Please wait a minute...
心理学报
  论文 本期目录 | 过刊浏览 | 高级检索 |
五大认知诊断模型的诊断正确率比较及其影响因素:基于分布形态、属性数及样本容量的比较
蔡艳;涂冬波;丁树良
(1江西师范大学心理学院, 南昌 330022) (2江西师范大学计算机信息工程学院, 南昌 330022)
A Simulation Study to Compare Five Cognitive Diagnostic Models
CAI Yan;TU Dongbo;DING Shuliang
(1 School of Psychology, Jiangxi Normal University, Nanchang 330027, China) (2 School of Computer and Information Engineering, Jiangxi Normal University, Nanchang 330027, China)
全文: PDF(406 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

本研究主要在Leighton, Gierl和Hunka (2004)的四种属性层级结构测验情景下, 考察不同被试知识状态(knowledge states)分布形态、不同样本容量和不同认知属性数3种实验条件下, 分别比较、分析五种常用认知诊断模型的属性诊断正确率(含边际判准率和模式判准率)及其影响因素, 从而深入探讨每种模型的计量性能及模型属性诊断正确率的影响因素等, 试图为实际应用者在模型比较与选用上提供借鉴和指导。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡艳
涂冬波
丁树良
关键词 认知属性认知诊断认知诊断模型属性诊断正确率    
Abstract

Cognitive diagnosis is an important topic in modern psychometric area. Now more than 70 cognitive diagnosis models (CDMs) are developed. There are some questions among these models: (1) When the attribute hierarchy structure is known, how to choose the most suitable model? (2) When the attribute hierarchy structure is unknown, and cognitive diagnosis is required, how to do it? These problems seems especially more puzzled for the practice workers. This paper only paid main attention on three international popular models. Therefore, five cognitive diagnosis models (RSM, AHM_A, GDD, DINA and DINA_HC) were compared corresponding to the above questions from psychometric opinion. In this paper, Monte Carlo simulation study was used. Although the number of slips and the hierarchy structure are two important factors that affect the performance on corrected match ratio of cognitive diagnosis, this study would pay attention on other three factors: the distribution of cognitive pattern, the sample size, the number of attributes. The findings identified: (1) When the characteristic of data was known, focusing on specific factor, the five methods had different advantages. a) For the distributions of cognitive pattern, although they have different effects on different methods, the same conclusion could find that the performance on negative bias distribution was the best, and that of DINA_HC and DINA were better than the rest methods on any discussed distributions. b) Considering the sample size, the performance of GDD with small scale assessment (100/20, persons/items)was the best one; with medium and large scale assessment (1000/60, 5000/100, persons/items), the performance of DINA_HC and DINA were better than the rest c) For the number of attributes, the more the attributes are the worse the performance will be. But for the methods, the performance the performance of DINA_HC and DINA were also better than the rest. All these reflected that the most suitable method could be adapt from the three methods: GDD, DINA_HC and DINA, corresponding to the real scenario. And the RSM was the worst cognitive diagnosis method. (2) When the characteristic of data was unknown, an unstructured attribute hierarchy is treated as a coarsened version of a structured one, and the DINA method has a similar performance under unstructured hierarchy with the GDD, DINA_HC methods under structured hierarchy. Thus if the hierarchy structure could not be identified clearly, and the test Q matrix was clear, then the DINA could be adapt.

Key wordscognitive attributes    cognitive diagnosis    cognitive diagnosis models    attributes Match Ratio
收稿日期: 2013-02-04      出版日期: 2013-11-25
基金资助:

教育部人文社科基金(11YJC190002), 国家自然科学基金(31100756, 31160203), 高等院校博士点基金项目(20103604120001, 20123604120001), 江西省教育科学规划项目(13YB029, 12YB088), 江西师范大学青年英才培育资助计划项目资助。

通讯作者: 涂冬波   
引用本文:   
蔡艳;涂冬波;丁树良. 五大认知诊断模型的诊断正确率比较及其影响因素:基于分布形态、属性数及样本容量的比较[J]. 心理学报, 10.3724/SP.J.1041.2013.01295.
CAI Yan;TU Dongbo;DING Shuliang. A Simulation Study to Compare Five Cognitive Diagnostic Models. Acta Psychologica Sinica, 2013, 45(11): 1295-1304.
链接本文:  
http://journal.psych.ac.cn/xlxb/CN/10.3724/SP.J.1041.2013.01295      或      http://journal.psych.ac.cn/xlxb/CN/Y2013/V45/I11/1295
[1] 高椿雷;罗照盛;喻晓锋; 彭亚风;郑蝉金. CD-MST初始阶段模块组建方法比较[J]. 心理学报, 2016, 48(8): 1037-1046.
[2] 郭磊; 郑蝉金; 边玉芳; 宋乃庆; 夏凌翔. 认知诊断计算机化自适应测验中新的选题策略:结合项目区分度指标[J]. 心理学报, 2016, 48(7): 903-914.
[3] 刘彦楼;辛涛;李令青;田伟;刘笑笑. 改进的认知诊断模型项目功能差异检验方法 ——基于观察信息矩阵的Wald统计量[J]. 心理学报, 2016, 48(5): 588-598.
[4] 詹沛达;边玉芳;王立君. 重参数化的多分属性诊断分类模型及其判准率影响因素[J]. 心理学报, 2016, 48(3): 318-330.
[5] 彭亚风;罗照盛;喻晓锋;高椿雷;李喻骏. 认知诊断评价中测验结构的优化设计[J]. 心理学报, 2016, 48(12): 1600-1611.
[6] 詹沛达;陈平;边玉芳. 使用验证性补偿多维IRT模型进行认知诊断评估[J]. 心理学报, 2016, 48(10): 1347-1356.
[7] 蔡艳;苗莹;涂冬波. 多级评分的认知诊断计算机化适应测验[J]. 心理学报, 2016, 48(10): 1338-1346.
[8] 康春花;任平;曾平飞. 非参数认知诊断方法:多级评分的聚类分析[J]. 心理学报, 2015, 47(8): 1077-1088.
[9] 唐小娟;丁树良;俞宗火. 粗糙集在项目认知属性标定中的应用[J]. 心理学报, 2015, 47(7): 950-962.
[10] 詹沛达;李晓敏;王文中;边玉芳;王立君. 多维题组效应认知诊断模型[J]. 心理学报, 2015, 47(5): 689-701.
[11] 罗照盛;喻晓锋;高椿雷;李喻骏;彭亚风;王 睿;王钰彤. 基于属性掌握概率的认知诊断计算机化自适应测验选题策略[J]. 心理学报, 2015, 47(5): 679-688.
[12] 喻晓锋;罗照盛;秦春影;高椿雷;李喻骏. 基于作答数据的模型参数和Q矩阵联合估计[J]. 心理学报, 2015, 47(2): 273-282.
[13] 汪文义;丁树良;宋丽红. 认知诊断中基于条件期望的距离判别方法[J]. 心理学报, 2015, 47(12): 1499-1510.
[14] 涂冬波;蔡艳. 基于属性多级化的认知诊断计算机化自适应测验设计与实现[J]. 心理学报, 2015, 47(11): 1405-1414.
[15] 蔡艳;涂冬波. 属性多级化的认知诊断模型拓展及其Q矩阵设计[J]. 心理学报, 2015, 47(10): 1300-1308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《心理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn