.801 | 0.864 | 0.860 | 0.935 | 0.839 | 0.941 | 0.933 | ||
收敛 | 300 | 0.925 | 0.843 | 0.930 | 0.920 | 0.955 | 0.870 | 0.963 | 0.947 | 0.853 | 0.820 | 0.857 | 0.853 | 0.911 | 0.850 | 0.917 | 0.910 | |
1000 | 0.932 | 0.862 | 0.935 | 0.925 | 0.969 | 0.887 | 0.978 | 0.966 | 0.863 | 0.831 | 0.866 | 0.861 | 0.915 | 0.860 | 0.920 | 0.914 | ||
分支 | 300 | 0.900 | 0.888 | 0.906 | 0.894 | 0.967 | 0.948 | 0.976 | 0.960 | 0.820 | 0.818 | 0.825 | 0.820 | 0.889 | 0.880 | 0.893 | 0.881 | |
1000 | 0.917 | 0.894 | 0.919 | 0.915 | 0.975 | 0.955 | 0.980 | 0.969 | 0.855 | 0.842 | 0.863 | 0.849 | 0.913 | 0.903 | 0.922 | 0.913 |
Item | A1 | A2 | A3 | A4 | A5 | Item | A1 | A2 | A3 | A4 | A5 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0^ | 0*^~ | 0~ | 0 | 9 | 1 | 0 | 1* | 0 | 0 |
2 | 1#* | 1#* | 1#* | 1 | 0 | 10 | 1#* | 0 | 1#* | 1# | 1* |
3 | 1* | 0* | 0^ | 0 | 0 | 11 | 1* | 0 | 1 | 0 | 0 |
4 | 1#* | 1#* | 1#* | 1#* | 1 | 12 | 1#* | 0 | 1#* | 1 | 0 |
5 | 0^ | 0 | 1 | 0 | 0 | 13 | 1#* | 1#* | 1#* | 1 | 0 |
6 | 1#* | 1 | 1#* | 1 | 0 | 14 | 1#* | 1 | 1#* | 1#* | 1 |
7 | 1#* | 1* | 1#* | 1 | 0 | 15 | 1#* | 1* | 1#* | 1 | 0 |
8 | 1 | 1* | 0^ | 0 | 0 |
表9 Tatsuoka分数减法数据的测验Q矩阵以及各方法对属性的修正情况
Item | A1 | A2 | A3 | A4 | A5 | Item | A1 | A2 | A3 | A4 | A5 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0^ | 0*^~ | 0~ | 0 | 9 | 1 | 0 | 1* | 0 | 0 |
2 | 1#* | 1#* | 1#* | 1 | 0 | 10 | 1#* | 0 | 1#* | 1# | 1* |
3 | 1* | 0* | 0^ | 0 | 0 | 11 | 1* | 0 | 1 | 0 | 0 |
4 | 1#* | 1#* | 1#* | 1#* | 1 | 12 | 1#* | 0 | 1#* | 1 | 0 |
5 | 0^ | 0 | 1 | 0 | 0 | 13 | 1#* | 1#* | 1#* | 1 | 0 |
6 | 1#* | 1 | 1#* | 1 | 0 | 14 | 1#* | 1 | 1#* | 1#* | 1 |
7 | 1#* | 1* | 1#* | 1 | 0 | 15 | 1#* | 1* | 1#* | 1 | 0 |
8 | 1 | 1* | 0^ | 0 | 0 |
Q矩阵 | 相对拟合指标 | 绝对拟合指标 | ||||||
---|---|---|---|---|---|---|---|---|
-2LL | AIC | BIC | M2 | RMSEA | SRMSR | |||
M2 | df | p | ||||||
Q_original | 6911.549 | 7033.550 | 7294.880 | 235.320 | 59 | 0.001 | 0.075 | 0.113 |
Q_ORDP | 6844.310 | 6966.310 | 7227.640 | 178.526 | 59 | 0.001 | 0.062 | 0.094 |
Q_R | 6974.382 | 7096.380 | 7357.710 | 179.088 | 59 | 0.001 | 0.062 | 0.093 |
Q_RMSEA | 6932.032 | 7054.030 | 7315.360 | 214.976 | 59 | 0.001 | 0.070 | 0.093 |
Q_HD | 6904.563 | 7026.560 | 7287.890 | 196.354 | 59 | 0.001 | 0.066 | 0.090 |
表10 基于4种方法修正后Q矩阵的拟合指标
Q矩阵 | 相对拟合指标 | 绝对拟合指标 | ||||||
---|---|---|---|---|---|---|---|---|
-2LL | AIC | BIC | M2 | RMSEA | SRMSR | |||
M2 | df | p | ||||||
Q_original | 6911.549 | 7033.550 | 7294.880 | 235.320 | 59 | 0.001 | 0.075 | 0.113 |
Q_ORDP | 6844.310 | 6966.310 | 7227.640 | 178.526 | 59 | 0.001 | 0.062 | 0.094 |
Q_R | 6974.382 | 7096.380 | 7357.710 | 179.088 | 59 | 0.001 | 0.062 | 0.093 |
Q_RMSEA | 6932.032 | 7054.030 | 7315.360 | 214.976 | 59 | 0.001 | 0.070 | 0.093 |
Q_HD | 6904.563 | 7026.560 | 7287.890 | 196.354 | 59 | 0.001 | 0.066 | 0.090 |
[1] |
Cai Y., Tu D. B., & Ding S. L. (2013). A simulation study to compare five cognitive diagnostic models. Acta Psychologica Sinica, 45(11), 1295-1304.
doi: 10.3724/SP.J.1041.2013.01295 URL |
[ 蔡艳, 涂冬波, 丁树良. (2013). 五大认知诊断模型的诊断正确率比较及其影响因素: 基于分布形态、属性数及样本容量的比较. 心理学报, 45(11), 1295-1304.] | |
[2] |
Chen J. S. (2017). A residual-based approach to validate Q-matrix specifications. Applied Psychological Measurement, 41(4), 277-293.
doi: 10.1177/0146621616686021 URL |
[3] | Chen P., & Xin T. (2011). Item replenishing in cognitive diagnostic computerized adaptive testing. Acta Psychologica Sinica, 43(7), 836-850. |
[ 陈平, 辛涛. (2011). 认知诊断计算机化自适应测验中的项目增补. 心理学报, 43(7), 836-850.] | |
[4] |
Chen Y. H., Culpepper S. A., Chen Y. G., & Douglas J. (2018). Bayesian estimation of the DINA Q-matrix. Psychometrika, 83(1), 89-108.
doi: 10.1007/s11336-017-9579-4 URL |
[5] |
Chen Y. H., Liu J., & Ying Z. (2015). Online item calibration for Q-matrix in CD-CAT. Applied Psychological Measurement, 39(1), 5-15.
doi: 10.1177/0146621613513065 URL |
[6] |
Chiu C. Y. (2013). Statistical refinement of the Q-Matrix in cognitive diagnosis. Applied Psychological Measurement, 37(8), 598-618.
doi: 10.1177/0146621613488436 URL |
[7] | Chung M. T. (2019). A Gibbs sampling algorithm that estimates the Q-matrix for the DINA model. Journal of Mathematical Psychology, (93), 102-275. |
[8] |
DeCarlo L. T. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the Q-matrix. Applied Psychological Measurement, 35(1), 8-26.
doi: 10.1177/0146621610377081 URL |
[9] |
DeCarlo L. T. (2012). Recognizing uncertainty in the Q-matrix via a Bayesian extension of the DINA model. Applied Psychological Measurement, 36(6), 447-468.
doi: 10.1177/0146621612449069 URL |
[10] |
de la Torre J. (2008). An empirically based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45(4), 343-362.
doi: 10.1111/j.1745-3984.2008.00069.x URL |
[11] | de la Torre J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34(1), 115-130. |
[12] |
de la Torre J., & Chiu C.-Y. (2016). A general method of empirical Q-matrix validation. Psychometrika, 81(2), 253-273.
doi: 10.1007/s11336-015-9467-8 URL |
[13] | Hang D. D. (2020). Research on the validation method and application of Q-matrix in polytomously scored cognitive diagnosis assessment (Unpublished Master’s thesis). Jiangxi Normal University, Nanchang, China. |
[ 杭丹丹. (2020). 多级计分认知诊断评估中的Q矩阵验证方法与应用研究 (硕士学位论文). 江西师范大学, 南昌.] | |
[14] |
Kang C. H., Yang Y. K., & Zeng P. H. (2019). Q-matrix refinement based on item fit statistic RMSEA. Applied Psychological Measurement, 43(7), 527-542.
doi: 10.1177/0146621618813104 URL |
[15] |
Liu J. C., Xu G. J., & Ying Z. L. (2012). Data-driven learning of Q-matrix. Applied Psychological Measurement, 36(7), 548-564.
doi: 10.1177/0146621612456591 URL |
[16] | Liu X. L. (2020). A nonparametric approach of Q-matrix modification for polytomous situations (Unpublished Master’s thesis). Zhejiang Normal University, Jinhua, China. |
[ 刘芯伶. (2020). 多级评分情境下Q矩阵修正的非参数方法 (硕士学位论文). 浙江师范大学, 金华.] | |
[17] | Liu Y. L., Xin T., & Jiang Y. (2021). Structural parameter standard error estimation method in diagnostic classification models: Estimation and application. Multivariate Behavioral Research. https://doi.org/10.1080/00273171.2021.1919048 |
[18] |
Luo F., Wang X. Q., Cai Y., Tu D. B. (2020). A new dual-objective CD-CAT item selection method based on the Gini index. Acta Psychologica Sinica, 52(12), 1452-1465.
doi: 10.3724/SP.J.1041.2020.01452 URL |
[ 罗芬, 王晓庆, 蔡艳, 涂冬波. (2020). 基于基尼指数的双目标CD-CAT选题策略. 心理学报, 52(12), 1452-1465.] | |
[19] |
Ma W. C., & de la Torre J. (2020). An empirical Q-matrix validation method for the sequential generalized DINA model. The British Journal of Mathematical and Statistical Psychology, 73(1), 142-163.
doi: 10.1111/bmsp.12156 URL |
[20] |
Rupp A. A., & Templin J. L. (2008). The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model. Educational and Psychological Measurement, 68(1), 78-96.
doi: 10.1177/0013164407301545 URL |
[21] | Tan Q. R. (2019). The development of generalized online calibration methods in CD-CAT (Unpublished Master’s thesis). Jiangxi Normal University, Nanchang, China. |
[ 谭青蓉. (2019). CD-CAT广义在线标定方法开发研究 (硕士学位论文). 江西师范大学, 南昌.] | |
[22] | Tatsuoka K. K. (1984). Analysis of errors in fraction addition and subtraction problems. Urbana, IL: Computer-based Education Research Laboratory, University of Illinois. |
[23] |
Tu D. B., Cai Y., & Dai H. Q. (2012). A new method of Q-matrix validation based on DINA model. Acta Psychologica Sinica, 44(4), 558-568.
doi: 10.3724/SP.J.1041.2012.00558 URL |
[ 涂冬波, 蔡艳, 戴海琦. (2012). 基于DINA模型的Q矩阵修正方法. 心理学报, 44(4), 558-568.] | |
[24] | Wang D. X., Cai Y. & Tu D. B. (2020). Q-matrix estimation methods for cognitive diagnosis models: Based on partial known Q-matrix. Multivariate Behavioral Research, 56(3), 514-526. |
[25] | Wang D. X., Gao X. L., Cai Y., & Tu D. B. (2019). A new general method for Q-matrix validation in cognitive diagnosis assessments. Journal of Psychological Science, 42(4), 988-996. |
[ 汪大勋, 高旭亮, 蔡艳, 涂冬波. (2019). 一种广义的认知诊断Q矩阵修正新方法. 心理科学, 42(4), 988-996.] | |
[26] |
Wang D. X., Gao X. L., Cai Y. & Tu D. B. (2020). A method of Q-matrix validation for polytomous response cognitive diagnosis model based on relative fit statistics. Acta Psychologica Sinica, 52(1), 93-106.
doi: 10.3724/SP.J.1041.2020.00093 URL |
[ 汪大勋, 高旭亮, 蔡艳, 涂冬波. (2020). 基于类别水平的多级计分认知诊断Q矩阵修正:相对拟合统计量视角. 心理学报, 52(1), 93-106.] | |
[27] | Wang D. X., Gao X. L., Han Y. T., & Tu D. B. (2018). A simple and effective Q-matrix estimation method: From non-parametric perspective. Journal of Psychological Science, 41(1), 180-188. |
[ 汪大勋, 高旭亮, 韩雨婷, 涂冬波. (2018). 一种简单有效的Q矩阵估计方法开发: 基于非参数化方法视角. 心理科学, 41(1), 180-188.] | |
[28] |
Wang W. Y., Song L. H., Ding S. L., Meng Y. R., Cao C. X., & Jie Y. J. (2018). An EM-based method for Q-matrix validation. Applied Psychological Measurement, 42(6), 446-459.
doi: 10.1177/0146621617752991 URL |
[29] |
Yu X. F., & Cheng Y. (2020). Data-driven Q-matrix validation using a residual-based statistic in cognitive diagnostic assessment. British Journal of Mathematical and Statistical Psychology, 73, 145-179.
doi: 10.1111/bmsp.12191 URL |
[1] | 田亚淑, 詹沛达, 王立君. 联合作答精度和作答时间的概率态认知诊断模型[J]. 心理学报, 2023, 55(9): 1573-1586. |
[2] | 游晓锋, 杨建芹, 秦春影, 刘红云. 认知诊断测评中缺失数据的处理:随机森林阈值插补法[J]. 心理学报, 2023, 55(7): 1192-1206. |
[3] | 刘彦楼, 陈启山, 王一鸣, 姜晓彤. 模型参数点估计的可靠性:以CDM为例[J]. 心理学报, 2023, 55(10): 1712-1728. |
[4] | 刘彦楼, 吴琼琼. 认知诊断模型Q矩阵修正:完整信息矩阵的作用[J]. 心理学报, 2023, 55(1): 142-158. |
[5] | 孙小坚, 郭磊. 考虑题目选项信息的非参数认知诊断计算机自适应测验[J]. 心理学报, 2022, 54(9): 1137-1150. |
[6] | 刘彦楼. 认知诊断模型的标准误与置信区间估计:并行自助法[J]. 心理学报, 2022, 54(6): 703-724. |
[7] | 宋枝璘, 郭磊, 郑天鹏. 认知诊断缺失数据处理方法的比较:零替换、多重插补与极大似然估计法[J]. 心理学报, 2022, 54(4): 426-440. |
[8] | 秦春影, 喻晓锋. 多级属性Q矩阵的验证与估计[J]. 心理学报, 2022, 54(11): 1403-1415. |
[9] | 詹沛达. 引入眼动注视点的联合-交叉负载多模态认知诊断建模[J]. 心理学报, 2022, 54(11): 1416-1423. |
[10] | 郭磊, 周文杰. 基于选项层面的认知诊断非参数方法[J]. 心理学报, 2021, 53(9): 1032-1043. |
[11] | 谭青蓉, 汪大勋, 罗芬, 蔡艳, 涂冬波. 一种高效的CD-CAT在线标定新方法:基于熵的信息增益与EM视角[J]. 心理学报, 2021, 53(11): 1286-1300. |
[12] | 罗芬, 王晓庆, 蔡艳, 涂冬波. 基于基尼指数的双目标CD-CAT选题策略[J]. 心理学报, 2020, 52(12): 1452-1465. |
[13] | 汪大勋, 高旭亮, 蔡艳, 涂冬波. 基于类别水平的多级计分认知诊断Q矩阵修正:相对拟合统计量视角[J]. 心理学报, 2020, 52(1): 93-106. |
[14] | 詹沛达, 于照辉, 李菲茗, 王立君. 一种基于多阶认知诊断模型测评科学素养的方法[J]. 心理学报, 2019, 51(6): 734-746. |
[15] | 高旭亮, 汪大勋, 王芳, 蔡艳, 涂冬波. 基于分部评分模型思路的多级评分认知诊断模型开发[J]. 心理学报, 2019, 51(12): 1386-1397. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||