Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (11): 1942-1956.doi: 10.3724/SP.J.1042.2025.1942
• Regular Articles • Previous Articles Next Articles
LIU Kaihang1,3, PIAO Zhongshu2, TIAN Ying3, WANG Liyan4, WANG Hongbiao1(
)
Received:2025-07-03
Online:2025-11-15
Published:2025-09-19
Contact:
WANG Hongbiao
E-mail:wanghb@sumhs.edu.cn
CLC Number:
LIU Kaihang, PIAO Zhongshu, TIAN Ying, WANG Liyan, WANG Hongbiao. From action imitation to predictive processing: The dynamic neural mechanism and practical application prospect of motor contagion[J]. Advances in Psychological Science, 2025, 33(11): 1942-1956.
| [1] |
Adolphs, R. (2009). The social brain: Neural basis of social knowledge. Annual Review of Psychology, 60, 693-716.
doi: 10.1146/annurev.psych.60.110707.163514 pmid: 18771388 |
| [2] |
Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 1109-1116.
pmid: 19160510 |
| [3] | American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596 |
| [4] | Baldissera, F., Cavallari, P., Craighero, L., & Fadiga, L. (2001). Modulation of spinal excitability during observation of hand actions in humans. The European Journal of Neuroscience, 13(1), 190-194. |
| [5] |
Becchio, C., Pierno, A., Mari, M., Lusher, D., & Castiello, U. (2007). Motor contagion from gaze: The case of autism. Brain, 130(Pt 9), 2401-2411.
pmid: 17711981 |
| [6] |
Belot, M., Crawford, V. P., & Heyes, C. (2013). Players of Matching Pennies automatically imitate opponents' gestures against strong incentives. Proceedings of the National Academy of Sciences of the United States of America, 110(8), 2763-2768.
doi: 10.1073/pnas.1209981110 pmid: 23382227 |
| [7] | Blakemore, S. J., & Frith, C. (2005). The role of motor contagion in the prediction of action. Neuropsychologia, 43(2), 260-267. |
| [8] |
Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychologica, 106(1-2), 3-22.
pmid: 11256338 |
| [9] | Buccino, G. (2014). Action observation treatment: A novel tool in neurorehabilitation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1644), 20130185. https://doi.org/10.1098/rstb.2013.0185 |
| [10] | Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., Seitz, R. J., Zilles, K., Rizzolatti, G., & Freund, H. J. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. The European Journal of Neuroscience, 13(2), 400-404. |
| [11] | Carey, M. R. (2024). The cerebellum. Current Biology, 34(1), R7-R11. |
| [12] |
Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50(3), 1148-1167.
doi: 10.1016/j.neuroimage.2009.12.112 pmid: 20056149 |
| [13] |
Castiello, U. (1999). Mechanisms of selection for the control of hand action. Trends in Cognitive Sciences, 3(7), 264-271.
pmid: 10377541 |
| [14] | Castiello, U. (2003). Understanding other people's actions: Intention and attention. Journal of Experimental Psychology. Human Perception and Performance, 29(2), 416-430. |
| [15] |
Cattaneo, L., & Rizzolatti, G. (2009). The mirror neuron system. Archives of Neurology, 66(5), 557-560.
doi: 10.1001/archneurol.2009.41 pmid: 19433654 |
| [16] |
Decety, J., Chaminade, T., Grèzes, J., & Meltzoff, A. N. (2002). A PET exploration of the neural mechanisms involved in reciprocal imitation. NeuroImage, 15(1), 265-272.
pmid: 11771994 |
| [17] |
Decety, J., Jackson, P. L., Sommerville, J. A., Chaminade, T., & Meltzoff, A. N. (2004). The neural bases of cooperation and competition: An fMRI investigation. NeuroImage, 23(2), 744-751.
pmid: 15488424 |
| [18] |
de Gelder, B., & Poyo Solanas, M. (2021). A computational neuroethology perspective on body and expression perception. Trends in Cognitive Sciences, 25(9), 744-756.
doi: 10.1016/j.tics.2021.05.010 pmid: 34147363 |
| [19] |
de la, Rosa, S., Ferstl, Y., & Bülthoff, H. H. (2016). Visual adaptation dominates bimodal visual-motor action adaptation. Scientific Reports, 6, 23829.
doi: 10.1038/srep23829 pmid: 27029781 |
| [20] |
di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176-180.
doi: 10.1007/BF00230027 pmid: 1301372 |
| [21] | Dumas, G., Nadel, J., Soussignan, R., Martinerie, J., & Garnero, L. (2010). Inter-brain synchronization during social interaction. Plos One, 5(8), e12166. https://doi.org/10.1371/journal.pone.0012166 |
| [22] |
Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73(6), 2608-2611.
pmid: 7666169 |
| [23] | Frank, M. J. (2025). Adaptive cost-benefit control fueled by striatal dopamine. Annual Review of Neuroscience, https://doi.org/10.1146/annurev-neuro-112723-025228 |
| [24] | Friston, K., & Kiebel, S. (2009). Predictive coding under the free-energy principle. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1521), 1211-1221. |
| [25] | Galea, J. M., Vazquez, A., Pasricha, N., de Xivry, J. J. O., & Celnik, P. (2011). Dissociating the roles of the cerebellum and motor cortex during adaptive learning: The motor cortex retains what the cerebellum learns. Cerebral Cortex, 21(8), 1761-1770. |
| [26] |
Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8(9), 396-403.
doi: 10.1016/j.tics.2004.07.002 pmid: 15350240 |
| [27] |
Gangitano, M., Mottaghy, F. M., & Pascual-Leone, A. (2001). Phase-specific modulation of cortical motor output during movement observation. Neuroreport, 12(7), 1489-1492.
pmid: 11388435 |
| [28] | Gibson, J. J. (1979). The ecological approach to visual perception: Classic edition. Houghton Mifflin. |
| [29] |
Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews. Neuroscience, 4(3), 179-192.
pmid: 12612631 |
| [30] |
Gray, R. (2021). Review: Approaches to visual-motor control in baseball batting. Optometry and Vision Science, 98(7), 738-749.
doi: 10.1097/OPX.0000000000001719 pmid: 34328452 |
| [31] | Gray, R., & Beilock, S. L. (2011). Hitting is contagious: Experience and action induction. Journal of Experimental Psychology. Applied, 17(1), 49-59. |
| [32] |
Grèzes, J., Armony, J. L., Rowe, J., & Passingham, R. E. (2003). Activations related to "mirror" and "canonical" neurones in the human brain: An fMRI study. NeuroImage, 18(4), 928-937.
doi: 10.1016/s1053-8119(03)00042-9 pmid: 12725768 |
| [33] |
Heyes, C. (2011). Automatic imitation. Psychological Bulletin, 137(3), 463-483.
doi: 10.1037/a0022288 pmid: 21280938 |
| [34] | Hogeveen, J., & Obhi, S. S. (2012). Social interaction enhances motor resonance for observed human actions. The Journal of Neuroscience, 32(17), 5984-5989. |
| [35] | Hohwy, J. (2020). New directions in predictive processing. Mind & Language, 35(2), 209-223. |
| [36] | Hurley, S. (2008). The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. The Behavioral and Brain Sciences, 31(1), 1-22. |
| [37] |
Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 2526-2528.
doi: 10.1126/science.286.5449.2526 pmid: 10617472 |
| [38] |
Ikegami, T., & Ganesh, G. (2014). Watching novice action degrades expert motor performance: Causation between action production and outcome prediction of observed actions by humans. Scientific Reports, 4, 6989.
doi: 10.1038/srep06989 pmid: 25384755 |
| [39] | Ikegami, T., Ganesh, G., Takeuchi, T., & Nakamoto, H. (2018). Prediction error induced motor contagions in human behaviors. eLife, 7, e33392. https://doi.org/10.7554/eLife.33392 |
| [40] | Ikegami, T., Nakamoto, H., & Ganesh, G. (2019). Action imitative and prediction error-induced contagions in human actions. In M. L. Cappuccio (Ed.), Handbook of Embodied Cognition and Sport Psychology (pp. 381-412). The MIT Press. |
| [41] |
Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: An account of the mirror neuron system. Cognitive Processing, 8(3), 159-166.
doi: 10.1007/s10339-007-0170-2 pmid: 17429704 |
| [42] | Leighton, J., Bird, G., Orsini, C., & Heyes, C. (2010). Social attitudes modulate automatic imitation. Journal of Experimental Social Psychology, 46(6), 905-910. |
| [43] | Liepelt, R., & Brass, M. (2010). Automatic imitation of physically impossible movements. Social Cognition, 28(1), 59-73. |
| [44] | Longo, M. R., Kosobud, A., & Bertenthal, B. I. (2008). Automatic imitation of biomechanically possible and impossible actions: Effects of priming movements versus goals. Journal of Experimental Psychology: Human Perception and Performance, 34(2), 489-501. |
| [45] |
Maeda, F., Kleiner-Fisman, G., & Pascual-Leone, A. (2002). Motor facilitation while observing hand actions: Specificity of the effect and role of observer's orientation. Journal of Neurophysiology, 87(3), 1329-1335.
pmid: 11877507 |
| [46] | Manthey, S., Schubotz, R. I., & von Cramon, D. Y. (2003). Premotor cortex in observing erroneous action: An fMRI study. Brain Research. Cognitive Brain Research, 15(3), 296-307. |
| [47] |
Meltzoff, A. N., & Moore, M. K. (1977). Imitation of facial and manual gestures by human neonates. Science, 198(4312), 74-78.
pmid: 897687 |
| [48] | Mezzarobba, S., Grassi, M., Pellegrini, L., Catalan, M., Kruger, B., Furlanis, G., Manganotti, P., & Bernardis, P. (2018). Action observation plus sonification. A novel therapeutic protocol for Parkinson's patient with freezing of gait. Frontiers in Neurology, 8, 723. |
| [49] | Néda, Z., Ravasz, E., Brechet, Y., Vicsek, T., & Barabási, A. L. (2000). The sound of many hands clapping. Nature, 403(6772), 849-850. |
| [50] | Parr, T., & Pezzulo, G. (2021). Understanding, explanation, and active inference. Frontiers in Systems Neuroscience, 15, 772641. |
| [51] | Pereira, L. M., & Lopes, A. B. (2020). Machine ethics: From machine morals to the machinery of morality. Cham, Switzerland: Springer. |
| [52] | Popa, L. S., & Ebner, T. J. (2019). Cerebellum, predictions and errors. Frontiers in Cellular Neuroscience, 12, 524. |
| [53] | Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129-154. |
| [54] | Ricciardi, E., Bonino, D., Sani, L., Vecchi, T., Guazzelli, M., Haxby, J. V., Fadiga, L., & Pietrini, P. (2009). Do we really need vision? How blind people "see" the actions of others. The Journal of Neuroscience, 29(31), 9719-9724. |
| [55] |
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169-192.
pmid: 15217330 |
| [56] |
Rizzolatti, G., Fadiga, L., Fogassi, L., & Gallese, V. (1999). Resonance behaviors and mirror neurons. Archives Italiennes De Biologie, 137(2-3), 85-100.
pmid: 10349488 |
| [57] | Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain Research. Cognitive Brain Research, 3(2), 131-141. |
| [58] |
Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews. Neuroscience, 2(9), 661-670.
doi: 10.1038/35090060 pmid: 11533734 |
| [59] |
Schubotz, R. I. (2007). Prediction of external events with our motor system: Towards a new framework. Trends in Cognitive Sciences, 11(5), 211-218.
pmid: 17383218 |
| [60] | Schubotz, R. I., & von Cramon, D. Y. (2001). Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location and speed. Brain Research. Cognitive Brain Research, 11(1), 97-112. |
| [61] |
Sokolov, A. A., Miall, R. C., & Ivry, R. B. (2017). The cerebellum: Adaptive prediction for movement and cognition. Trends in Cognitive Sciences, 21(5), 313-332.
doi: S1364-6613(17)30034-7 pmid: 28385461 |
| [62] | Sparks, S., Douglas, T., & Kritikos, A. (2016). Verbal social primes alter motor contagion during action observation. Quarterly Journal of Experimental Psychology, 69(6), 1041-1048. |
| [63] |
Streng, M. L., Popa, L. S., & Ebner, T. J. (2022). Cerebellar representations of errors and internal models. Cerebellum, 21(5), 814-820.
doi: 10.1007/s12311-022-01406-3 pmid: 35471627 |
| [64] | Takeuchi, T., Ikudome, S., Unenaka, S., Ishii, Y., Mori, S., Mann, D. L., & Nakamoto, H. (2018). The inhibition of motor contagion induced by action observation. Plos One, 13(10), e0205725. https://doi.org/10.1371/journal.pone.0205725 |
| [65] | Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of cognition and action. MIT Press. |
| [66] |
Uithol, S., van Rooij, I., Bekkering, H., & Haselager, P. (2011). Understanding motor resonance. Social Neuroscience, 6(4), 388-397.
doi: 10.1080/17470919.2011.559129 pmid: 21391148 |
| [67] |
Van Overwalle, F., & Baetens, K. (2009). Understanding others' actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48(3), 564-584.
doi: 10.1016/j.neuroimage.2009.06.009 pmid: 19524046 |
| [68] | Wang, K. P., Frank, C., Hung, T. M., & Schack, T. (2022). Neurofeedback training: Decreases in Mu rhythm lead to improved motor performance in complex visuomotor skills. Current Psychology, 1-12. doi: 10.1007/s12144-022-03190-z |
| [69] |
Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131(3), 460-473.
doi: 10.1037/0033-2909.131.3.460 pmid: 15869341 |
| [1] | GUO Xiaoli, CHANG Junyao, SHA Maajie, YANG Ziyan. Interventions for implicit social cognition [J]. Advances in Psychological Science, 2025, 33(9): 1630-1646. |
| [2] | PENG Yujia, WANG Yuxi, JU Qianqian, LIU Feng, XU Jia. Investigating social cognitive characteristics of social anxiety within the Bayesian framework [J]. Advances in Psychological Science, 2025, 33(8): 1267-1274. |
| [3] | YU Lingfeng, ZHANG Jie, MING Xianchao, LEI Yi. Unconscious fear and its neural mechanisms [J]. Advances in Psychological Science, 2025, 33(7): 1234-1245. |
| [4] | YANG Yingkai, XIA Haishuo, NIE Haoyu. The cognitive and neural mechanisms underlying the effects of food-specific inhibition training on eating behaviors [J]. Advances in Psychological Science, 2025, 33(5): 744-752. |
| [5] | CHENG Xiaorong, QIU Shiming, DING Xianfeng, FAN Zhao. How does action influence metacognition? — An exploration based on cognitive models and neural mechanisms [J]. Advances in Psychological Science, 2025, 33(3): 425-438. |
| [6] | CAI Jialin, CHEN Caiqi. The characteristics of cognitive disengagement syndrome: A comparative analysis with attention deficit hyperactivity disorder and other related disorders [J]. Advances in Psychological Science, 2025, 33(11): 1967-1982. |
| [7] | DING Ying, WANG Ziying, LI Weidong. Behavioral characteristics and neural mechanisms of pain processing in depression [J]. Advances in Psychological Science, 2024, 32(8): 1315-1327. |
| [8] | FENG Pan, ZHAO Hengyue, JIANG Yumeng, ZHANG Yuetong, FENG Tingyong. Cognitive neural mechanisms underlying the impact of oxytocin on conditioned fear processing [J]. Advances in Psychological Science, 2024, 32(4): 557-567. |
| [9] | SHI Weiting, ZHANG Yaning, LI Xingshan, LIN Nan. Neural basis of social concept representation and social semantic integration [J]. Advances in Psychological Science, 2024, 32(2): 276-286. |
| [10] | ZHENG Hao, CHEN Rongrong, MAI Xiaoqin. The cognitive and neural mechanism of third-party punishment [J]. Advances in Psychological Science, 2024, 32(2): 398-412. |
| [11] | GAO Cheng, LIU Chang. How do processing fluency, expectation, and epistemic goals influence aesthetic judgment? A perspective of multi-model integration [J]. Advances in Psychological Science, 2024, 32(11): 1872-1881. |
| [12] | SUN Lijun, YANG Yufang. The cognitive and neural mechanisms of metric structure in music: A predictive perspective [J]. Advances in Psychological Science, 2024, 32(10): 1567-1577. |
| [13] | SUI Xue, LI Yulin, YUE Zeming, LIU Xin, LI Yutong, LIU Shunhua. Prediction formation during speech perception: Factors and neural mechanisms [J]. Advances in Psychological Science, 2024, 32(10): 1659-1669. |
| [14] | Haoyuan Tan, Qianyu Zhang, Yijie Kuai. Serial Repulsion of Biological Motion Emotion Perception [J]. Advances in Psychological Science, 2023, 31(suppl.): 52-52. |
| [15] | YE Fang, QIU Huilin, JIANG Ke, LI Changjin. Interpretation model of role reversal based on predictive processing theory [J]. Advances in Psychological Science, 2023, 31(8): 1504-1516. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||