Advances in Psychological Science ›› 2024, Vol. 32 ›› Issue (2): 342-363.doi: 10.3724/SP.J.1042.2024.00342
• Regular Articles • Previous Articles Next Articles
CHE Qiangyan1, SUN Yunlin1, JIN Jia1, ZHU Chunyan1,2,3,4, WANG Kai1,2,3,4,5, YE Rong1,2,4, YU Fengqiong1,2,4()
Received:
2023-06-20
Online:
2024-02-15
Published:
2023-11-23
Contact:
YU Fengqiong
E-mail:yufengqin1@163.com
CLC Number:
CHE Qiangyan, SUN Yunlin, JIN Jia, ZHU Chunyan, WANG Kai, YE Rong, YU Fengqiong. The application of neurofeedback for positive emotion enhancement in depression treatment[J]. Advances in Psychological Science, 2024, 32(2): 342-363.
研究 | 分组及样本量 (EG/CG) | 效应量 (effect size) | 调节能力 报告 | 目标 靶点 | 反馈呈现 方式 | 指导策略 | 服药 情况 | 实验 设计 | 训练次数 | 效果评价 | 随访 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rosenfeld et al. ( | EG: 5人(4名女性, 1名男性); CG: 无 | 未报告 | 无 | FAA | 无 | 被试自己的任何策略 | 部分服药 | 非随机、非盲 | 每周1次, 每次50分钟, 共8~19次 | FAA评分与积极情绪变化之间有很强的正相关 | 无 | ||
Baehr et al. ( | EG: 2人、女性(个案研究) | 未报告 | 无 | FAA | 无 | 放松训练 | 是 | 非随机、非盲 | 1人34次; 1人36次 | 2人都能够自主上调FAA, 同时MMPI得分降低; 患者情感状态改善 | 无 | ||
Earnest ( | EG: 1名青少年(个案研究) | 未报告 | 无 | FAA | 无 | 无 | 否 | 非随机、非盲 | 一周2次, 每次55分钟, 共67次 | 能够自主上调FAA, 抑郁症状改善 | 无 | ||
Nazarian ( | 共19名抑郁症患者参与, 只有7人完成所有训练, EG和CG组人数未报告; | 未报告 | 无 | FAA | 连续的、听觉 | 无 | 否 | 随机、双盲 | 36次 | FAA无显著改变, 抑郁症状和情绪未改善 | 有 | ||
Choi et al. ( | EG: 12名 CG: 12/11名(单纯心理治疗对照) | 未报告 | 无 | FAA | 连续的、视听觉 | 无 | 否 | 随机对照、非盲 | 10次 | 抑郁症状改善 | 有 | ||
Peeters et al. ( | EG: 9名 | 未报告 | 无 | FAA | 连续的、视觉 | 无 | 是 | 非随机、非盲 | 平均26.78次 | FAA显著改变, 抑郁症状改善 | 无 | ||
Wang et al. ( | EG: 7名 CG:7名(无神经反馈的药物治疗对照组) | 未报告 | 有 | FAA | 未报告 | 无 | 是 | 随机、非盲 | 6次 | EG患者焦虑和抑郁改善 | 无 | ||
Linden et al. ( | EG: 8名 CG:8名(无神经反馈的积极心理意象对照组) | Cohen’s d = 1.5 | 无 | ↑与积极情绪有关脑区 | 连续的、视觉 | 观看情绪性图片 | 是 | 非随机、非盲 | 4次 | EG的患者在症状评分上改善了约30% (在17项HDRS中约为4分), CG完全没有改善 | 无 | ||
Young et al. ( | EG: 14/13 CG: 7/6(无关脑区的假神经反馈 | 未报告 | 无 | ↑左侧杏仁核 | 连续的、视觉 | 积极自传体回忆 | 否 | 非随机、双盲 | 1次 | EG能够上调杏仁核的活动。焦虑评分明显下降, 快乐评分明显增加。情绪改善。 | 无 | ||
Yuan et al. ( | EG: 14名 HC: 27名 CG: 13名(无关脑区的假神经反馈) | 未报告 | 无 | ↑左侧杏仁核 | 连续的、视觉 | 积极自传体回忆 | 否 | 非随机、双盲 | 1次 | EG患者情绪环路低连接性被逆转, 并持续发生积极变化。 | 有 | ||
Zotev et al. ( | EG: 13名 CG: 11名(无关脑区的假神经反馈) | 未报告 | 无 | ↑左侧杏仁核 | 连续的、视觉 | 积极自传体回忆 | 否 | 非随机、单盲 | 2次 | 抑郁症状改善和FAA的变化相关, 积极情绪增加 | 无 | ||
Young et al. ( | EG: 19/18 CG: 17/15(无关脑区假神经反馈) | Cohen’s d = 1.03 | 无 | ↑左侧杏仁核 | 连续的、视觉 | 积极自传体回忆 | 否 | 随机、双盲 | 2次 | 抑郁症状显著降低, 情绪改善 | 有 | ||
Mehler et al. ( | EG:21/16 CG:22 /16(高级视觉皮层的假神经反馈) | Hedges' g = 1.46 | 无 | ↑与积极情绪有关脑区 | 连续的、视觉 | 积极的心理想象 | 是 | 随机、单盲 | 5次 | 抑郁症状改善持续到随访(第18周), 自我效能感评分增加。 | 有 | ||
Zotev et al. ( | EG:16名 CG: 8名(无关脑区的假神经反馈) | 未报告 | 无 | ↑LrACC和LA环路、前额叶的α和高β偏侧化) | 连续的、视觉 | 积极自传体回忆 | 否 | 非随机、单盲 | 1次 | 抑郁症状和情绪显著改善, EG参与者的LA和LrACC之间功能连接显著增强。 | 无 | ||
Ahrweiler et al. ( | EG: 34名 HC: 19名 | 未报告 | 无 | ↑杏仁核海马复合体 | 连续的、视觉 | 积极自传体回忆 | 是 | 非随机、非盲 | 1次 | 参与杏仁核−海马复合体的情绪调节可以引起自我和情绪处理区域的神经可塑性, 与抑郁和反刍症状的改善有关 | 无 | ||
Compère, Siegle, Lazzaro, et al. ( | EG: 16名 CG: 22名(无关脑区假神经反馈) | Cohen’s d = 1 | 无 | ↑左侧杏仁核 | 连续的、视觉 | 积极自传体回忆 | 否 | 随机、双盲 | 2次 | EG能够上调杏仁核的活动, 抑郁症状改善。 | 有 | ||
Compère, Siegle, Riley, et al. ( | EG:16名 CG: 19名(无关脑区假神经反馈) | Cohen’s d = 1.04 | ↑左侧杏仁核 | 连续的、视觉 | 积极自传体回忆 | 是 | 随机、双盲 | 2次 | EG能够上调杏仁核的活动, 同时神经反馈促进了CBT的治疗效果, 积极情绪的增加更加显著 | 有 |
研究 | 分组及样本量 (EG/CG) | 效应量 (effect size) | 调节能力 报告 | 目标 靶点 | 反馈呈现 方式 | 指导策略 | 服药 情况 | 实验 设计 | 训练次数 | 效果评价 | 随访 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rosenfeld et al. ( | EG: 5人(4名女性, 1名男性); CG: 无 | 未报告 | 无 | FAA | 无 | 被试自己的任何策略 | 部分服药 | 非随机、非盲 | 每周1次, 每次50分钟, 共8~19次 | FAA评分与积极情绪变化之间有很强的正相关 | 无 | ||
Baehr et al. ( | EG: 2人、女性(个案研究) | 未报告 | 无 | FAA | 无 | 放松训练 | 是 | 非随机、非盲 | 1人34次; 1人36次 | 2人都能够自主上调FAA, 同时MMPI得分降低; 患者情感状态改善 | 无 | ||
Earnest ( | EG: 1名青少年(个案研究) | 未报告 | 无 | FAA | 无 | 无 | 否 | 非随机、非盲 | 一周2次, 每次55分钟, 共67次 | 能够自主上调FAA, 抑郁症状改善 | 无 | ||
Nazarian ( | 共19名抑郁症患者参与, 只有7人完成所有训练, EG和CG组人数未报告; | 未报告 | 无 | FAA | 连续的、听觉 | 无 | 否 | 随机、双盲 | 36次 | FAA无显著改变, 抑郁症状和情绪未改善 | 有 | ||
Choi et al. ( | EG: 12名 CG: 12/11名(单纯心理治疗对照) | 未报告 | 无 | FAA | 连续的、视听觉 | 无 | 否 | 随机对照、非盲 | 10次 | 抑郁症状改善 | 有 | ||
Peeters et al. ( | EG: 9名 | 未报告 | 无 | FAA | 连续的、视觉 | 无 | 是 | 非随机、非盲 | 平均26.78次 | FAA显著改变, 抑郁症状改善 | 无 | ||
Wang et al. ( | EG: 7名 CG:7名(无神经反馈的药物治疗对照组) | 未报告 | 有 | FAA | 未报告 | 无 | 是 | 随机、非盲 | 6次 | EG患者焦虑和抑郁改善 | 无 | ||
Linden et al. ( | EG: 8名 CG:8名(无神经反馈的积极心理意象对照组) | Cohen’s d = 1.5 | 无 | ↑与积极情绪有关脑区 | 连续的、视觉 | 观看情绪性图片 | 是 | 非随机、非盲 | 4次 | EG的患者在症状评分上改善了约30% (在17项HDRS中约为4分), CG完全没有改善 | 无 | ||
Young et al. ( | EG: 14/13 CG: 7/6(无关脑区的假神经反馈 | 未报告 | 无 | ↑左侧杏仁核 | 连续的、视觉 | 积极自传体回忆 | 否 | 非随机、双盲 | 1次 | EG能够上调杏仁核的活动。焦虑评分明显下降, 快乐评分明显增加。情绪改善。 | 无 | ||
Yuan et al. ( | EG: 14名 HC: 27名 CG: 13名(无关脑区的假神经反馈) | 未报告 | 无 | ↑左侧杏仁核 | 连续的、视觉 | 积极自传体回忆 | 否 | 非随机、双盲 | 1次 | EG患者情绪环路低连接性被逆转, 并持续发生积极变化。 | 有 | ||
Zotev et al. ( | EG: 13名 CG: 11名(无关脑区的假神经反馈) | 未报告 | 无 | ↑左侧杏仁核 | 连续的、视觉 | 积极自传体回忆 | 否 | 非随机、单盲 | 2次 | 抑郁症状改善和FAA的变化相关, 积极情绪增加 | 无 | ||
Young et al. ( | EG: 19/18 CG: 17/15(无关脑区假神经反馈) | Cohen’s d = 1.03 | 无 | ↑左侧杏仁核 | 连续的、视觉 | 积极自传体回忆 | 否 | 随机、双盲 | 2次 | 抑郁症状显著降低, 情绪改善 | 有 | ||
Mehler et al. ( | EG:21/16 CG:22 /16(高级视觉皮层的假神经反馈) | Hedges' g = 1.46 | 无 | ↑与积极情绪有关脑区 | 连续的、视觉 | 积极的心理想象 | 是 | 随机、单盲 | 5次 | 抑郁症状改善持续到随访(第18周), 自我效能感评分增加。 | 有 | ||
Zotev et al. ( | EG:16名 CG: 8名(无关脑区的假神经反馈) | 未报告 | 无 | ↑LrACC和LA环路、前额叶的α和高β偏侧化) | 连续的、视觉 | 积极自传体回忆 | 否 | 非随机、单盲 | 1次 | 抑郁症状和情绪显著改善, EG参与者的LA和LrACC之间功能连接显著增强。 | 无 | ||
Ahrweiler et al. ( | EG: 34名 HC: 19名 | 未报告 | 无 | ↑杏仁核海马复合体 | 连续的、视觉 | 积极自传体回忆 | 是 | 非随机、非盲 | 1次 | 参与杏仁核−海马复合体的情绪调节可以引起自我和情绪处理区域的神经可塑性, 与抑郁和反刍症状的改善有关 | 无 | ||
Compère, Siegle, Lazzaro, et al. ( | EG: 16名 CG: 22名(无关脑区假神经反馈) | Cohen’s d = 1 | 无 | ↑左侧杏仁核 | 连续的、视觉 | 积极自传体回忆 | 否 | 随机、双盲 | 2次 | EG能够上调杏仁核的活动, 抑郁症状改善。 | 有 | ||
Compère, Siegle, Riley, et al. ( | EG:16名 CG: 19名(无关脑区假神经反馈) | Cohen’s d = 1.04 | ↑左侧杏仁核 | 连续的、视觉 | 积极自传体回忆 | 是 | 随机、双盲 | 2次 | EG能够上调杏仁核的活动, 同时神经反馈促进了CBT的治疗效果, 积极情绪的增加更加显著 | 有 |
[1] |
刘雷, 周仁来. (2015). 一个测量抑郁症的重要神经指标:静息额叶脑电活动的不对称性. 心理科学进展, 23(6), 1000-1008.
doi: 10.3724/SP.J.1042.2015.01000 |
[2] | 张晶, 周仁来. (2010). 额叶EEG偏侧化: 情绪调节能力的指标. 心理科学进展, 18(11), 1679-1683. |
[3] | Ahrweiler, N., Santana-Gonzalez, C., Zhang, N., Quandt, G., Ashtiani, N., Liu, G. M.,... Quevedo, K. (2022). Neural activity associated with symptoms change in depressed adolescents following self-processing neurofeedback. Brain Sciences, 12(9), 1128. doi: 10.3390/brainsci12091128 |
[4] |
Alkoby, O., Abu-Rmileh, A., Shriki, O., & Todder, D. (2018). Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful eeg neurofeedback learning. Neuroscience, 378, 155-164. doi: 10.1016/j.neuroscience.2016.12.050
pmid: 28069531 |
[5] | Amadei, E. A., Johnson, Z. V., Kwon, Y. J., Shpiner, A. C., Saravanan, V., Mays, W. D.,... Liu, R. C. (2017). Dynamic corticostriatal activity biases social bonding in monogamous female prairie voles. Nature, 546(7657), 297-301. doi: 10.1038/nature22381 |
[6] | Anderson, A. K., & Phelps, E. A. (2001). Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature, 411(6835), 305-309. doi: 10.1038/35077083 |
[7] | Arditte Hall, K. A., de Raedt, R., Timpano, K. R., & Joormann, J. (2018). Positive memory enhancement training for individuals with major depressive disorder. Cognitive Behaviour Therapy, 47(2), 155-168. doi: 10.1080/16506073.2017.1364291 |
[8] | Arns, M., Batail, J. M., Bioulac, S., Congedo, M., Daudet, C., Drapier, D.,... Vialatte, F. (2017). Neurofeedback: One of today's techniques in psychiatry? Neurofeedback en psychiatrie: Une technique du présent? L’Encéphale, 43(2), 135-145. doi: 10.1016/j.encep.2016.11.003 |
[9] | Baas, D., Aleman, A., & Kahn, R. S. (2004). Lateralization of amygdala activation: A systematic review of functional neuroimaging studies. Brain Research Reviews, 45(2), 96-103. doi: 10.1016/j.brainresrev.2004.02.004 |
[10] | Baehr, E., Rosenfeld, J. P., & Baehr, R. (1997). The clinical use of an alpha asymmetry protocol in the neurofeedback treatment of depression. Journal of Neurotherapy, 2(3), 10-23. doi: 10.1300/J184v02n03_02 |
[11] | Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala - frontal connectivity during emotion regulation. Social Cognitive and Affective Neuroscience, 2(4), 303-312. doi: 10.1093/scan/nsm029 |
[12] | Barreiros, A. R., Almeida, I., Baía, B. C., & Castelo-Branco, M. (2019). Amygdala modulation during emotion regulation training with fMRI-based neurofeedback. Frontiers in Human Neuroscience, 13, 24. doi: 10.3389/fnhum.2019.00089 |
[13] | Batail, J. M., Bioulac, S., Cabestaing, F., Daudet, C., Drapier, D., Fouillen, M.,... Vialatte, F. (2019). EEG neurofeedback research: A fertile ground for psychiatry? L’Encephale, 45(3), 245-255. doi: 10.1016/j.encep.2019.02.001 |
[14] |
Belzung, C., Willner, P., & Philippot, P. (2015). Depression: From psychopathology to pathophysiology. Current Opinion in Neurobiology, 30, 24-30. doi: 10.1016/j.conb.2014.08.013
pmid: 25218233 |
[15] |
Blackwell, S. E., Browning, M., Mathews, A., Pictet, A., Welch, J., Davies, J.,... Holmes, E. A. (2015). Positive imagery-based cognitive bias modification as a web-based treatment tool for depressed adults: A randomized controlled trial. Clinical Psychological Science, 3(1), 91-111. doi: 10.1177/2167702614560746
pmid: 25984421 |
[16] | Brush, C. J., Burani, K., Schmidt, K. M., Santopetro, N. J., & Hajcak, G. (2021). The impact of a single session of aerobic exercise on positive emotional reactivity in depression: Insight into individual differences from the late positive potential. Behaviour Research and Therapy, 144, 103914. doi: 10.1016/j.brat.2021.103914 |
[17] |
Bu, J. J., Young, K. D., Hong, W., Ma, R., Song, H. W., Wang, Y.,... Zhang, X. C. (2019). Effect of deactivation of activity patterns related to smoking cue reactivity on nicotine addiction. Brain, 142(6), 1827-1841. doi: 10.1093/brain/awz114
pmid: 31135053 |
[18] |
Burkhardt, G., Kumpf, U., Crispin, A., Goerigk, S., Andre, E., Plewnia, C.,... Padberg, F. (2023). Transcranial direct current stimulation as an additional treatment to selective serotonin reuptake inhibitors in adults with major depressive disorder in Germany (DepressionDC): A triple-blind, randomised, sham-controlled, multicentre trial. The Lancet, 402(10401), 545-554. https://doi.org/10.1016/S0140-6736(23)00640-2
doi: 10.1016/S0140-6736(23)00640-2 URL |
[19] | Chen, K., Barnes-Horowitz, N., Treanor, M., Sun, M., Young, K. S., & Craske, M. G. (2020). Virtual reality reward training for anhedonia: A pilot study. Frontiers in Psychology, 11, 613617. doi: 10.3389/fpsyg.2020.613617 |
[20] | Cheon, E.-J., Koo, B.-H., & Choi, J.-H. (2016). The efficacy of neurofeedback in patients with major depressive disorder: An open labeled prospective study. Applied Psychophysiology and Biofeedback, 41(1), 103-110. doi: 10.1007/s10484-015-9315-8 |
[21] |
Choi, S. W., Chi, S. E., Chung, S. Y., Kim, J. W., Ahn, C. Y., & Kim, H. T. (2011). Is alpha wave neurofeedback effective with randomized clinical trials in depression? A pilot study. Neuropsychobiology, 63(1), 43-51. doi: 10.1159/000322290
pmid: 21063132 |
[22] | Compère, L., Siegle, G. J., Lazzaro, S., Strege, M., Canovali, G., Barb, S.,... Young, K. (2023). Real-time functional magnetic resonance imaging neurofeedback training of amygdala upregulation increases affective flexibility in depression. Journal of Psychiatry Neuroscience, 48(3), E232-E239. doi: 10.1503/jpn.220208 |
[23] |
Compère, L., Siegle, G. J., Riley, E., Lazzaro, S., Strege, M., Pacoe, E.,... Young, K. (2023). Enhanced efficacy of CBT following augmentation with amygdala rtfMRI neurofeedback in depression. Journal of Affective Disorders, 339, 495-501. doi: 10.1016/j.jad.2023.07.063
pmid: 37459978 |
[24] |
Cook, I. A., O'Hara, R., Uijtdehaage, S. H., Mandelkern, M., & Leuchter, A. F. (1998). Assessing the accuracy of topographic EEG mapping for determining local brain function. Electroencephalography and Clinical Neurophysiology, 107(6), 408-414. doi: 10.1016/s0013-4694(98)00092-3
pmid: 9922086 |
[25] |
Craske, M. G., Meuret, A. E., Ritz, T., Treanor, M., & Dour, H. J. (2016). Treatment for anhedonia: A neuroscience driven approach. Depression and Anxiety, 33(10), 927-938. doi: 10.1002/da.22490
pmid: 27699943 |
[26] |
Critchley, H. D. (2005). Neural mechanisms of autonomic, affective, and cognitive integration. Journal of Comparative Neurology, 493(1), 154-166. doi: 10.1002/cne.20749
pmid: 16254997 |
[27] | Cusin, C., & Dougherty, D. D. (2012). Somatic therapies for treatment-resistant depression: ECT, TMS, VNS, DBS. Biology of Mood & Anxiety Disorders, 2, 14. doi: 10.1186/2045-5380-2-14 |
[28] | Cuthbert, B. N., & Insel, T. R. (2013). Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Medicine, 11, 126. doi: 10.1186/1741-7015-11-126 |
[29] |
Dalgleish, T., & Werner-Seidler, A. (2014). Disruptions in autobiographical memory processing in depression and the emergence of memory therapeutics. Trends in Cognitive Sciences, 18(11), 596-604. doi:10.1016/j.tics.2014.06.010
pmid: 25060510 |
[30] |
Davidson, R. J. (1992). Anterior cerebral asymmetry and the nature of emotion. Brain and Cognition, 20(1), 125-151. doi: 10.1016/0278-2626(92)90065-t
pmid: 1389117 |
[31] |
Daws, R. E., Timmermann, C., Giribaldi, B., Sexton, J. D., Wall, M. B., Erritzoe, D.,... Carhart-Harris, R. (2022). Increased global integration in the brain after psilocybin therapy for depression. Nature Medicine, 28(4), 844-851. doi: 10.1038/s41591-022-01744-z
pmid: 35411074 |
[32] |
de Schotten, M. T., & Forkel, S. J. (2022). The emergent properties of the connected brain. Science, 378(6619), 505-510. doi: 10.1126/science.abq2591
pmid: 36378968 |
[33] |
Dillon, D. G., & Pizzagalli, D. A. (2018). Mechanisms of memory disruption in depression. Trends in Neurosciences, 41(3), 137-149. doi: 10.1016/j.tins.2017.12.006
pmid: 29331265 |
[34] |
Dimidjian, S., Barrera, M., Martell, C., Muñoz, R. F., & Lewinsohn, P. M. (2011). The origins and current status of behavioral activation treatments for depression. Annual Review of Clinical Psychology, 7, 1-38. doi: 10.1146/annurev-clinpsy-032210-104535
pmid: 21275642 |
[35] | Doré, B. P., Rodrik, O., Boccagno, C., Hubbard, A., Weber, J., Stanley, B.,... Ochsner, K. N. (2018). Negative autobiographical memory in depression reflects elevated amygdala-hippocampal reactivity and hippocampally associated emotion regulation. Biological Psychiatry- Cognitive Neuroscience and Neuroimaging, 3(4), 358-366. doi: 10.1016/j.bpsc.2018.01.002 |
[36] | Ducasse, D., Dubois, J., Jaussent, I., Azorin, J. M., Etain, B., Gard, S.,... Courtet, P. (2021). Association between anhedonia and suicidal events in patients with mood disorders: A 3-year prospective study. Depression and Anxiety, 38(1), 17-27. doi: 10.1002/da.23072 |
[37] |
Duerden, E. G., Arsalidou, M., Lee, M., & Taylor, M. J. (2013). Lateralization of affective processing in the insula. Neuroimage, 78, 159-175. doi: 10.1016/j.neuroimage.2013.04.014
pmid: 23587690 |
[38] |
Dunlop, K., Rizvi, S. J., Kennedy, S. H., Hassel, S., Strother, S. C., Harris, J. K.,... Downar, J. (2020). Clinical, behavioral, and neural measures of reward processing correlate with escitalopram response in depression: A canadian biomarker integration network in depression (CAN-BIND-1) report. Neuropsychopharmacology, 45(8), 1390-1397. doi: 10.1038/s41386-020-0688-x
pmid: 32349119 |
[39] | Dunn, B. D., German, R. E., Khazanov, G., Xu, C. L., Hollon, S. D., & DeRubeis, R. J. (2020). Changes in positive and negative affect during pharmacological treatment and cognitive therapy for major depressive disorder: A secondary analysis of two randomized controlled trials. Clinical Psychological Science, 8(1), 36-51. doi: 10.1177/2167702619863427 |
[40] | Dunn, B. D., Widnall, E., Reed, N., Owens, C., Campbell, J., & Kuyken, W. (2019). Bringing light into darkness: A multiple baseline mixed methods case series evaluation of Augmented Depression Therapy (ADepT). Behaviour Research and Therapy, 120, 103418. doi: 10.1016/j.brat.2019.103418 |
[41] | Earnest, C. (1999). Single case study of EEG asymmetry biofeedback for depression. Journal of Neurotherapy, 3(2), 28-35. doi: 10.1300/J184v03n02_04 |
[42] | Escolano, C., Navarro-Gil, M., Garcia-Campayo, J., Congedo, M., de Ridder, D., & Minguez, J. (2014). A controlled study on the cognitive effect of alpha neurofeedback training in patients with major depressive disorder. Frontiers in Behavioral Neuroscience, 8, 12. doi: 10.3389/fnbeh.2014.00296 |
[43] | Everaert, J., Vrijsen, J. N., Martin-Willett, R., van de Kraats, L., & Joormann, J. (2022). A meta-analytic review of the relationship between explicit memory bias and depression: Depression features an explicit memory bias that persists beyond a depressive episode. Psychological Bulletin, 148(5-6), 435-463. doi: 10.1037/bul0000367 |
[44] | Fede, S. J., Dean, S. F., Manuweera, T., & Momenan, R. (2020). A guide to literature informed decisions in the design of real time fMRI neurofeedback studies: A systematic review. Frontiers in Human Neuroscience, 14, 17. doi: 10.3389/fnhum.2020.00060 |
[45] |
Fernandez, E., Salem, D., Swift, J. K., & Ramtahal, N. (2015). Meta-analysis of dropout from cognitive behavioral therapy: Magnitude, timing, and moderators. Journal of Consulting and Clinical Psychology, 83(6), 1108-1122. doi: 10.1037/ccp0000044
pmid: 26302248 |
[46] |
Frank, D. W., Dewitt, M., Hudgens-Haney, M., Schaeffer, D. J., Ball, B. H., Schwarz, N. F.,... Sabatinelli, D. (2014). Emotion regulation: Quantitative meta-analysis of functional activation and deactivation. Neuroscience and Biobehavioral Reviews, 45, 202-211. doi: 10.1016/j.neubiorev.2014.06.010
pmid: 24984244 |
[47] | Fruitet, J., Carpentier, A., Munos, R., & Clerc, M. (2013). Automatic motor task selection via a bandit algorithm for a brain-controlled button. Journal of Neural Engineering, 10(1), 8. doi: 10.1088/1741-2560/10/1/016012 |
[48] |
Gabbay, V., Johnson, A. R., Alonso, C. M., Evans, L. K., Babb, J. S., & Klein, R. G. (2015). Anhedonia, but not irritability, is associated with illness severity outcomes in adolescent major depression. Journal of Child and Adolescent Psychopharmacology, 25(3), 194-200. doi: 10.1089/cap.2014.0105
pmid: 25802984 |
[49] |
Gong, Q. Y., & He, Y. (2015). Depression, neuroimaging and connectomics: A selective overview. Biological Psychiatry, 77(3), 223-235. doi: 10.1016/j.biopsych.2014.08.009
pmid: 25444171 |
[50] |
Goodwin, G. M., Price, J., de Bodinat, C., & Laredo, J. (2017). Emotional blunting with antidepressant treatments: A survey among depressed patients. Journal of Affective Disorders, 221, 31-35. doi: 10.1016/j.jad.2017.05.048
pmid: 28628765 |
[51] |
Greer, S. M., Trujillo, A. J., Glover, G. H., & Knutson, B. (2014). Control of nucleus accumbens activity with neurofeedback. Neuroimage, 96, 237-244. doi: 10.1016/j.neuroimage.2014.03.073
pmid: 24705203 |
[52] |
Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna, H.,... Schatzberg, A. F. (2007). Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5), 429-437. doi: 10.1016/j.biopsych.2006.09.020
pmid: 17210143 |
[53] |
Hamilton, J. P., Etkin, A., Furman, D. J., Lemus, M. G., Johnson, R. F., & Gotlib, I. H. (2012). Functional neuroimaging of major depressive disorder: A meta- analysis and new integration of baseline activation and neural response data. American Journal of Psychiatry, 169(7), 693-703. doi: 10.1176/appi.ajp.2012.11071105
pmid: 22535198 |
[54] | Hamilton, J. P., Glover, G. H., Bagarinao, E., Chang, C., Mackey, S., Sacchet, M. D., & Gotlib, I. H. (2016). Effects of salience-network-node neurofeedback training on affective biases in major depressive disorder. Psychiatry Research- Neuroimaging, 249, 91-96. doi: 10.1016/j.pscychresns.2016.01.016 |
[55] |
Hamilton, J. P., Glover, G. H., Hsu, J. J., Johnson, R. F., & Gotlib, I. H. (2011). Modulation of subgenual anterior cingulate cortex activity with real-time neurofeedback. Human Brain Mapping, 32(1), 22-31. doi:10.1002/hbm.20997
pmid: 21157877 |
[56] | Hammond, D. C. (2008). Neurofeedback treatment of depression with the roshi. Journal of Neurotherapy, 4(2), 45-56. doi: 10.1300/J184v04n02_06 |
[57] |
Hasler, G., Drevets, W. C., Manji, H. K., & Charney, D. S. (2004). Discovering endophenotypes for major depression. Neuropsychopharmacology, 29(10), 1765-1781. doi: 10.1038/sj.npp.1300506
pmid: 15213704 |
[58] | Hellrung, L., Kirschner, M., Sulzer, J., Sladky, R., Scharnowski, F., Herdener, M., & Tobler, P. N. (2022). Analysis of individual differences in neurofeedback training illuminates successful self-regulation of the dopaminergic midbrain. Communications Biology, 5(1), 845. doi: 10.1038/s42003-022-03756-4 |
[59] |
Holmes, E. A., Blackwell, S. E., Burnett Heyes, S., Renner, F., & Raes, F. (2016). Mental imagery in depression: Phenomenology, potential mechanisms, and treatment implications. Annual Review of Clinical Psychology, 12, 249-280. doi: 10.1146/annurev-clinpsy-021815-092925
pmid: 26772205 |
[60] |
Hu, R. K., Zuo, Y. N., Ly, T., Wang, J., Meera, P., Wu, Y. E., & Hong, W. Z. (2021). An amygdala-to-hypothalamus circuit for social reward. Nature Neuroscience, 24(6), 831-842. doi: 10.1038/s41593-021-00828-2
pmid: 33820999 |
[61] |
Husain, M., & Roiser, J. P. (2018). Neuroscience of apathy and anhedonia: A transdiagnostic approach. Nature Reviews Neuroscience, 19(8), 470-484. doi: 10.1038/s41583-018-0029-9
pmid: 29946157 |
[62] |
Janicak, P. G., & Dokucu, M. E. (2015). Transcranial magnetic stimulation for the treatment of major depression. Neuropsychiatric Disease and Treatment, 11, 1549-1560. doi: 10.2147/ndt.S67477
pmid: 26170668 |
[63] | Joormann, J., & Vanderlind, W. M. (2014). Emotion regulation in depression: The role of biased cognition and reduced cognitive control. Clinical Psychological Science, 2(4), 402-421. doi: 10.1177/2167702614536163 |
[64] | Keller, M., Zweerings, J., Klasen, M., Zvyagintsev, M., Iglesias, J., Mendoza Quiñones, R., & Mathiak, K. (2021). fMRI neurofeedback-enhanced cognitive reappraisal training in depression: A double-blind comparison of left and right vlPFC regulation. Frontiers in Psychiatry, 12, 715898. doi: 10.3389/fpsyt.2021.715898 |
[65] |
Kim, S., & Birbaumer, N. (2014). Real-time functional MRI neurofeedback: A tool for psychiatry. Current Opinion in Psychiatry, 27(5), 332-336. doi: 10.1097/yco.0000000000000087
pmid: 25023886 |
[66] |
Klooster, D. C. W., de Louw, A. J. A., Aldenkamp, A. P., Besseling, R. M. H., Mestrom, R. M. C., Carrette, S.,... Boon, P. (2016). Technical aspects of neurostimulation: Focus on equipment, electric field modeling, and stimulation protocols. Neuroscience and Biobehavioral Reviews, 65, 113-141. doi: 10.1016/j.neubiorev.2016.02.016
pmid: 27021215 |
[67] | Koller-Schlaud, K., Querbach, J., Behr, J., Ströhle, A., & Rentzsch, J. (2020). Test-retest reliability of frontal and parietal alpha asymmetry during presentation of emotional face stimuli in healthy subjects. Neuropsychobiology, 79(6), 428-436. doi: 10.1159/000505783 |
[68] | Koush, Y., Meskaldji, D. E., Pichon, S., Rey, G., Rieger, S. W., Linden, D. E. J.,... Scharnowski, F. (2017). Learning control over emotion networks through connectivity-based neurofeedback. Cerebral Cortex, 27(2), 1193-1202. doi: 10.1093/cercor/bhv311 |
[69] |
Koush, Y., Pichon, S., Eickhoff, S. B., van de Ville, D., Vuilleumier, P., & Scharnowski, F. (2019). Brain networks for engaging oneself in positive-social emotion regulation. Neuroimage, 189, 106-115. doi: 10.1016/j.neuroimage.2018.12.049
pmid: 30594682 |
[70] |
Kumar, P., Pisoni, A., Bondy, E., Kremens, R., Singleton, P., Pizzagalli, D., & Auerbach, R. P. (2019). Delineating the social valuation network in adolescents. Social Cognitive and Affective Neuroscience, 14(11), 1159-1166. doi: 10.1093/scan/nsz086
pmid: 31680163 |
[71] | Kuusinen, V., Peräkylä, J., Sun, L. H., Ogawa, K. H., & Hartikainen, K. M. (2021). Emotional modulation of frontal alpha asymmetry - a novel biomarker of mild traumatic brain injury. Frontiers in Human Neuroscience, 15, 13. doi: 10.3389/fnhum.2021.699947 |
[72] |
Lawrence, E. J., Su, L., Barker, G. J., Medford, N., Dalton, J., Williams, S. C. R.,... David, A. S. (2014). Self-regulation of the anterior insula: Reinforcement learning using real-time fMRI neurofeedback. Neuroimage, 88, 113-124. doi: 10.1016/j.neuroimage.2013.10.069
pmid: 24231399 |
[73] | Lee, B. T., Cho, S. W., Khang, H. S., Lee, B. C., Choi, I. G., Lyoo, I. K., & Ham, B. J. (2007). The neural substrates of affective processing toward positive and negative affective pictures in patients with major depressive disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 31(7), 1487-1492. doi: 10.1016/j.pnpbp.2007.06.030 |
[74] | Li, K. S., Jiang, Y. H., Gong, Y. L., Zhao, W. H., Zhao, Z. Y., Liu, X. L.,... Becker, B. (2019). Functional near-infrared spectroscopy-informed neurofeedback: Regional-specific modulation of lateral orbitofrontal activation and cognitive flexibility. Neurophotonics, 6(2), 025011. doi: 10.1117/1.NPh.6.2.025011 |
[75] |
Linden, D. E. J. (2014). Neurofeedback and networks of depression. Dialogues in Clinical Neuroscience, 16(1), 103-112.
pmid: 24733975 |
[76] | Linden, D. E. J., Habes, I., Johnston, S. J., Linden, S., Tatineni, R., Subramanian, L.,... Goebel, R. (2012). Real-time self-regulation of emotion networks in patients with depression. Plos One, 7(6), e38115. doi: 10.1371/journal.pone.0038115 |
[77] |
Linhartová, P., Látalová, A., Kóša, B., Kašpárek, T., Schmahl, C., & Paret, C. (2019). fMRI neurofeedback in emotion regulation: A literature review. Neuroimage, 193, 75-92. doi: 10.1016/j.neuroimage.2019.03.011
pmid: 30862532 |
[78] | Luo, L., Wu, H. W., Xu, J. P., Chen, F. F., Wu, F. C., Wang, C., & Wang, J. J. (2021). Abnormal large-scale resting- state functional networks in drug-free major depressive disorder. Brain Imaging and Behavior, 15(1), 96-106. doi: 10.1007/s11682-019-00236-y |
[79] |
Martz, M. E., Trucco, E. M., Cope, L. M., Hardee, J. E., Jester, J. M., Zucker, R. A., & Heitzeg, M. M. (2016). Association of marijuana use with blunted nucleus accumbens response to reward anticipation. JAMA Psychiatry, 73(8), 838-844. doi: 10.1001/jamapsychiatry.2016.1161
pmid: 27384542 |
[80] |
Mathersul, D., Williams, L. M., Hopkinson, P. J., & Kemp, A. H. (2008). Investigating models of affect: Relationships among EEG alpha asymmetry, depression, and anxiety. Emotion, 8(4), 560-572. doi: 10.1037/a0012811
pmid: 18729586 |
[81] |
McRae, K., & Gross, J. J. (2020). Emotion regulation. Emotion, 20(1), 1-9. doi: 10.1037/emo0000703
pmid: 31961170 |
[82] |
Mehler, D. M. A., Sokunbi, M. O., Habes, I., Barawi, K., Subramanian, L., Range, M.,... Linden, D. E. J. (2018). Targeting the affective brain-a randomized controlled trial of real-time fMRI neurofeedback in patients with depression. Neuropsychopharmacology, 43(13), 2578-2585. doi: 10.1038/s41386-018-0126-5
pmid: 29967368 |
[83] | Morawetz, C., Bode, S., Baudewig, J., Kirilina, E., & Heekeren, H. R. (2016). Changes in effective connectivity between dorsal and ventral prefrontal regions moderate emotion regulation. Cerebral Cortex, 26(5), 1923-1937. doi: 10.1093/cercor/bhv005 |
[84] | Nawa, N. E., & Ando, H. (2019). Effective connectivity within the ventromedial prefrontal cortex-hippocampus- amygdala network during the elaboration of emotional autobiographical memories. Neuroimage, 189, 316-328. doi: 10.1016/j.neuroimage.2019.01.042 |
[85] | Nazarian, M. (2005). An alternative treatment for depression using EEG biofeedback to alter frontal alpha asymmetry and improve mood (Unpublished doctorial dissertation). The University of Arizona, United States. |
[86] |
Nutt, D., Demyttenaere, K., Janka, Z., Aarre, T., Bourin, M., Canonico, P. L.,... Stahl, S. (2007). The other face of depression, reduced positive affect: The role of catecholamines in causation and cure. Journal of Psychopharmacology, 21(5), 461-471. doi: 10.1177/0269881106069938
pmid: 17050654 |
[87] |
Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. E. (2002). Rethinking feelings: An fMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14(8), 1215-1229. doi: 10.1162/08989290 2760807212
doi: 10.1162/089892902760807212 pmid: 12495527 |
[88] |
Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9(5), 242-249. doi: 10.1016/j.tics.2005.03.010
pmid: 15866151 |
[89] |
Ochsner, K. N., Ray, R. R., Hughes, B., McRae, K., Cooper, J. C., Weber, J.,... Gross, J. J. (2009). Bottom-up and top-down processes in emotion generation: Common and distinct neural mechanisms. Psychological Science, 20(11), 1322-1331. doi: 10.1111/j.1467-9280.2009.02459.x
pmid: 19883494 |
[90] | Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation:A synthetic review and evolving model of the cognitive control of emotion. In A. Kingstone & M. B. Miller (Eds.), Year in Cognitive Neuroscience (Vol. 1251, pp. E1-E24). Oxford: Blackwell Science Publ. |
[91] | Opel, N., Redlich, R., Grotegerd, D., Dohm, K., Zaremba, D., Meinert, S.,... Dannlowski, U. (2017). Prefrontal brain responsiveness to negative stimuli distinguishes familial risk for major depression from acute disorder. Journal of Psychiatry & Neuroscience, 42(5), 343-352. doi: 10.1503/jpn.160198 |
[92] |
Paret, C., & Hendler, T. (2020). Live from the "regulating brain": Harnessing the brain to change emotion. Emotion, 20(1), 126-131. doi: 10.1037/emo0000674
pmid: 31961191 |
[93] | Peeters, F., Oehlen, M., Ronner, J., van Os, J., & Lousberg, R. (2014). Neurofeedback as a treatment for major depressive disorder-A pilot study. Plos One, 9(3), e91837. doi:10.1371/journal.pone.0091837 |
[94] |
Pizzagalli, D. A. (2022). Toward a better understanding of the mechanisms and pathophysiology of anhedonia: Are we ready for translation? American Journal of Psychiatry, 179(7), 458-469. doi: 10.1176/appi.ajp.20220423
pmid: 35775159 |
[95] |
Quevedo, K., Harms, M., Sauder, M., Scott, H., Mohamed, S., Thomas, K. M.,... Smyda, G. (2018). The neurobiology of self face recognition among depressed adolescents. Journal of Affective Disorders, 229, 22-31. doi: 10.1016/j.jad.2017.12.023
pmid: 29304386 |
[96] |
Ritchie, J. B., Kaplan, D. M., & Klein, C. (2019). Decoding the brain: Neural representation and the limits of multivariate pattern analysis in cognitive neuroscience. The British Journal for the Philosophy of Science, 70(2), 581-607. doi: 10.1093/bjps/axx023
pmid: 31086423 |
[97] |
Ros, T., Enriquez-Geppert, S., Zotev, V., Young, K. D., Wood, G., Whitfield-Gabrieli, S.,... Thibault, R. T. (2020). Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain, 143(6), 1674-1685. doi: 10.1093/brain/awaa009
pmid: 32176800 |
[98] |
Rosenfeld, J. P., Baehr, E., Baehr, R., Gotlib, I. H., & Ranganath, C. (1996). Preliminary evidence that daily changes in frontal alpha asymmetry correlate with changes in affect in therapy sessions. International Journal of Psychophysiology, 23(1-2), 137-141. doi: 10.1016/0167-8760(96)00037-2
pmid: 8880374 |
[99] |
Roy, M., Shohamy, D., & Wager, T. D. (2012). Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends in Cognitive Sciences, 16(3), 147-156. doi: 10.1016/j.tics.2012.01.005
pmid: 22310704 |
[100] | Sagud, M., Tudor, L., Šimunic, L., Jezernik, D., Madžarac, Z., Jakšić, N.,... Pivac, N. (2021). Physical and social anhedonia are associated with suicidality in major depression, but not in schizophrenia. Suicide & Life-Threatening Behavior, 51(3), 446-454. doi: 10.1111/sltb.12724 |
[101] |
Sah, P., Faber, E. S. L., Lopez De Armentia, M., & Power, J. (2003). The amygdaloid complex: Anatomy and physiology. Physiological Reviews, 83(3), 803-834.
doi: 10.1152/physrev.00002.2003 pmid: 12843409 |
[102] | Salamone, J. D., Yohn, S. E., López-Cruz, L., Miguel, N. S., & Correa, M. (2016). Activational and effort-related aspects of motivation: Neural mechanisms and implications for psychopathology. Brain, 139(5), 1325-1347. doi: 10.1093/brain/aww050 |
[103] |
Sanislow, C. A., Ferrante, M., Pacheco, J., Rudorfer, M. V., & Morris, S. E. (2019). Advancing translational research using NIMH research domain criteria and computational methods. Neuron, 101(5), 779-782. doi: 10.1016/j.neuron.2019.02.024
pmid: 30844398 |
[104] |
Santangelo, V., Cavallina, C., Colucci, P., Santori, A., Macri, S., McGaugh, J. L., & Campolongo, P. (2018). Enhanced brain activity associated with memory access in highly superior autobiographical memory. Proceedings of the National Academy of Sciences of the United States of America, 115(30), 7795-7800. doi: 10.1073/pnas.1802730115
pmid: 29987025 |
[105] |
Sarkheil, P., Zilverstand, A., Kilian-Hütten, N., Schneider, F., Goebel, R., & Mathiak, K. (2015). fMRI feedback enhances emotion regulation as evidenced by a reduced amygdala response. Behavioural Brain Research, 281, 326-332. https://doi.org/10.1016/j.bbr.2014.11.027
doi: 10.1016/j.bbr.2014.11.027 URL pmid: 25461265 |
[106] | Scheinost, D., Hsu, T. W., Avery, E. W., Hampson, M., Constable, R. T., Chun, M. M., & Rosenberg, M. D. (2020). Connectome-based neurofeedback: A pilot study to improve sustained attention. Neuroimage, 212, 116684. doi: 10.1016/j.neuroimage.2020.116684 |
[107] |
Schumacher, A., Villaruel, F. R., Ussling, A., Riaz, S., Lee, A. C. H., & Ito, R. (2018). Ventral hippocampal CA1 and CA3 differentially mediate learned approach-avoidance conflict processing. Current Biology, 28(8), 1318-1324. E4. doi: 10.1016/j.cub.2018.03.012
pmid: 29606418 |
[108] |
Segrave, R. A., Cooper, N. R., Thomson, R. H., Croft, R. J., Sheppard, D. M., & Fitzgerald, P. B. (2011). Individualized alpha activity and frontal asymmetry in major depression. Clinical EEG and Neuroscience, 42(1), 45-52. doi: 10.1177/155005941104200110
pmid: 21309442 |
[109] |
Sergerie, K., Chochol, C., & Armony, J. L. (2008). The role of the amygdala in emotional processing: A quantitative meta-analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 32(4), 811-830. doi: 10.1016/j.neubiorev.2007.12.002
pmid: 18316124 |
[110] |
Sherman, L. E., Payton, A. A., Hernandez, L. M., Greenfield, P. M., & Dapretto, M. (2016). The power of the like in adolescence: Effects of peer influence on neural and behavioral responses to social media. Psychological Science, 27(7), 1027-1035. doi: 10.1177/0956797616645673
pmid: 27247125 |
[111] |
Silk, J. S., Lee, K. H., Kerestes, R., Griffith, J. M., Dahl, R. E., & Ladouceur, C. D. (2017). "Loser" or "Popular"?: Neural response to social status words in adolescents with major depressive disorder. Developmental Cognitive Neuroscience, 28, 1-11. doi: 10.1016/j.dcn.2017.09.005
pmid: 29028595 |
[112] |
Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J.,... Sulzer, J. (2017). Closed-loop brain training: The science of neurofeedback. Nature Reviews Neuroscience, 18(2), 86-100. doi: 10.1038/nrn.2016.164
pmid: 28003656 |
[113] | Skottnik, L., & Linden, D. E. J. (2019). Mental imagery and brain regulation-new links between psychotherapy and neuroscience. Frontiers in Psychiatry, 10, 14. doi: 10.3389/fpsyt.2019.00779 |
[114] |
Sosa, M., & Giocomo, L. M. (2021). Navigating for reward. Nature Reviews Neuroscience, 22(8), 472-487. doi: 10.1038/s41583-021-00479-z
pmid: 34230644 |
[115] |
Stewart, J. L., Coan, J. A., Towers, D. N., & Allen, J. J. B. (2011). Frontal EEG asymmetry during emotional challenge differentiates individuals with and without lifetime major depressive disorder. Journal of Affective Disorders, 129(1-3), 167-174. doi:10.1016/j.jad.2010.08.029
pmid: 20870293 |
[116] |
Stewart, J. L., Towers, D. N., Coan, J. A., & Allen, J. J. B. (2011). The oft-neglected role of parietal EEG asymmetry and risk for major depressive disorder. Psychophysiology, 48(1), 82-95. doi: 10.1111/j.1469-8986.2010.01035.x
pmid: 20525011 |
[117] | Sun, L. H., Perakyla, J., & Hartikainen, K. M. (2017). Frontal alpha asymmetry, a potential biomarker for the effect of neuromodulation on brain's affective circuitry- preliminary evidence from a deep brain stimulation study. Frontiers in Human Neuroscience, 11, 9. doi: 10.3389/fnhum.2017.00584 |
[118] |
Suslow, T., Konrad, C., Kugel, H., Rumstadt, D., Zwitserlood, P., Schöning, S.,... Dannlowski, U. (2010). Automatic mood-congruent amygdala responses to masked facial expressions in major depression. Biological Psychiatry, 67(2), 155-160. doi: 10.1016/j.biopsych.2009.07.023
pmid: 19748075 |
[119] | Szucs, D., & Ioannidis, J. P. A. (2017). Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature. Plos Biology, 15(3), e3001151. doi: 10.1371/journal.pbio.2000797 |
[120] | Taschereau-Dumouchel, V., Cushing, C. A., & Lau, H. (2022). Real-time functional MRI in the treatment of mental health disorders. Annual Review of Clinical Psychology, 18, 125-154. doi: 10.1146/annurev-clinpsy-072220-014550 |
[121] |
Tashjian, S. M., & Galván, A. (2018). The role of mesolimbic circuitry in buffering election-related distress. Journal of Neuroscience, 38(11), 2887-2898. doi: 10.1523/jneurosci.2470-17.2018
pmid: 29431648 |
[122] |
Taylor, C. T., Lyubomirsky, S., & Stein, M. B. (2017). Upregulating the positive affect system in anxiety and depression: Outcomes of a positive activity intervention. Depression and Anxiety, 34(3), 267-280. doi: 10.1002/da.22593
pmid: 28060463 |
[123] |
Thibault, R. T., Lifshitz, M., & Raz, A. (2016). The self- regulating brain and neurofeedback: Experimental science and clinical promise. Cortex, 74, 247-261. doi: 10.1016/j.cortex.2015.10.024
pmid: 26706052 |
[124] |
Thibault, R. T., Lifshitz, M., & Raz, A. (2017). Neurofeedback or neuroplacebo? Brain, 140(4), 862-864. doi: 10.1093/brain/awx033
pmid: 28375458 |
[125] | Thibault, R. T., & Raz, A. (2016). Neurofeedback: The power of psychosocial therapeutics. Lancet Psychiatry, 3(11), E18-E18. doi: 10.1016/s2215-0366(16)30326-1 |
[126] |
Thibodeau, R., Jorgensen, R. S., & Kim, S. (2006). Depression, anxiety, and resting frontal EEG asymmetry: A meta-analytic review. Journal of Abnormal Psychology, 115(4), 715-729. doi: 10.1037/0021-843x.115.4.715
pmid: 17100529 |
[127] |
Trambaiolli, L. R., Kohl, S. H., Linden, D. E. J., & Mehler, D. M. A. (2021). Neurofeedback training in major depressive disorder: A systematic review of clinical efficacy, study quality and reporting practices. Neuroscience and Biobehavioral Reviews, 125, 33-56. doi: 10.1016/j.neubiorev.2021.02.015
pmid: 33587957 |
[128] |
Treadway, M. T., & Zald, D. H. (2011). Reconsidering anhedonia in depression: Lessons from translational neuroscience. Neuroscience and Biobehavioral Reviews, 35(3), 537-555. doi: 10.1016/j.neubiorev.2010.06.006
pmid: 20603146 |
[129] | Vanderlind, W. M., Millgram, Y., Baskin-Sommers, A. R., Clark, M. S., & Joormann, J. (2020). Understanding positive emotion deficits in depression: From emotion preferences to emotion regulation. Clinical Psychology Review, 76, 101826. doi: 10.1016/j.cpr.2020.101826 |
[130] |
Victor, T. A., Furey, M. L., Fromm, S. J., Ohman, A., & Drevets, W. C. (2010). Relationship between amygdala responses to masked faces and mood state and treatment in major depressive disorder. Archives of General Psychiatry, 67(11), 1128-1138. doi: 10.1001/archgenpsychiatry.2010.144
pmid: 21041614 |
[131] | Wang, S.-Y., Lin, I. M., Peper, E., Chen, Y.-T., Tang, T.-C., Yeh, Y.-C.,... Chu, C.-C. (2016). The efficacy of neurofeedback among patients with major depressive disorder: Preliminary study. NeuroRegulation, 3(3), 127-134. doi: 10.15540/nr.3.3.127 |
[132] |
Werner-Seidler, A., Banks, R., Dunn, B. D., & Moulds, M. L. (2013). An investigation of the relationship between positive affect regulation and depression. Behaviour Research and Therapy, 51(1), 46-56. doi: 10.1016/j.brat.2012.11.001
pmid: 23178678 |
[133] |
Young, K. D., Siegle, G. J., Bodurka, J., & Drevets, W. C. (2016). Amygdala activity during autobiographical memory recall in depressed and vulnerable individuals: Association with symptom severity and autobiographical overgenerality. American Journal of Psychiatry, 173(1), 78-89. doi: 10.1176/appi.ajp.2015.15010119
pmid: 26541813 |
[134] |
Young, K. D., Siegle, G. J., Zotev, V., Phillips, R., Misaki, M., Yuan, H.,... Bodurka, J. (2017). Randomized clinical trial of real-time fMRI amygdala neurofeedback for major depressive disorder: Effects on symptoms and autobiographical memory recall. American Journal of Psychiatry, 174(8), 748-755. doi: 10.1176/appi.ajp.2017.16060637
pmid: 28407727 |
[135] |
Young, K. D., Zotev, V., Phillips, R., Misaki, M., Drevets, W. C., & Bodurka, J. (2018). Amygdala real-time functional magnetic resonance imaging neurofeedback for major depressive disorder: A review. Psychiatry and Clinical Neurosciences, 72(7), 466-481. doi: 10.1111/pcn.12665
pmid: 29687527 |
[136] | Young, K. D., Zotev, V., Phillips, R., Misaki, M., Yuan, H., Drevets, W. C., & Bodurka, J. (2014). Real-time fMRI neurofeedback training of amygdala activity in patients with major depressive disorder. Plos One, 9(2), e88785. doi: 10.1371/journal.pone.0088785 |
[137] |
Yuan, H., Young, K. D., Phillips, R., Zotev, V., Misaki, M., & Bodurka, J. (2014). Resting-state functional connectivity modulation and sustained changes after real-time functional magnetic resonance imaging neurofeedback training in depression. Brain Connectivity, 4(9), 690-701. doi: 10.1089/brain.2014.0262
pmid: 25329241 |
[138] | Zheng, J., Anderson, K. L., Leal, S. L., Shestyuk, A., Gulsen, G., Mnatsakanyan, L.,... Lin, J. J. (2017). Amygdala- hippocampal dynamics during salient information processing. Nature Communications, 8, 14413. doi: 10.1038/ncomms14413 |
[139] |
Zheng, L. J., Yang, G. F., Zhang, X. Y., Wang, Y. F., Liu, Y., Zheng, G.,... Han, Y. (2017). Altered amygdala and hippocampus effective connectivity in mild cognitive impairment patients with depression: A resting-state functional MR imaging study with granger causality analysis. Oncotarget, 8(15), 25021-25031. doi: 10.18632/oncotarget.15335
pmid: 28212570 |
[140] | Zhu, Y. S., Gao, H., Tong, L., Li, Z. L., Wang, L. Y., Zhang, C.,... Yan, B. (2019). Emotion regulation of hippocampus using real-time fMRI neurofeedback in healthy human. Frontiers in Human Neuroscience, 13, 14. doi: 10.3389/fnhum.2019.00242 |
[141] | Zotev, V., Krueger, F., Phillips, R., Alvarez, R. P., Simmons, W. K., Bellgowan, P.,... Bodurka, J. (2011). Self- regulation of amygdala activation using real-time fMRI neurofeedback. Plos One, 6(9), e24522. doi: 10.1371/journal.pone.0024522 |
[142] | Zotev, V., Mayeli, A., Misaki, M., & Bodurka, J. (2020). Emotion self-regulation training in major depressive disorder using simultaneous real-time fMRI and EEG neurofeedback. Neuroimage-Clinical, 27, 102331. doi: 10.1016/j.nicl.2020.102331 |
[143] | Zotev, V., Phillips, R., Young, K. D., Drevets, W. C., & Bodurka, J. (2013). Prefrontal control of the amygdala during real-time fMRI neurofeedback training of emotion regulation. Plos One, 8(11), e79184. doi: 10.1371/journal.pone.0079184 |
[144] |
Zotev, V., Yuan, H., Misaki, M., Phillips, R., Young, K. D., Feldner, M. T., & Bodurka, J. (2016). Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression. Neuroimage-Clinical, 11, 224-238. doi: 10.1016/j.nicl.2016.02.003
pmid: 26958462 |
[1] | MENG Xianxin, CHEN Yijing, WANG Xinyi, YUAN Jiajin, YU Delin. The relationship between school connectedness and depression: A three-level meta-analytic review [J]. Advances in Psychological Science, 2024, 32(2): 246-263. |
[2] | Hao Wang, Wangbin Ouyang, Jian Wang, Zhengqin Yin. Visual Task-related Functional and Structural Magnetic Resonance Imaging for the Objective Quantitation of Visual Function in Patients with Advanced Retinitis Pigmentosa [J]. Advances in Psychological Science, 2023, 31(suppl.): 136-136. |
[3] | Wei Huang, Hengjiang Li, Diwei Wu, Huafu Chen, Hongmei Yan. Language Decoding for Visual Perception Based on Transformer [J]. Advances in Psychological Science, 2023, 31(suppl.): 11-11. |
[4] | LIU Wenhua, WEN Xiujuan, CHEN Ling, YANG Rui, HU Yiru. Reward-anticipation and outcome-evaluation ERPs and its application in psychiatric disorders [J]. Advances in Psychological Science, 2023, 31(5): 783-799. |
[5] | LIU Wenbin, QI Zhengtang, LIU Weina. The effects of different sensory functions on depression and its neuromechanism [J]. Advances in Psychological Science, 2023, 31(4): 641-656. |
[6] | YAN Lei, YUAN Yiren, WANG Juan, ZHANG Yanhong, YANG Linchuan. The influence of social identity on depression and its theoretical explanation [J]. Advances in Psychological Science, 2023, 31(4): 657-668. |
[7] | CHEN Xinwen, LI Hongjie, DING Yulong. Exploring the neural representation patterns in event-related EEG/MEG signals: The methods based on classification decoding and representation similarity analysis [J]. Advances in Psychological Science, 2023, 31(2): 173-195. |
[8] | ZHOU Guang-Fang, JIN Hua. Precision functional magnetic resonance imaging reveals individual brain functional network organization [J]. Advances in Psychological Science, 2023, 31(11): 2078-2091. |
[9] | ZHANG Weixia, XI Min, YIN Tiantian, WANG Cheng, SI Shubin. Prediction of depression onset and development based on network analysis [J]. Advances in Psychological Science, 2023, 31(11): 2129-2141. |
[10] | XIAO Tingwei, DONG Jie, LIANG Fei, WANG Fushun, LI Yang. The relationship between disgust and suicidal behavior [J]. Advances in Psychological Science, 2023, 31(1): 87-98. |
[11] | DU Yufei, OUYANG Huiyue, YU Lin. The relationship between grandparenting and depression in Eastern and Western cultures: A meta-analysis [J]. Advances in Psychological Science, 2022, 30(9): 1981-1992. |
[12] | CHEN XiangHe, LI WenXiu, LIU Bo, YIN RongBin. The potential role of bone-derived factor ucOCN in the anti-depressive effects of exercise [J]. Advances in Psychological Science, 2022, 30(2): 375-388. |
[13] | ZHANG Yali, ZHANG Jiangen, LI Hongxia, JIANG Yongzhi. The relationship between socioeconomic status and depression: A systematic review and meta-analysis [J]. Advances in Psychological Science, 2022, 30(12): 2650-2665. |
[14] | HUANG Guanlan, ZHOU Xiaolu. The linguistic patterns of depressed patients [J]. Advances in Psychological Science, 2021, 29(5): 838-848. |
[15] | YE Chaoqun, LIN Yuhong, LIU Chunlei. Neural oscillation mechanism of creativity [J]. Advances in Psychological Science, 2021, 29(4): 697-706. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||