Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (7): 1234-1245.doi: 10.3724/SP.J.1042.2025.1234
• Regular Articles • Previous Articles Next Articles
YU Lingfeng, ZHANG Jie, MING Xianchao, LEI Yi()
Received:
2024-06-07
Online:
2025-07-15
Published:
2025-04-27
Contact:
LEI Yi
E-mail:leiyi821@vip.sina.com
CLC Number:
YU Lingfeng, ZHANG Jie, MING Xianchao, LEI Yi. Unconscious fear and its neural mechanisms[J]. Advances in Psychological Science, 2025, 33(7): 1234-1245.
[1] | 蒋军, 陈安涛, 张蔚蔚, 张庆林. (2012). 无意识信息引发的认知控制及其神经机制. 心理科学进展, 20(10), 1573-1584. |
[2] | 徐茜, 蒋毅. (2012). 无意识的情绪面孔加工及其潜在神经机制. 科学通报, 57(35), 3358-3366. |
[3] | 杨勇, 何安明, 惠秋平, 郑希付. (2021). 无意识与有意识恐惧记忆习得的性别差异. 现代教育论丛, (5), 50-58. |
[4] | Adámek, P., Langová, V., & Horáček, J. (2022). Early-stage visual perception impairment in schizophrenia, bottom-up and back again. Schizophrenia, 8(1), 27. |
[5] | Ajina, S., & Bridge, H. (2018). Blindsight relies on a functional connection between hMT+ and the lateral geniculate nucleus, not the pulvinar. PLOS Biology, 16(7), e2005769. |
[6] |
Ajina, S., & Bridge, H. (2019). Subcortical pathways to extrastriate visual cortex underlie residual vision following bilateral damage to V1. Neuropsychologia, 128, 140-149.
doi: S0028-3932(18)30006-X pmid: 29320715 |
[7] |
Ajina, S., Pollard, M., & Bridge, H. (2020). The superior colliculus and amygdala support evaluation of face trait in blindsight. Frontiers in Neurology, 11, 769.
doi: 10.3389/fneur.2020.00769 pmid: 32765417 |
[8] |
Antoniadis, E. A., Winslow, J. T., Davis, M., & Amaral, D. G. (2007). Role of the primate amygdala in fear-potentiated startle: Effects of chronic lesions in the rhesus monkey. Journal of Neuroscience, 27(28), 7386-7396.
doi: 10.1523/JNEUROSCI.5643-06.2007 pmid: 17626199 |
[9] |
Axelrod, V., Bar, M., & Rees, G. (2015). Exploring the unconscious using faces. Trends in Cognitive Sciences, 19(1), 35-45.
doi: 10.1016/j.tics.2014.11.003 pmid: 25481216 |
[10] | Bell, A., Meredith, M. A., van Opstal, J., & Munoz, D. (2006). Stimulus intensity modifies saccadic reaction time and visual response latency in the superior colliculus. Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale, 174, 53-59. |
[11] |
Bertini, C., Grasso, P. A., & Làdavas, E. (2016). The role of the retino-colliculo-extrastriate pathway in visual awareness and visual field recovery. Neuropsychologia, 90, 72-79.
doi: 10.1016/j.neuropsychologia.2016.05.011 pmid: 27180001 |
[12] |
Bliss-Moreau, E., Moadab, G., Bauman, M. D., & Amaral, D. G. (2013). The impact of early amygdala damage on juvenile rhesus macaque social behavior. Journal of Cognitive Neuroscience, 25(12), 2124-2140.
doi: 10.1162/jocn_a_00483 pmid: 24047387 |
[13] | Boatman, J. A., & Kim, J. J. (2006). A thalamo‐cortico‐ amygdala pathway mediates auditory fear conditioning in the intact brain. European Journal of Neuroscience, 24(3), 894-900. |
[14] | Briggs, F., & Usrey, W. M. (2007). A fast, reciprocal pathway between the lateral geniculate nucleus and visual cortex in the macaque monkey. The Journal of Neuroscience, 27(20), 5431-5436. |
[15] |
Burra, N., Hervais-Adelman, A., Celeghin, A., De Gelder, B., & Pegna, A. J. (2019). Affective blindsight relies on low spatial frequencies. Neuropsychologia, 128, 44-49.
doi: S0028-3932(17)30378-0 pmid: 28993236 |
[16] | Cambiaghi, M., Grosso, A., Likhtik, E., Mazziotti, R., Concina, G., Renna, A., … Sacchetti, B. (2016). Higher- order sensory cortex drives basolateral amygdala activity during the recall of remote, but not recently learned fearful memories. The Journal of Neuroscience, 36(5), 1647-1659. |
[17] | Carretié, L., Fernández-Folgueiras, U., Álvarez, F., Cipriani, G. A., Tapia, M., & Kessel, D. (2022). Fast unconscious processing of emotional stimuli in early stages of the visual cortex. Cerebral Cortex, 32(19), 4331-4344. |
[18] | Carretié, L., Yadav, R. K., & Méndez-Bértolo, C. (2021). The missing link in early emotional processing. Emotion Review, 13(3), 225-244. |
[19] | Casagrande, V., A., Royal, D. W., & Sáry, G. (2005). Extraretinal inputs and feedback mechanisms to the lateral geniculate nucleus (LGN). In J. Kremers (Ed.), The primate visual system: A comparative approach (pp. 191- 211). Wiley Online Library. |
[20] |
Celeghin, A., De Gelder, B., & Tamietto, M. (2015). From affective blindsight to emotional consciousness. Consciousness and Cognition, 36, 414-425.
doi: 10.1016/j.concog.2015.05.007 pmid: 26058355 |
[21] | Chen, Y., Chen, S., Sun, Z., Zhang, X., Yuan, X., Wang, L., & Jiang, Y. (2023). Rapid unconscious acquisition of conditioned fear with low-spatial-frequency but emotionally neutral stimuli. Research, 6, 181. |
[22] | Ciocchi, S., Herry, C., Grenier, F., Wolff, S., Letzkus, J., Vlachos, I., … Lüthi, A. (2010). Encoding of conditioned fear in central amygdala inhibitory circuits. Nature, 468, 277-282. |
[23] |
Cortes, N., Ladret, H. J., Abbas-Farishta, R., & Casanova, C. (2024). The pulvinar as a hub of visual processing and cortical integration. Trends in Neurosciences, 47(2), 120-134.
doi: 10.1016/j.tins.2023.11.008 pmid: 38143202 |
[24] |
Dalmay, T., Abs, E., Poorthuis, R. B., Hartung, J., Pu, D. -L., Onasch, S., … Letzkus, J. J. (2019). A critical role for neocortical processing of threat memory. Neuron, 104(6), 1180-1194.
doi: S0896-6273(19)30799-8 pmid: 31727549 |
[25] | Diano, M., Celeghin, A., Bagnis, A., & Tamietto, M. (2017). Amygdala response to emotional stimuli without awareness: Facts and interpretations. Frontiers in Psychology, 7, 2029. |
[26] |
Edmiston, E. K., McHugo, M., Dukic, M. S., Smith, S. D., Abou-Khalil, B., Eggers, E., & Zald, D. H. (2013). Enhanced visual cortical activation for emotional stimuli is preserved in patients with unilateral amygdala resection. Journal of Neuroscience, 33(27), 11023-11031.
doi: 10.1523/JNEUROSCI.0401-13.2013 pmid: 23825407 |
[27] |
Fang, F., & He, S. (2005). Cortical responses to invisible objects in the human dorsal and ventral pathways. Nature Neuroscience, 8(10), 1380-1385.
pmid: 16136038 |
[28] |
Feinstein, J. S., Buzza, C., Hurlemann, R., Follmer, R. L., Dahdaleh, N. S., Coryell, W. H., … Wemmie, J. A. (2013). Fear and panic in humans with bilateral amygdala damage. Nature Neuroscience, 16(3), 270-272.
doi: 10.1038/nn.3323 pmid: 23377128 |
[29] |
Fiebelkorn, I. C., & Kastner, S. (2019). The puzzling pulvinar. Neuron, 101(2), 201-203.
doi: S0896-6273(18)31152-8 pmid: 30653933 |
[30] |
Friston, K. J., Preller, K. H., Mathys, C., Cagnan, H., Heinzle, J., Razi, A., & Zeidman, P. (2019). Dynamic causal modelling revisited. NeuroImage, 199, 730-744.
doi: S1053-8119(17)30156-8 pmid: 28219774 |
[31] | Friston, K., & Kiebel, S. (2009). Predictive coding under the free-energy principle. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521), 1211-1221. |
[32] |
Gelder, B., de Morris, J. S., & Dolan, R. J. (2005). Unconscious fear influences emotional awareness of faces and voices. Proceedings of the National Academy of Sciences of the United States of America, 102(51), 18682-18687.
doi: 10.1073/pnas.0509179102 pmid: 16352717 |
[33] |
Jaramillo, J., Mejias, J. F., & Wang, X. -J. (2019). Engagement of pulvino-cortical feedforward and feedback pathways in cognitive computations. Neuron, 101(2), 321-336.
doi: S0896-6273(18)31014-6 pmid: 30553546 |
[34] | Jayakumar, J., Roy, S., Dreher, B., Martin, P. R., & Vidyasagar, T. R. (2013). Multiple pathways carry signals from short-wavelength-sensitive (‘blue’) cones to the middle temporal area of the macaque. The Journal of Physiology, 591(1), 339-352. |
[35] | Jessen, S., & Grossmann, T. (2020). The developmental origins of subliminal face processing. Neuroscience & Biobehavioral Reviews, 116, 454-460. |
[36] |
Heutink, J., Brouwer, W. H., de Jong, B. M., & Bouma, A. (2011). Conscious and unconscious processing of fear after right amygdala damage: A single case ERP-study. Neurocase, 17(4), 297-312.
doi: 10.1080/13554794.2010.504730 pmid: 20818541 |
[37] |
Hurme, M., Koivisto, M., Revonsuo, A., & Railo, H. (2017). Early processing in primary visual cortex is necessary for conscious and unconscious vision while late processing is necessary only for conscious vision in neurologically healthy humans. NeuroImage, 150, 230-238.
doi: S1053-8119(17)30171-4 pmid: 28254455 |
[38] | Kietzmann, T. C., McClure, P., & Kriegeskorte, N. (2019). Deep neural networks in computational neuroscience. Oxford Research Encyclopedia of Neuroscience. https://doi.org/10.1093/acrefore/9780190264086.013.46 |
[39] | Kinoshita, M., Kato, R., Isa, K., Kobayashi, K., Kobayashi, K., Onoe, H., & Isa, T. (2019). Dissecting the circuit for blindsight to reveal the critical role of pulvinar and superior colliculus. Nature Communications, 10(1), 135. |
[40] | Kleckner, I. R., Zhang, J., Touroutoglou, A., Chanes, L., Xia, C., Simmons, W. K., … Barrett, L. F. (2017). Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nature Human Behaviour, 1(5), 69. |
[41] | Kletenik, I., Ferguson, M. A., Bateman, J. R., Cohen, A. L., Lin, C., Tetreault, A.,... Fox, M. D. (2022). Network localization of unconscious visual perception in blindsight. Annals of Neurology, 91(2), 217-224. |
[42] |
Kragel, P. A., Čeko, M., Theriault, J., Chen, D., Satpute, A. B., Wald, L. W., … Wager, T. D. (2021). A human colliculus-pulvinar-amygdala pathway encodes negative emotion. Neuron, 109(15), 2404-2412.
doi: 10.1016/j.neuron.2021.06.001 pmid: 34166604 |
[43] | Kragel, P. A., Reddan, M. C., LaBar, K. S., & Wager, T. D. (2019). Emotion schemas are embedded in the human visual system. Science Advances, 5(7), eaaw4358. |
[44] |
Lamme, V. A. F. (2001). Blindsight: The role of feedforward and feedback corticocortical connections. Acta Psychologica, 107(1-3), 209-228.
pmid: 11388136 |
[45] |
Lamme, V. A. F. (2010). How neuroscience will change our view on consciousness. Cognitive Neuroscience, 1(3), 204-220.
doi: 10.1080/17588921003731586 pmid: 24168336 |
[46] | Le, Q. V., Isbell, L. A., Matsumoto, J., Le, V. Q., Hori, E., Tran, A. H., … Nishijo, H. (2014). Monkey pulvinar neurons fire differentially to snake postures. PLoS ONE, 9(12), e114258. |
[47] | LeDoux, J. E. (1995). Emotion: Clues from the brain. Annual Review of Psychology, 46(1), 209-235. |
[48] | LeDoux, J. E. (2020). Thoughtful feelings. Current Biology, 30(11), R619-R623. |
[49] |
LeDoux, J. E., & Pine, D. S. (2016). Using neuroscience to help understand fear and anxiety: A two-system framework. American Journal of Psychiatry, 173(11), 1083-1093.
pmid: 27609244 |
[50] |
Leopold, D. A. (2012). Primary visual cortex: Awareness and blindsight. Annual Review of Neuroscience, 35, 91-109.
doi: 10.1146/annurev-neuro-062111-150356 pmid: 22715879 |
[51] |
Li, W. (2014). Learning to smell danger: Acquired associative representation of threat in the olfactory cortex. Frontiers in Behavioral Neuroscience, 8, 98.
doi: 10.3389/fnbeh.2014.00098 pmid: 24778610 |
[52] |
Li, W., & Keil, A. (2023). Sensing fear: Fast and precise threat evaluation in human sensory cortex. Trends in Cognitive Sciences, 27(4), 341-352.
doi: 10.1016/j.tics.2023.01.001 pmid: 36732175 |
[53] |
Li, Z., Yan, A., Guo, K., & Li, W. (2019). Fear-related signals in the primary visual cortex. Current Biology, 29(23), 4078-4083.e2.
doi: S0960-9822(19)31254-0 pmid: 31668624 |
[54] | Liddell, B. J., Brown, K. J., Kemp, A. H., Barton, M. J., Das, P., Peduto, A., Gordon, E., & Williams, L. M. (2005). A direct brainstem-amygdala-cortical ‘alarm’ system for subliminal signals of fear. NeuroImage, 24(1), 235-243. |
[55] | Lithari, C., Moratti, S., & Weisz, N. (2016). Limbic areas are functionally decoupled and visual cortex takes a more central role during fear conditioning in humans. Scientific Reports, 6(1), 29220. |
[56] | Liu, L., Wang, F., Zhou, K., Ding, N., & Luo, H. (2017). Perceptual integration rapidly activates dorsal visual pathway to guide local processing in early visual areas. PLOS Biology, 15(11), e2003646. |
[57] | Liu, T. T., Fu, J. Z., Chai, Y., Japee, S., Chen, G., Ungerleider, L. G., & Merriam, E. P. (2022). Layer-specific, retinotopically- diffuse modulation in human visual cortex in response to viewing emotionally expressive faces. Nature Communications, 13(1), 6302. |
[58] |
Maior, R. S., Hori, E., Tomaz, C., Ono, T., & Nishijo, H. (2010). The monkey pulvinar neurons differentially respond to emotional expressions of human faces. Behavioural Brain Research, 215(1), 129-135.
doi: 10.1016/j.bbr.2010.07.009 pmid: 20643164 |
[59] | Maya-Vetencourt, J. F., & Origlia, N. (2012). Visual cortex plasticity: A complex interplay of genetic and environmental influences. Neural Plasticity, (1), 631965. |
[60] |
McFadyen, J., Dolan, R. J., & Garrido, M. I. (2020). The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nature Reviews Neuroscience, 21(5), 264-276.
doi: 10.1038/s41583-020-0287-1 pmid: 32269315 |
[61] | Mei, Y., Becker, B., Leppänen, P. H. T., & Lei, Y. (2024). Exploring the ‘black box’ of anxiety: An ERP study of non-consciously triggered fear generalization. Behaviour Research and Therapy, 178, 104552. |
[62] |
Méndez-Bértolo, C., Moratti, S., Toledano, R., Lopez-Sosa, F., Martínez-Alvarez, R., Mah, Y. H., … Strange, B. A. (2016). A fast pathway for fear in human amygdala. Nature Neuroscience, 19(8), 1041-1049.
doi: 10.1038/nn.4324 pmid: 27294508 |
[63] |
Mobbs, D., Adolphs, R., Fanselow, M. S., Barrett, L. F., LeDoux, J. E., Ressler, K., & Tye, K. M. (2019). Viewpoints: Approaches to defining and investigating fear. Nature Neuroscience, 22(8), 1205-1216.
doi: 10.1038/s41593-019-0456-6 pmid: 31332374 |
[64] | Morris, J. S., Öhman, A., & Dolan, R. J. (1998). Conscious and unconscious emotional learning in the human amygdala. Nature, 393(6684), 467-470. |
[65] | Morris, J. S., Öhman, A., & Dolan, R. J. (1999). A subcortical pathway to the right amygdala mediating “unseen” fear. Proceedings of the National Academy of Sciences, 96(4), 1680-1685. |
[66] |
Neumeister, P., Feldker, K., Heitmann, C. Y., Buff, C., Brinkmann, L., Bruchmann, M., & Straube, T. (2018). Specific amygdala response to masked fearful faces in post-traumatic stress relative to other anxiety disorders. Psychological Medicine, 48(7), 1209-1217.
doi: 10.1017/S0033291717002513 pmid: 28950918 |
[67] |
Nguyen, M. N., Matsumoto, J., Hori, E., Maior, R. S., Tomaz, C., Tran, A. H., Ono, T., & Nishijo, H. (2014). Neuronal responses to face-like and facial stimuli in the monkey superior colliculus. Frontiers in Behavioral Neuroscience, 8, 85.
doi: 10.3389/fnbeh.2014.00085 pmid: 24672448 |
[68] |
O’Connor, D. H., Fukui, M. M., Pinsk, M. A., & Kastner, S. (2002). Attention modulates responses in the human lateral geniculate nucleus. Nature Neuroscience, 5(11), 1203-1209.
doi: 10.1038/nn957 pmid: 12379861 |
[69] |
Ohman, A., & Scares, J. F. (1994). ''Unconscious anxiety": Phobic responses to masked stimuli. Journal of Abnormal Psychology, 103(2), 231-240.
pmid: 8040492 |
[70] |
Pessoa, L. (2005). To what extent are emotional visual stimuli processed without attention and awareness? Current Opinion in Neurobiology, 15(2), 188-196.
pmid: 15831401 |
[71] |
Pessoa, L. (2017). A network model of the emotional brain. Trends in Cognitive Sciences, 21(5), 357-371.
doi: S1364-6613(17)30036-0 pmid: 28363681 |
[72] |
Pessoa, L., & Adolphs, R. (2010). Emotion processing and the amygdala: From a ‘low road’ to ‘many roads’ of evaluating biological significance. Nature Reviews Neuroscience, 11(11), 773-783.
doi: 10.1038/nrn2920 pmid: 20959860 |
[73] |
Piech, R. M., McHugo, M., Smith, S. D., Dukic, M. S., Van Der Meer, J., Abou-Khalil, B., & Zald, D. H. (2010). Fear-enhanced visual search persists after amygdala lesions. Neuropsychologia, 48(12), 3430-3435.
doi: 10.1016/j.neuropsychologia.2010.07.009 pmid: 20637217 |
[74] |
Purushothaman, G., Marion, R., Li, K., & Casagrande, V. A. (2012). Gating and control of primary visual cortex by pulvinar. Nature Neuroscience, 15(6), 905-912.
doi: 10.1038/nn.3106 pmid: 22561455 |
[75] |
Ressler, R. L., & Maren, S. (2019). Synaptic encoding of fear memories in the amygdala. Current Opinion in Neurobiology, 54, 54-59.
doi: S0959-4388(18)30113-2 pmid: 30216780 |
[76] |
Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X., & Kastner, S. (2012). The pulvinar regulates information transmission between cortical areas based on attention demands. Science, 337(6095), 753-756.
doi: 10.1126/science.1223082 pmid: 22879517 |
[77] | Sato, W., Usui, N., Kondo, A., Kubota, Y., Toichi, M., & Inoue, Y. (2024). Impairment of unconscious emotional processing after unilateral medial temporal structure resection. Scientific Reports, 14(1), 4269. |
[78] | Schmid, M. C., Mrowka, S. W., Turchi, J., Saunders, R. C., Wilke, M., Peters, A. J., Ye, F. Q., & Leopold, D. A. (2010). Blindsight depends on the lateral geniculate nucleus. Nature, 466(7304), 373-377. |
[79] | Schuurmans, J. P., Bennett, M. A., Petras, K., & Goffaux, V. (2023). Backward masking reveals coarse-to-fine dynamics in human V1. NeuroImage, 274, 120139. |
[80] | Siegel, P., Cohen, B., & Warren, R. (2022). Nothing to fear but fear itself: A mechanistic test of unconscious exposure. Biological Psychiatry, 91(3), 294-302. |
[81] | Siegel, P., Wang, Z., Murray, L., Campos, J., Sims, V., Leighton, E., & Peterson, B. S. (2020). Brain-based mediation of non-conscious reduction of phobic avoidance in young women during functional MRI: A randomised controlled experiment. The Lancet Psychiatry, 7(11), 971-981. |
[82] | Spacek, M. A., Crombie, D., Bauer, Y., Born, G., Liu, X., Katzner, S., & Busse, L. (2022). Robust effects of corticothalamic feedback and behavioral state on movie responses in mouse dLGN. eLife, 11, e70469. |
[83] |
Staib, M., Abivardi, A., & Bach, D. R. (2020). Primary auditory cortex representation of fear-conditioned musical sounds. Human Brain Mapping, 41(4), 882-891.
doi: 10.1002/hbm.24846 pmid: 31663229 |
[84] | Takakuwa, N., Isa, K., Onoe, H., Takahashi, J., & Isa, T. (2021). Contribution of the pulvinar and lateral geniculate nucleus to the control of visually guided saccades in blindsight monkeys. The Journal of Neuroscience, 41(8), 1755-1768. |
[85] |
Tamietto, M., Pullens, P., de Gelder, B., Weiskrantz, L., & Goebel, R. (2012). Subcortical connections to human amygdala and changes following destruction of the visual cortex. Current Biology, 22(15), 1449-1455.
doi: 10.1016/j.cub.2012.06.006 pmid: 22748315 |
[86] | Tao, D., He, Z., Lin, Y., Liu, C., & Tao, Q. (2021). Where does fear originate in the brain? A coordinate-based meta-analysis of explicit and implicit fear processing. NeuroImage, 227, 117686. |
[87] | Taschereau-Dumouchel, V., Cortese, A., Chiba, T., Knotts, J. D., Kawato, M., & Lau, H. (2018). Towards an unconscious neural reinforcement intervention for common fears. Proceedings of the National Academy of Sciences, 115(13), 3470-3475. |
[88] |
Taschereau-Dumouchel, V., Kawato, M., & Lau, H. (2020). Multivoxel pattern analysis reveals dissociations between subjective fear and its physiological correlates. Molecular Psychiatry, 25(10), 2342-2354.
doi: 10.1038/s41380-019-0520-3 pmid: 31659269 |
[89] | Terburg, D., Morgan, B. E., Montoya, E. R., Hooge, I. T., Thornton, H. B., Hariri, A. R., … Van Honk, J. (2012). Hypervigilance for fear after basolateral amygdala damage in humans. Translational Psychiatry, 2(5), e115-e115. |
[90] |
Touroutoglou, A., Lindquist, K. A., Dickerson, B. C., & Barrett, L. F. (2015). Intrinsic connectivity in the human brain does not reveal networks for ‘basic’ emotions. Social Cognitive and Affective Neuroscience, 10(9), 1257-1265.
doi: 10.1093/scan/nsv013 pmid: 25680990 |
[91] |
Tsuchiya, N., Moradi, F., Felsen, C., Yamazaki, M., & Adolphs, R. (2009). Intact rapid detection of fearful faces in the absence of the amygdala. Nature Neuroscience, 12(10), 1224-1225.
doi: 10.1038/nn.2380 pmid: 19718036 |
[92] | Van Den Stock, J., Tamietto, M., Sorger, B., Pichon, S., Grézes, J., & De, Gelder, B. (2011). Cortico-subcortical visual, somatosensory, and motor activations for perceiving dynamic whole-body emotional expressions with and without striate cortex (V1). Proceedings of the National Academy of Sciences, 108(39), 16188-16193. |
[93] | Van Le, Q., Isbell, L. A., Matsumoto, J., Nguyen, M., Hori, E., Maior, R. S., … Nishijo, H. (2013). Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes. Proceedings of the National Academy of Sciences, 110(47), 19000-19005. |
[94] | Wang, Y., Luo, L., Chen, G., Luan, G., Wang, X., Wang, Q., & Fang, F. (2023). Rapid processing of invisible fearful faces in the human amygdala. The Journal of Neuroscience, 43(8), 1405-1413. |
[95] |
Weyand, T. G. (2016). The multifunctional lateral geniculate nucleus. Reviews in the Neurosciences, 27(2), 135-157.
doi: 10.1515/revneuro-2015-0018 pmid: 26479339 |
[96] |
Yilmaz, M., & Meister, M. (2013). Rapid innate defensive responses of mice to looming visual stimuli. Current Biology, 23(20), 2011-2015.
doi: 10.1016/j.cub.2013.08.015 pmid: 24120636 |
[97] |
Yin, S., Bo, K., Liu, Y., Thigpen, N., Keil, A., & Ding, M. (2020). Fear conditioning prompts sparser representations of conditioned threat in primary visual cortex. Social Cognitive and Affective Neuroscience, 15(9), 950-964.
doi: 10.1093/scan/nsaa122 pmid: 32901822 |
[98] | You, Y., Brown, J., & Li, W. (2021). Human sensory cortex contributes to the long-term storage of aversive conditioning. The Journal of Neuroscience, 41(14), 3222-3233. |
[99] |
Zhang, D., He, Z., Chen, Y., & Wei, Z. (2016). Deficits of unconscious emotional processing in patients with major depression: An ERP study. Journal of Affective Disorders, 199, 13-20.
doi: 10.1016/j.jad.2016.03.056 pmid: 27057648 |
[100] | Zhou, H., Schafer, R. J., & Desimone, R. (2016). Pulvinar- cortex interactions in vision and attention. Neuron, 89(1), 209-220. |
[101] | Zhu, S., Zhang, Y., Dong, J., Chen, L., & Luo, W. (2021). Low-spatial-frequency information facilitates threat detection in a response-specific manner. Journal of Vision, 21(4), 8. |
[102] | Zhu, Y., Zeng, Y., Ren, J., Zhang, L., Chen, C., Fernandez, G., & Qin, S. (2022). Emotional learning retroactively promotes memory integration through rapid neural reactivation and reorganization. eLife, 11, e60190. |
[103] |
Zou, X., Ji, Z., Zhang, T., Huang, T., & Wu, S. (2023). Visual information processing through the interplay between fine and coarse signal pathways. Neural Networks, 166, 692-703.
doi: 10.1016/j.neunet.2023.07.048 pmid: 37604078 |
[1] | PENG Yujia, WANG Yuxi, JU Qianqian, LIU Feng, XU Jia. Investigating social cognitive characteristics of social anxiety within the Bayesian framework [J]. Advances in Psychological Science, 2025, 33(8): 1267-1274. |
[2] | YANG Yingkai, XIA Haishuo, NIE Haoyu. The cognitive and neural mechanisms underlying the effects of food-specific inhibition training on eating behaviors [J]. Advances in Psychological Science, 2025, 33(5): 744-752. |
[3] | CHENG Xiaorong, QIU Shiming, DING Xianfeng, FAN Zhao. How does action influence metacognition? — An exploration based on cognitive models and neural mechanisms [J]. Advances in Psychological Science, 2025, 33(3): 425-438. |
[4] | LEI Yi, MEI Ying, Wang Jinxia, YUAN Zixin. Identifying the impact of unconscious fear on adolescent anxiety: Cognitive neural mechanisms and interventions [J]. Advances in Psychological Science, 2024, 32(8): 1221-1232. |
[5] | DING Ying, WANG Ziying, LI Weidong. Behavioral characteristics and neural mechanisms of pain processing in depression [J]. Advances in Psychological Science, 2024, 32(8): 1315-1327. |
[6] | FENG Pan, ZHAO Hengyue, JIANG Yumeng, ZHANG Yuetong, FENG Tingyong. Cognitive neural mechanisms underlying the impact of oxytocin on conditioned fear processing [J]. Advances in Psychological Science, 2024, 32(4): 557-567. |
[7] | ZHENG Hao, CHEN Rongrong, MAI Xiaoqin. The cognitive and neural mechanism of third-party punishment [J]. Advances in Psychological Science, 2024, 32(2): 398-412. |
[8] | SUN Lijun, YANG Yufang. The cognitive and neural mechanisms of metric structure in music: A predictive perspective [J]. Advances in Psychological Science, 2024, 32(10): 1567-1577. |
[9] | Yujie Chen, Ying Wang, Yi Jiang. ‘Pop-out’ of Fearful Face in Invisible Crowds: Nonconscious Attentional Capture Guides Gaze Behavior [J]. Advances in Psychological Science, 2023, 31(suppl.): 88-88. |
[10] | Xin Zhou, Xunbing Shen, Yuxi Zhou, Zhenzhen Tao. Fear Expression Outperforms Happiness as a Lie Detection Indicator [J]. Advances in Psychological Science, 2023, 31(suppl.): 177-177. |
[11] | SHI Guanfeng, WU Yuying, PANG Huiwei, LIU Zhaohui, XIE Zhihui. Structural measures, multidimensional effects and formation mechanisms of workplace fear of missing out [J]. Advances in Psychological Science, 2023, 31(8): 1374-1388. |
[12] | CAO Jinjing, QIU Shiming, DING Xianfeng, CHENG Xiaorong, FAN Zhao. The gradedness and richness of consciousness: Two pathways toward decoding consciousness [J]. Advances in Psychological Science, 2023, 31(7): 1172-1185. |
[13] | ZHANG Jie, ZHANG Huoyin, LI Hong, LEI Yi. The effect of sleep on fear learning and its cognitive neural mechanisms [J]. Advances in Psychological Science, 2023, 31(4): 631-640. |
[14] | ZHANG Mingxia, LI Yuxin, LI Jin, LIU Xun. The influence of extrinsic and intrinsic motivation on memory in adolescents and the underlying neural mechanisms [J]. Advances in Psychological Science, 2023, 31(1): 1-9. |
[15] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||