心理学报 ›› 2020, Vol. 52 ›› Issue (5): 609-622.doi: 10.3724/SP.J.1041.2020.00609
张丹丹1,2, 王驹1, 赵君1, 陈淑美1, 黄琰淋3, 高秋凤3()
收稿日期:
2019-07-03
发布日期:
2020-03-26
出版日期:
2020-05-25
通讯作者:
高秋凤
E-mail:gqf_psy@szu.edu.cn
基金资助:
ZHANG Dandan1,2, WANG Ju1, ZHAO Jun1, CHEN Shumei1, Huang Yanlin3, GAO Qiufeng3()
Received:
2019-07-03
Online:
2020-03-26
Published:
2020-05-25
Contact:
GAO Qiufeng
E-mail:gqf_psy@szu.edu.cn
摘要:
抑郁人群不但表现出注意、记忆等个体认知层面的负性偏向, 还伴随有明显的社会认知障碍。已有研究在抑郁对社会认知的影响方面还考察得不多。本研究采用囚徒困境范式考察抑郁倾向对社会合作的影响。结果显示, 高抑郁倾向组比低抑郁倾向组的合作率更低, 双侧背外侧前额叶的激活更弱, 抑郁对右侧背外侧前额叶及眶额叶的脑间同步性有调节作用; 低抑郁被试与低抑郁被试配对时右侧颞顶联合区脑间同步性强于高抑郁被试与高抑郁被试配对, 或者高抑郁被试与低抑郁被试配对时的右侧颞顶联合区脑间同步性, 该效应当且仅当双方的选择相同时显著。结果表明, 抑郁群体在社会奖赏加工、冲突控制及心理理论脑区均存在功能性缺陷, 这些结果为理解抑郁人群合作意愿下降提供了脑成像证据。
中图分类号:
张丹丹, 王驹, 赵君, 陈淑美, 黄琰淋, 高秋凤. (2020). 抑郁倾向对合作的影响:双人同步近红外脑成像研究. 心理学报, 52(5), 609-622.
ZHANG Dandan, WANG Ju, ZHAO Jun, CHEN Shumei, Huang Yanlin, GAO Qiufeng. (2020). Impact of depression on cooperation: An fNIRS hyperscanning study. Acta Psychologica Sinica, 52(5), 609-622.
变量 | 低抑郁倾向 (n = 78) | 高抑郁倾向 (n = 78) | 统计结果 |
---|---|---|---|
年龄 | 20.4 ± 1.4 | 20.6 ± 1.6 | t(154) = -0.72, p = 0.470 |
性别, 男/女 | 40/38 | 39/39 | χ2(1) = 0.03, p = 0.873 |
抑郁自评量表(SDS) | 0.41 ± 0.06 | 0.55 ± 0.08 | t(154) = -12.7, p < 0.001 |
特质焦虑量表(STAI-T) | 21.7 ± 3.3 | 26.0 ± 3.5 | t(154) = -1.06, p = 0.291 |
表1 高、低抑郁倾向被试的人口学特征(M ± SD)
变量 | 低抑郁倾向 (n = 78) | 高抑郁倾向 (n = 78) | 统计结果 |
---|---|---|---|
年龄 | 20.4 ± 1.4 | 20.6 ± 1.6 | t(154) = -0.72, p = 0.470 |
性别, 男/女 | 40/38 | 39/39 | χ2(1) = 0.03, p = 0.873 |
抑郁自评量表(SDS) | 0.41 ± 0.06 | 0.55 ± 0.08 | t(154) = -12.7, p < 0.001 |
特质焦虑量表(STAI-T) | 21.7 ± 3.3 | 26.0 ± 3.5 | t(154) = -1.06, p = 0.291 |
分组模型 | 模型参数 | 标准化回归系数(B) | t值的显著性 (p) |
---|---|---|---|
不分组 | R2 = 0.032 | OFC = -0.064 | 0.499 |
(n = 156) | F(5,150) = 0.99 | TPJ = 0.096 | 0.275 |
p = 0.428 | mPFC = -0.042 | 0.723 | |
left dlPFC = -0.094 | 0.337 | ||
right dlPFC = -0.042 | 0.641 | ||
低抑郁倾向 | R2 = 0.025 | OFC = -0.170 | 0.335 |
(n = 78) | F(5,72) = 0.365 | TPJ = 0.085 | 0.486 |
p = 0.871 | mPFC = 0.109 | 0.628 | |
left dlPFC = -0.072 | 0.649 | ||
right dlPFC = -0.003 | 0.982 | ||
高抑郁倾向 | R2 = 0.087 | OFC = -0.033 | 0.790 |
(n = 78) | F(5,20) = 1.36 | TPJ = 0.191 | 0.169 |
p = 0.248 | mPFC = -0.153 | 0.338 | |
left dlPFC = -0.136 | 0.307 | ||
right dlPFC = -0.122 | 0.337 |
表2 脑区激活(β值)对合作率的预测
分组模型 | 模型参数 | 标准化回归系数(B) | t值的显著性 (p) |
---|---|---|---|
不分组 | R2 = 0.032 | OFC = -0.064 | 0.499 |
(n = 156) | F(5,150) = 0.99 | TPJ = 0.096 | 0.275 |
p = 0.428 | mPFC = -0.042 | 0.723 | |
left dlPFC = -0.094 | 0.337 | ||
right dlPFC = -0.042 | 0.641 | ||
低抑郁倾向 | R2 = 0.025 | OFC = -0.170 | 0.335 |
(n = 78) | F(5,72) = 0.365 | TPJ = 0.085 | 0.486 |
p = 0.871 | mPFC = 0.109 | 0.628 | |
left dlPFC = -0.072 | 0.649 | ||
right dlPFC = -0.003 | 0.982 | ||
高抑郁倾向 | R2 = 0.087 | OFC = -0.033 | 0.790 |
(n = 78) | F(5,20) = 1.36 | TPJ = 0.191 | 0.169 |
p = 0.248 | mPFC = -0.153 | 0.338 | |
left dlPFC = -0.136 | 0.307 | ||
right dlPFC = -0.122 | 0.337 |
分组模型 | 模型参数 | 标准化回归系数(B) | t值的显著性 (p) |
---|---|---|---|
不分组 | R2 = 0.267 | OFC = 0.327 | 0.004 |
(n = 78) | F(5,72) = 5.26 | TPJ = 0.270 | 0.020 |
p < 0.001 | mPFC = 0.225 | 0.087 | |
left dlPFC = 0.365 | 0.007 | ||
right dlPFC = 0.387 | 0.003 | ||
低-低抑郁倾向 | R2 = 0.653 | OFC = 0.310 | 0.059 |
(n = 26) | F(5,20) = 7.53 | TPJ = 0.440 | 0.008 |
p < 0.001 | mPFC = 0.038 | 0.857 | |
left dlPFC = 0.493 | 0.022 | ||
right dlPFC = 0.874 | 0.000 | ||
高-低抑郁倾向 | R2 = 0.184 | OFC = 0.258 | 0.285 |
(n = 26) | F(5,20) = 0.90 | TPJ = 0.277 | 0.280 |
p = 0.499 | mPFC = 0.394 | 0.154 | |
left dlPFC = 0.307 | 0.279 | ||
right dlPFC = 0.060 | 0.825 | ||
高-高抑郁倾向 | R2 = 0.376 | OFC = 0.405 | 0.067 |
(n = 26) | F(5,20) = 2.41 | TPJ = 0.205 | 0.345 |
p = 0.073 | mPFC = 0.055 | 0.812 | |
left dlPFC = 0.266 | 0.279 | ||
right dlPFC = 0.162 | 0.493 |
表3 脑间同步性(r值)对互惠合作率(CC%)的预测
分组模型 | 模型参数 | 标准化回归系数(B) | t值的显著性 (p) |
---|---|---|---|
不分组 | R2 = 0.267 | OFC = 0.327 | 0.004 |
(n = 78) | F(5,72) = 5.26 | TPJ = 0.270 | 0.020 |
p < 0.001 | mPFC = 0.225 | 0.087 | |
left dlPFC = 0.365 | 0.007 | ||
right dlPFC = 0.387 | 0.003 | ||
低-低抑郁倾向 | R2 = 0.653 | OFC = 0.310 | 0.059 |
(n = 26) | F(5,20) = 7.53 | TPJ = 0.440 | 0.008 |
p < 0.001 | mPFC = 0.038 | 0.857 | |
left dlPFC = 0.493 | 0.022 | ||
right dlPFC = 0.874 | 0.000 | ||
高-低抑郁倾向 | R2 = 0.184 | OFC = 0.258 | 0.285 |
(n = 26) | F(5,20) = 0.90 | TPJ = 0.277 | 0.280 |
p = 0.499 | mPFC = 0.394 | 0.154 | |
left dlPFC = 0.307 | 0.279 | ||
right dlPFC = 0.060 | 0.825 | ||
高-高抑郁倾向 | R2 = 0.376 | OFC = 0.405 | 0.067 |
(n = 26) | F(5,20) = 2.41 | TPJ = 0.205 | 0.345 |
p = 0.073 | mPFC = 0.055 | 0.812 | |
left dlPFC = 0.266 | 0.279 | ||
right dlPFC = 0.162 | 0.493 |
通道编号 | MNI坐标 | 通道起止 | Brodmann模板 (脑区占通道的百分比)* | LPBA40模板 (脑区占通道的百分比)* |
---|---|---|---|---|
1 | -34, 63, -8 | Fp1-AF7 | 10 - Frontopolar area (0.70) | L middle frontal gyrus (0.74) |
2 | -12, 71, -5 | Fp1-Fpz | 10 - Frontopolar area (0.80) | L superior frontal gyrus (0.93) |
3 | -23, 68, 2 | Fp1-AF3 | 10 - Frontopolar area (1) | L middle frontal gyrus (0.97) |
4 | 14, 71, -5 | Fp2-Fpz | 10 - Frontopolar area (0.88) | R middle frontal gyrus (1) |
5 | 36, 64, -9 | Fp2-AF8 | 10 - Frontopolar area (0.72) | R inferior frontal gyrus (0.62) |
6 | 26, 68, 2 | Fp2-AF4 | 10 - Frontopolar area (1) | R middle frontal gyrus (1) |
7 | -46, 51, 1 | F5-AF7 | 10 - Frontopolar area (0.53) | L inferior frontal gyrus (0.92) |
8 | -41, 55, 16 | F5-AF3 | 10 - Frontopolar area (0.85) | L middle frontal gyrus (1) |
通道编号 | MNI坐标 | 通道起止 | Brodmann模板 (脑区占通道的百分比)* | LPBA40模板 (脑区占通道的百分比)* |
9 | -48, 35, 25 | F5-FFC3 | 9/46 - Dorsolateral prefrontal cortex (0.86) | L middle frontal gyrus (0.60) |
10 | 2, 69, 11 | AFz-Fpz | 10 - Frontopolar area (1) | R superior frontal gyrus (0.74) |
11 | -15, 66, 23 | AFz-AF3 | 10 - Frontopolar area (1) | L middle frontal gyrus (0.50) |
12 | 17, 67, 24 | AFz-AF4 | 10 - Frontopolar area (1) | R middle frontal gyrus (0.96) |
13 | 2, 56, 38 | AFz-Fz | 9 - Dorsolateral prefrontal cortex (0.96) | R superior frontal gyrus (0.85) |
14 | 48, 51, 2 | F6-AF8 | 47 - Inferior prefrontal gyrus (0.47) | R inferior frontal gyrus (0.96) |
15 | 43, 55, 16 | F6-AF4 | 10 - Frontopolar area (0.93) | R middle frontal gyrus (0.65) |
16 | 50, 35, 26 | F6-FFC4 | 9/46 - Dorsolateral prefrontal cortex (0.86) | R middle frontal gyrus (0.60) |
17 | -26, 56, 30 | F1-AF3 | 10 - Frontopolar area (0.54) | L middle frontal gyrus (1) |
18 | -33, 38, 43 | F1-FFC3 | 8 - Includes Frontal eye fields (0.51) | L middle frontal gyrus (0.60) |
19 | -10, 45, 51 | F1-Fz | 8 - Includes Frontal eye fields (1) | L superior frontal gyrus (1) |
20 | 29, 56, 31 | F2-AF3 | 9 - Dorsolateral prefrontal cortex (0.53) | R middle frontal gyrus (1) |
21 | 13, 45, 51 | F2-Fz | 8 - Includes Frontal eye fields (1) | R superior frontal gyrus (0.98) |
22 | 35, 38, 44 | F2-FFC4 | 8 - Includes Frontal eye fields (0.57) | R middle frontal gyrus (0.72) |
23 | 62, -43, 45 | CP4-CP6 | 40 - Supramarginal gyrus (1) | R supramarginal gyrus (0.52) |
24 | 50, -56, 53 | CP4-P4 | 40 - Supramarginal gyrus (1) | R angular gyrus (1) |
25 | 69, -43, 10 | TP8-CP6 | 22 - Superior Temporal Gyrus (1) | R middle temporal gyrus (0.85) |
26 | 64, -56, 12 | TP8-P8 | 37 - Fusiform gyrus (0.91) | R middle temporal gyrus (0.93) |
27 | 62, -56, 29 | P6-CP6 | 40 - Supramarginal gyrus (0.71) | R angular gyrus (1) |
28 | 51, -68, 40 | P6-P4 | 39 - Angular gyrus (1) | R angular gyrus (1) |
29 | 57, -67, 13 | P6-P8 | 39 - Angular gyrus (0.56) | R middle occipital gyrus (0.92) |
附表1 近红外通道的空间定位
通道编号 | MNI坐标 | 通道起止 | Brodmann模板 (脑区占通道的百分比)* | LPBA40模板 (脑区占通道的百分比)* |
---|---|---|---|---|
1 | -34, 63, -8 | Fp1-AF7 | 10 - Frontopolar area (0.70) | L middle frontal gyrus (0.74) |
2 | -12, 71, -5 | Fp1-Fpz | 10 - Frontopolar area (0.80) | L superior frontal gyrus (0.93) |
3 | -23, 68, 2 | Fp1-AF3 | 10 - Frontopolar area (1) | L middle frontal gyrus (0.97) |
4 | 14, 71, -5 | Fp2-Fpz | 10 - Frontopolar area (0.88) | R middle frontal gyrus (1) |
5 | 36, 64, -9 | Fp2-AF8 | 10 - Frontopolar area (0.72) | R inferior frontal gyrus (0.62) |
6 | 26, 68, 2 | Fp2-AF4 | 10 - Frontopolar area (1) | R middle frontal gyrus (1) |
7 | -46, 51, 1 | F5-AF7 | 10 - Frontopolar area (0.53) | L inferior frontal gyrus (0.92) |
8 | -41, 55, 16 | F5-AF3 | 10 - Frontopolar area (0.85) | L middle frontal gyrus (1) |
通道编号 | MNI坐标 | 通道起止 | Brodmann模板 (脑区占通道的百分比)* | LPBA40模板 (脑区占通道的百分比)* |
9 | -48, 35, 25 | F5-FFC3 | 9/46 - Dorsolateral prefrontal cortex (0.86) | L middle frontal gyrus (0.60) |
10 | 2, 69, 11 | AFz-Fpz | 10 - Frontopolar area (1) | R superior frontal gyrus (0.74) |
11 | -15, 66, 23 | AFz-AF3 | 10 - Frontopolar area (1) | L middle frontal gyrus (0.50) |
12 | 17, 67, 24 | AFz-AF4 | 10 - Frontopolar area (1) | R middle frontal gyrus (0.96) |
13 | 2, 56, 38 | AFz-Fz | 9 - Dorsolateral prefrontal cortex (0.96) | R superior frontal gyrus (0.85) |
14 | 48, 51, 2 | F6-AF8 | 47 - Inferior prefrontal gyrus (0.47) | R inferior frontal gyrus (0.96) |
15 | 43, 55, 16 | F6-AF4 | 10 - Frontopolar area (0.93) | R middle frontal gyrus (0.65) |
16 | 50, 35, 26 | F6-FFC4 | 9/46 - Dorsolateral prefrontal cortex (0.86) | R middle frontal gyrus (0.60) |
17 | -26, 56, 30 | F1-AF3 | 10 - Frontopolar area (0.54) | L middle frontal gyrus (1) |
18 | -33, 38, 43 | F1-FFC3 | 8 - Includes Frontal eye fields (0.51) | L middle frontal gyrus (0.60) |
19 | -10, 45, 51 | F1-Fz | 8 - Includes Frontal eye fields (1) | L superior frontal gyrus (1) |
20 | 29, 56, 31 | F2-AF3 | 9 - Dorsolateral prefrontal cortex (0.53) | R middle frontal gyrus (1) |
21 | 13, 45, 51 | F2-Fz | 8 - Includes Frontal eye fields (1) | R superior frontal gyrus (0.98) |
22 | 35, 38, 44 | F2-FFC4 | 8 - Includes Frontal eye fields (0.57) | R middle frontal gyrus (0.72) |
23 | 62, -43, 45 | CP4-CP6 | 40 - Supramarginal gyrus (1) | R supramarginal gyrus (0.52) |
24 | 50, -56, 53 | CP4-P4 | 40 - Supramarginal gyrus (1) | R angular gyrus (1) |
25 | 69, -43, 10 | TP8-CP6 | 22 - Superior Temporal Gyrus (1) | R middle temporal gyrus (0.85) |
26 | 64, -56, 12 | TP8-P8 | 37 - Fusiform gyrus (0.91) | R middle temporal gyrus (0.93) |
27 | 62, -56, 29 | P6-CP6 | 40 - Supramarginal gyrus (0.71) | R angular gyrus (1) |
28 | 51, -68, 40 | P6-P4 | 39 - Angular gyrus (1) | R angular gyrus (1) |
29 | 57, -67, 13 | P6-P8 | 39 - Angular gyrus (0.56) | R middle occipital gyrus (0.92) |
[1] |
Abe M. O., Koike T., Okazaki S., Sugawara S. K., Takahashi K., Watanabe K., & Sadaro N . (2019). Neural correlates of online cooperation during joint force production. NeuroImage, 191, 150-161.
doi: 10.1016/j.neuroimage.2019.02.003 URL pmid: 30739061 |
[2] |
Babiloni F., & Astolfi L . (2014). Social neuroscience and hyperscanning techniques: Past, present and future. Neuroscience and Biobehavioral Reviews, 44, 76-93.
doi: 10.1016/j.neubiorev.2012.07.006 URL pmid: 22917915 |
[3] |
Bird T., Tarsia M., & Schwannauer M . (2018). Interpersonal styles in major and chronic depression: A systematic review and meta-analysis. Journal of Affective Disorders, 239, 93-101.
doi: 10.1016/j.jad.2018.05.057 URL pmid: 29990668 |
[4] |
Bludau S., Bzdok D., Gruber O., Kohn N., Riedl V., Sorg C., … Eickhoff S. B . (2016). Medial prefrontal aberrations in major depressive disorder revealed by cytoarchitectonically informed voxel-based morphometry. American Journal of Psychiatry, 173(3), 291-298.
doi: 10.1176/appi.ajp.2015.15030349 URL pmid: 26621569 |
[5] |
Bora E., & Berk M . (2016). Theory of mind in major depressive disorder: A meta-analysis. Journal of Affective Disorders, 191, 49-55.
doi: 10.1016/j.jad.2015.11.023 URL pmid: 26655114 |
[6] | Bowles S., & Gintis H . (2011). A cooperative species: Human reciprocity and its evolution Princeton, NJ: Princeton University Press Human reciprocity and its evolution. Princeton, NJ: Princeton University Press. |
[7] | Camerer C . (2003). Behavioral game theory: Experiments in strategic interaction. Princeton, NJ: Princeton University Press. |
[8] |
Cheng W., Rolls E. T., Qiu J., Liu W., Tang Y., Huang C. C., … Feng J . (2016). Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression. Brain, 139(12), 3296-3309.
doi: 10.1093/brain/aww255 URL pmid: 27742666 |
[9] |
Cheng W., Rolls E. T., Qiu J., Xie X., Lyu W., Li Y., … Feng J . (2018). Functional connectivity of the human amygdala in health and in depression. Social Cognitive and Affective Neuroscience, 13(6), 557-568.
doi: 10.1093/scan/nsy032 URL pmid: 29767786 |
[10] |
Cheng X., Li X., & Hu Y . (2015). Synchronous brain activity during cooperative exchange depends on gender of partner: A fNIRS-based hyperscanning study. Human Brain Mapping, 36(6), 2039-2048.
doi: 10.1002/hbm.22754 URL pmid: 25691124 |
[11] |
Clark C., Thorne C. B., Hardy S., & Cropsey K. L . (2013). Cooperation and depressive symptoms. Journal of Affective Disorders, 150(3), 1184-1187.
doi: 10.1016/j.jad.2013.05.011 URL pmid: 23726777 |
[12] |
Cui X., Bryant D. M., & Reiss A. L . (2012). NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. NeuroImage, 59(3), 2430-2437.
doi: 10.1016/j.neuroimage.2011.09.003 URL pmid: 21933717 |
[13] |
Dai R., Liu R., Li T., Zhang Z., Xiao X., Sun P., … Zhu C . (2018). Holistic cognitive and neural processes: a fNIRS-hyperscanning study on interpersonal sensorimotor synchronization. Social Cognitive and Affective Neuroscience, 13(11), 1141-1154.
doi: 10.1093/scan/nsy090 URL pmid: 30321411 |
[14] |
Emonds G., Declerck C. H., Boone C., Vandervliet E. J. M., & Parizel P. M . (2012). The cognitive demands on cooperation in social dilemmas: An fMRI study. Social Neuroscience, 7(5), 494-509.
doi: 10.1080/17470919.2012.655426 URL pmid: 22293039 |
[15] |
Fermin A. S. R., Sakagami M., Kiyonari T., Li Y., Matsumoto Y., & Yamagishi T . (2016). Representation of economic preferences in the structure and function of the amygdala and prefrontal cortex. Scientific Reports, 6, 20982.
doi: 10.1038/srep20982 URL pmid: 26876988 |
[16] |
Fett A. K., Shergill S. S., Korver-Nieberg N., Yakub F., Gromann P. M., & Krabbendam L . (2016). Learning to trust: trust and attachment in early psychosis. Psychological Medicine, 46(7), 1437-1447.
doi: 10.1017/S0033291716000015 URL pmid: 26898947 |
[17] |
Frodl T., Bokde A. L., Scheuerecker J., Lisiecka D., Schoepf V., Hampel H., … Meisenzahl E . (2010). Functional connectivity bias of the orbitofrontal cortex in drug-free patients with major depression. Biological Psychiatry, 67(2), 161-167.
doi: 10.1016/j.biopsych.2009.08.022 URL pmid: 19811772 |
[18] |
Grabenhorst F., & Rolls E. T . (2011). Value, pleasure and choice in the ventral prefrontal cortex. Trends in Cognitive Sciences, 15(2), 56-67.
doi: 10.1016/j.tics.2010.12.004 URL pmid: 21216655 |
[19] |
Gradin V. B., Pérez A., Macfarlane J. A., Cavin I., Waiter G., Tone E. B., … Steele J. D . (2016). Neural correlates of social exchanges during the prisoner’s dilemma game in depression. Psychological Medicine, 46(6), 1289-1300.
doi: 10.1017/S0033291715002834 URL pmid: 26763141 |
[20] |
Grecucci A., Giorgetta C., van’t Wout M., Bonini N., & Sanfey A. G . (2013). Reappraising the ultimatum: An fMRI study of emotion regulation and decision making. Cerebral Cortex, 23(2), 399-410.
doi: 10.1093/cercor/bhs028 URL pmid: 22368088 |
[21] | He Z., Zhang D., & Luo Y . (2015). Mood-congruent cognitive bias in depressed individuals. Advances in Psychological Science, 23(12), 2118-2128. |
[ 何振宏, 张丹丹, 罗跃嘉 . (2015) 抑郁症人群的心境一致性认知偏向. 心理科学进展, 23(12), 2118-2128.] | |
[22] |
Jacobson N. C., Lord K. A., & Newman M. G . (2017). Perceived emotional social support in bereaved spouses mediates the relationship between anxiety and depression. Journal of Affective Disorders, 211, 83-91.
doi: 10.1016/j.jad.2017.01.011 URL pmid: 28103522 |
[23] |
Jiang J., Chen C., Dai B., Shi G., Ding G., Liu L., & Lu C . (2015). Leader emergence through interpersonal neural synchronization. Proceedings of the National Academy of Sciences of the United States of America, 112(14), 4274-4279.
doi: 10.1073/pnas.1422930112 URL pmid: 25831535 |
[24] |
Kar S. K . (2019). Predictors of response to repetitive transcranial magnetic stimulation in depression: A review of recent updates. Clinical Psychopharmacology and Neuroscience, 17(1), 25-33.
doi: 10.9758/cpn.2019.17.1.25 URL pmid: 30690937 |
[25] |
Knoch D., Pascual-Leone A., Meyer K., Treyer V., & Fehr E . (2006). Diminishing reciprocal fairness by disrupting the right prefrontal cortex. Science, 314(5800), 829-832.
doi: 10.1126/science.1129156 URL pmid: 17023614 |
[26] |
Kraus C., Klöbl M., Tik M., Auer B., Vanicek T., Geissberger N., … Lanzenberger R . (2019). The pulvinar nucleus and antidepressant treatment: Dynamic modeling of antidepressant response and remission with ultra-high field functional MRI. Molecular Psychiatry, 24(5), 746-756.
doi: 10.1038/s41380-017-0009-x URL pmid: 29422521 |
[27] |
Kringelbach M. L., O'Doherty J., Rolls E. T., & Andrews C . (2003). Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cerebral Cortex, 13(10), 1064-1071.
doi: 10.1093/cercor/13.10.1064 URL pmid: 12967923 |
[28] |
Kupferberg A., Bicks L., & Hasler G . (2016). Social functioning in major depressive disorder. Neuroscience & Biobehavioral Reviews, 69, 313-332.
doi: 10.1016/j.neubiorev.2016.07.002 URL pmid: 27395342 |
[29] |
Lancaster J. L., Woldorff M. G., Parsons L. M., Liotti M., Freitas C. S., Rainey L., … Fox P . (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10(3), 120-131.
doi: 10.1002/1097-0193(200007)10:3&lt;120::aid-hbm30&gt;3.0.co;2-8 URL pmid: 10912591 |
[30] |
Liu J., Zhang R., Geng B., Zhang T., Yuan D., Otani S., & Li X . (2019). Interplay between prior knowledge and communication mode on teaching effectiveness: Interpersonal neural synchronization as a neural marker. NeuroImage, 193, 93-102.
doi: 10.1016/j.neuroimage.2019.03.004 URL pmid: 30851445 |
[31] |
Lu K., Xue H., Nozawa T., & Hao N . (2018). Cooperation makes a group be more creative. Cerebral Cortex, 29(8), 3457-3470. doi: 10.1093/cercor/bhy215.[Epub ahead of print]
doi: 10.1093/cercor/bhy215 URL pmid: 30192902 |
[32] |
Miller E. K., & Cohen J. D . (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202.
doi: 10.1146/annurev.neuro.24.1.167 URL pmid: 11283309 |
[33] |
Molenberghs P., Johnson H., Henry J. D., & Mattingley J. B . (2016). Understanding the minds of others: A neuroimaging meta-analysis. Neuroscience & Biobehavioral Reviews, 65, 276-291.
doi: 10.1016/j.neubiorev.2016.03.020 URL pmid: 27073047 |
[34] |
Poeppl T. B., Müller V. I., Hoffstaedter F., Bzdok D., Laird A. R., Fox P. T., … Eickhoff S. B . (2016). Imbalance in subregional connectivity of the right temporoparietal junction in major depression. Human Brain Mapping, 37(8), 2931-2942.
doi: 10.1002/hbm.23217 URL pmid: 27090056 |
[35] |
Pulcu E., Thomas E. J., Trotter P. D., McFarquhar M., Juhasz G., Sahakian B. J., … Elliott R . (2015). Social-economical decision making in current and remitted major depression. Psychological Medicine, 45(6), 1301-1313.
doi: 10.1017/S0033291714002414 URL pmid: 25300570 |
[36] |
Reindl V., Gerloff C., Scharke W., & Konrad K . (2018). Brain-to-brain synchrony in parent-child dyads and the relationship with emotion regulation revealed by fNIRS-based hyperscanning. NeuroImage, 178, 493-502.
doi: 10.1016/j.neuroimage.2018.05.060 URL pmid: 29807152 |
[37] |
Richieri R., Verger A., Boyer L., Boucekine M., David A., Lançon C., … Guedj E . (2018). Predictive value of dorso-lateral prefrontal connectivity for rTMS response in treatment-resistant depression: A brain perfusion SPECT study. Brain Stimulation, 11(5), 1093-1097.
doi: 10.1016/j.brs.2018.05.010 URL pmid: 29802071 |
[38] |
Rilling J., Gutman D., Zeh T., Pagnoni G., Berns G., & Kilts C . (2002). A neural basis for social cooperation. Neuron, 35(2), 395-405.
doi: 10.1016/s0896-6273(02)00755-9 URL pmid: 12160756 |
[39] |
Rilling J. K., Glenn A. L., Jairam M. R., Pagnoni G., Goldsmith D. R., Elfenbein H. A., & Lilienfeld S. O . (2007). Neural correlates of social cooperation and non-cooperation as a function of psychopathy. Biological Psychiatry, 61(11), 1260-1271.
doi: 10.1016/j.biopsych.2006.07.021 URL pmid: 17046722 |
[40] |
Rilling J. K., & Sanfey A. G . (2011). The neuroscience of social decision-making. Annual Review of Psychology, 62, 23-48.
doi: 10.1146/annurev.psych.121208.131647 URL pmid: 20822437 |
[41] |
Rothkirch M., Tonn J., Köhler S., & Sterzer P . (2017). Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder. Brain, 140(4), 1147-1157.
doi: 10.1093/brain/awx025 URL pmid: 28334960 |
[42] |
Ruff C. C., & Fehr E . (2014). The neurobiology of rewards and values in social decision making. Nature Reviews Neuroscience, 15, 549-562.
doi: 10.1038/nrn3776 URL pmid: 24986556 |
[43] |
Saleh A., Potter G. G., McQuoid D. R., Boyd B., Turner R., MacFall J. R., & Taylor W. D . (2017). Effects of early life stress on depression, cognitive performance and brain morphology. Psychological Medicine, 47(1), 171-181.
doi: 10.1017/S0033291716002403 URL pmid: 27682320 |
[44] |
Satterthwaite T. D., Cook P. A., Bruce S. E., Conway C., Mikkelsen E., Satchell E., … Sheline Y. I . (2016). Dimensional depression severity in women with major depression and post-traumatic stress disorder correlates with fronto-amygdalar hypoconnectivty. Molecular Psychiatry, 21(7), 894-902.
doi: 10.1038/mp.2015.149 URL pmid: 26416545 |
[45] |
Shattuck D. W., Mirza M., Adisetiyo V., Hojatkashani C., Salamon G., Narr K. L., … Toga A. W . (2007). Construction of a 3D probabilistic atlas of human cortical structures. NeuroImage, 39(3), 1064-1080.
doi: 10.1016/j.neuroimage.2007.09.031 URL pmid: 18037310 |
[46] |
Sonmez A. I., Camsari D. D., Nandakumar A. L., Voort J. L. V., Kung S., Lewis C. P., & Croarkin P. E . (2019). Accelerated TMS for depression: A systematic review and meta-analysis. Psychiatry Research, 273, 770-781.
doi: 10.1016/j.psychres.2018.12.041 URL pmid: 31207865 |
[47] |
Sorgi K. M., & van 't Wout M . (2016). The influence of cooperation and defection on social decision making in depression: A study of the iterated prisoner's dilemma game. Psychiatry Research, 246, 512-519.
doi: 10.1016/j.psychres.2016.10.025 URL pmid: 27821362 |
[48] | Soutschek A., Sauter M., & Schubert T . (2015). The importance of the lateral prefrontal cortex for strategic decision making in the prisoner’s dilemma. Cognitive, Affective, & Behavioral Neuroscience, 15, 854-860. |
[49] |
Stange J. P., Bessette K. L., Jenkins L. M., Peters A. T., Feldhaus C., Crane N. A., … Langenecker S. A . (2017). Attenuated intrinsic connectivity within cognitive control network among individuals with remitted depression: Temporal stability and association with negative cognitive styles. Human Brain Mapping, 38(6), 2939-2954.
doi: 10.1002/hbm.23564 URL pmid: 28345197 |
[50] |
Strang S., Gross J., Schuhmann T., Riedl A., Weber B., & Sack A . (2015). Be nice if you have to—The neurobiological roots of strategic fairness. Social Cognitive and Affective Neuroscience, 10(6), 790-796.
doi: 10.1093/scan/nsu114 URL pmid: 25190704 |
[51] |
Sun P., Zheng L., Li L., Guo X., Zhang W., & Zheng Y . (2016). The neural responses to social cooperation in gain and loss context. PLoS One, 11(8), e0160503.
doi: 10.1371/journal.pone.0160503 URL pmid: 27494142 |
[52] |
Wang K., Wei D., Yang J., Xie P., Hao X., & Qiu J . (2015). Individual differences in rumination in healthy and depressive samples: association with brain structure, functional connectivity and depression. Psychological Medicine, 45(14), 2999-3008.
doi: 10.1017/S0033291715000938 URL pmid: 26219340 |
[53] |
Wise T., Radua J., Via E., Cardoner N., Abe O., Adams T. M., … Arnone D . (2017). Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis. Molecular Psychiatry, 22(10), 1455-1463.
doi: 10.1038/mp.2016.72 URL pmid: 27217146 |
[54] | World Health Organization. (2018) Depression. Fact sheet published on 22 March 2018, available from https://www.who.int/news-room/fact-sheets/detail/depression. |
[55] |
Xue H., Lu K., & Hao N . (2018). Cooperation makes two less-creative individuals turn into a highly-creative pair. NeuroImage, 172, 527-537.
doi: 10.1016/j.neuroimage.2018.02.007 URL pmid: 29427846 |
[56] |
Zhang D., Lin Y., Jing Y., Feng C., & Gu R . (2019). The dynamics of belief updating in human cooperation: Findings from inter-brain ERP hyperscanning. NeuroImage, 198, 1-12.
doi: 10.1016/j.neuroimage.2019.05.029 URL pmid: 31085300 |
[1] | 张萱, 刘萍萍. 熟悉度促进人们与垃圾分类中的志愿者合作及其作用机制[J]. 心理学报, 2023, 55(8): 1358-1371. |
[2] | 王妹, 程思, 李宜伟, 李红, 张丹丹. 背外侧前额叶在安慰剂效应中的作用:社会情绪调节研究[J]. 心理学报, 2023, 55(7): 1063-1073. |
[3] | 谢慧, 林轩怡, 胡婉柔, 胡晓晴. 情绪调节促进负性社会反馈的遗忘:来自行为和脑电的证据[J]. 心理学报, 2023, 55(6): 905-919. |
[4] | 肖家乐, 申子姣, 李晓燕, 林丹华. 同伴侵害变化轨迹及其与抑郁情绪和外化问题的关系:共同增强还是风险易感[J]. 心理学报, 2023, 55(6): 978-993. |
[5] | 李彧, 位东涛, 邱江. 抑郁症的人格类型及其脑功能连接基础[J]. 心理学报, 2023, 55(5): 740-751. |
[6] | 徐健捷, 张一一, 林德堃, 车俐颖, 宋漫漫, 韩卓. 亲子依恋与儿童抑郁症状的关系:儿童对环境的生物敏感性的作用及父母差异[J]. 心理学报, 2023, 55(3): 469-480. |
[7] | 郝子雨, 李欢欢, 林亦轩. 抑郁症自杀未遂者的痛苦逃避与背外侧前额叶-脑岛有效连接特征[J]. 心理学报, 2023, 55(12): 1966-1978. |
[8] | 曹衍淼, 方惠慈, 朱欣悦, 纪林芹, 张文新. BDNF基因、同伴关系与青少年早期抑郁:基于动态发展视角[J]. 心理学报, 2023, 55(10): 1620-1636. |
[9] | 崔丽莹, 卜炜玮, 高权丽, 吴琴, 黄瑶, 韩宪国, 罗俊龙. 歧视知觉对初中生的合作倾向与行为的影响[J]. 心理学报, 2022, 54(3): 259-269. |
[10] | 王文超, 原昊, 伍新春. 灾后中小学生创伤后应激障碍和抑郁症状的共存模式[J]. 心理学报, 2022, 54(12): 1503-1516. |
[11] | 张妮, 刘文, 刘方, 郭鑫. 8~12岁儿童抑郁与认知重评的关系:悲伤面孔注意偏向的中介作用[J]. 心理学报, 2022, 54(1): 25-39. |
[12] | 熊承清, 许佳颖, 马丹阳, 刘永芳. 囚徒困境博弈中对手面部表情对合作行为的影响及其作用机制[J]. 心理学报, 2021, 53(8): 919-932. |
[13] | 陈思静, 邢懿琳, 翁异静, 黎常. 第三方惩罚对合作的溢出效应:基于社会规范的解释[J]. 心理学报, 2021, 53(7): 758-772. |
[14] | 莫李澄, 郭田友, 张岳瑶, 徐锋, 张丹丹. 激活右腹外侧前额叶提高抑郁症患者对社会疼痛的情绪调节能力:一项TMS研究[J]. 心理学报, 2021, 53(5): 494-504. |
[15] | 黄垣成, 赵清玲, 李彩娜. 青少年早期抑郁和自伤的联合发展轨迹:人际因素的作用[J]. 心理学报, 2021, 53(5): 515-526. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||