Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (11): 2078-2091.doi: 10.3724/SP.J.1042.2023.02078
• Regular Articles • Previous Articles Next Articles
ZHOU Guang-Fang2, JIN Hua1,2,3
Received:
2023-03-07
Online:
2023-11-15
Published:
2023-08-28
CLC Number:
ZHOU Guang-Fang, JIN Hua. Precision functional magnetic resonance imaging reveals individual brain functional network organization[J]. Advances in Psychological Science, 2023, 31(11): 2078-2091.
[1] Ahn Y. Y., Bagrow J. P., & Lehmann S. (2010). Link communities reveal multiscale complexity in networks.Nature, 466(7307), 761-764. [2] Andrews-Hanna J. R., Reidler J. S., Sepulcre J., Poulin R., & Buckner R. L. (2010). Functional-anatomic fractionation of the brain's default network.Neuron, 65(4), 550-562. [3] Andrews-Hanna J. R., Saxe R., & Yarkoni T. (2014). Contributions of episodic retrieval and mentalizing to autobiographical thought: Evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses.Neuroimage, 91, 324-335. [4] Barch, D. M. (2017). Resting-state functional connectivity in the human connectome project: Current status and relevance to understanding psychopathology.Harvard Review of Psychiatry, 25(5), 209-217. [5] Bergmann E., Gofman X., Kavushansky A., & Kahn I. (2020). Individual variability in functional connectivity architecture of the mouse brain.Communications Biology, 3(1), 738. [6] Bertolero M. A., Yeo B. T., & D'Esposito M. (2015). The modular and integrative functional architecture of the human brain.Proceedings of the National Academy of Sciences, 112(49), E6798-E6807. [7] Bhavsar S., Zvyagintsev M., & Mathiak K. (2014). BOLD sensitivity and SNR characteristics of parallel imaging- accelerated single-shot multi-echo EPI for fMRI.Neuroimage, 84, 65-75. [8] Blumenstock, S., & Dudanova, I. (2020). Cortical and striatal circuits in Huntington's disease.Frontiers in Neuroscience, 14, 82. [9] Braga, R. M., & Buckner, R. L. (2017). Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron, 95(2), 457-471.e5. [10] Braga R. M., van Dijk, K. R. A., Polimeni J. R., Eldaief M. C., & Buckner R. L. (2019). Parallel distributed networks resolved at high resolution reveal close juxtaposition of distinct regions.Journal of Neurophysiology, 121(4), 1513-1534. [11] Cash R. F. H., Cocchi L., Lv J., Fitzgerald P. B., & Zalesky A. (2021). Functional magnetic resonance imaging-guided personalization of transcranial magnetic stimulation treatment for depression.JAMA Psychiatry, 78(3), 337-339. [12] Cash R. F. H., Cocchi L., Lv J., Wu Y., Fitzgerald P. B., & Zalesky A. (2021). Personalized connectivity-guided DLPFC-TMS for depression: Advancing computational feasibility, precision and reproducibility.Human Brain Mapping, 42(13), 4155-4172. [13] Cui Z., Li H., Xia C. H., Larsen B., Adebimpe A., Baum G. L., .. Satterthwaite T. D. (2020). Individual variation in functional topography of association networks in youth. Neuron, 106(2), 340-353.e8. [14] DiNicola L. M., Braga R. M., & Buckner R. L. (2020). Parallel distributed networks dissociate episodic and social functions within the individual.Journal of Neurophysiology, 123(3), 1144-1179. [15] Dosenbach N. U. F., Koller J. M., Earl E. A., Miranda- Dominguez O., Klein R. L., Van A. N., .. Fair D. A. (2017). Real-time motion analytics during brain MRI improve data quality and reduce costs.Neuroimage, 161, 80-93. [16] Doucet G., Naveau M., Petit L., Delcroix N., Zago L., Crivello F., .. Joliot M. (2011). Brain activity at rest: A multiscale hierarchical functional organization.Journal of Neurophysiology, 105(6), 2753-2763. [17] Duda M., Koutra D., & Sripada C. (2021). Validating dynamicity in resting state fMRI with activation-informed temporal segmentation.Human Brain Mapping, 42(17), 5718-5735. [18] Dworetsky A., Seitzman B. A., Adeyemo B., Neta M., Coalson R. S., Petersen S. E., & Gratton C. (2021). Probabilistic mapping of human functional brain networks identifies regions of high group consensus.Neuroimage, 237, 118164. [19] Dworetsky A., Seitzman B. A., Adeyemo B., Smith D. M., Petersen S. E., & Gratton C. (2021). Two common and distinct forms of variation in human functional brain networks. [20] Elliott M. L., Knodt A. R., & Hariri A. R. (2021). Striving toward translation: Strategies for reliable fMRI measurement.Trends in Cognitive Sciences, 25(9), 776-787. [21] Evans, T. S., & Lambiotte, R. (2009). Line graphs, link partitions, and overlapping communities.Physical Review E, 80(1), 016105. [22] Fan F., Liao X., Lei T., Zhao T., Xia M., Men W., .. He Y. (2021). Development of the default-mode network during childhood and adolescence: A longitudinal resting- state fMRI study.Neuroimage, 226, 117581. [23] Faskowitz J., Esfahlani F. Z., Jo Y., Sporns O., & Betzel R. F. (2020). Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture.Nature Neuroscience, 23(12), 1644-1654. [24] Fox M. D., Buckner R. L., White M. P., Greicius M. D., & Pascual-Leone A. (2012). Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate.Biological Psychiatry, 72(7), 595-603. [25] Glasser M. F., Sotiropoulos S. N., Wilson J. A., Coalson T. S., Fischl B., Andersson J. L., .. Consortium, W. U.-M. H. (2013). The minimal preprocessing pipelines for the Human Connectome Project.Neuroimage, 80, 105-124. [26] Gordon E. M., Laumann T. O., Adeyemo B., Huckins J. F., Kelley W. M., & Petersen S. E. (2016). Generation and evaluation of a cortical area parcellation from resting-state correlations.Cerebral Cortex, 26(1), 288-303. [27] Gordon E. M., Laumann T. O., Gilmore A. W., Newbold D. J., Greene D. J., Berg J. J., .. Dosenbach, N. U. F. (2017). Precision functional mapping of individual human brains. Neuron, 95(4), 791-807.e7. [28] Gordon E. M., Laumann T. O., Marek S., Newbold D. J., Hampton J. M., Seider N. A., .. Dosenbach, N. U. F. (2022). Individualized functional subnetworks connect human striatum and frontal cortex.Cerebral Cortex, 32(13), 2868-2884. [29] Gordon E. M., Laumann T. O., Marek S., Raut R. V., Gratton C., Newbold D. J., .. Nelson S. M. (2020). Default-mode network streams for coupling to language and control systems.Proceedings of the National Academy of Sciences, 117(29), 17308-17319. [30] Gordon E. M., Lynch C. J., Gratton C., Laumann T. O., Gilmore A. W., Greene D. J., .. Nelson S. M. (2018). Three distinct sets of connector hubs integrate human brain function. Cell Reports, 24(7), 1687-1695.e4. [31] Gordon E. M., Scheibel R. S., Zambrano-Vazquez L., Jia-Richards M., May G. J., Meyer E. C., & Nelson S. M. (2018). High-fidelity measures of whole-brain functional connectivity and white matter integrity mediate relationships between traumatic brain injury and post-traumatic stress disorder symptoms.Journal of Neurotrauma, 35(5), 767-779. [32] Gratton C., Kraus B. T., Greene D. J., Gordon E. M., Laumann T. O., Nelson S. M., .. Petersen S. E. (2020). Defining individual-specific functional neuroanatomy for precision psychiatry.Biological Psychiatry, 88(1), 28-39. [33] Gratton C., Smith D. M., & Dorn M. (2020). Digging deeper to chart the landscape of human brain development.Neuron, 106(2), 209-211. [34] Greene D. J., Marek S., Gordon E. M., Siegel J. S., Gratton C., Laumann T. O., .. Dosenbach, N. U. F. (2020). Integrative and network-specific connectivity of the basal ganglia and thalamus defined in individuals. Neuron, 105(4), 742-758.e6. [35] Jo Y., Faskowitz J., Esfahlani F. Z., Sporns O., & Betzel R. F. (2021). Subject identification using edge-centric functional connectivity.Neuroimage, 238, 118204. [36] Jo Y., Zamani Esfahlani F., Faskowitz J., Chumin E. J., Sporns O., & Betzel R. F. (2021). The diversity and multiplexity of edge communities within and between brain systems.Cell Reports, 37(7), 110032. [37] Karbasforoushan, H., & Woodward, N. D. (2012). Resting- state networks in Schizophrenia.Current Topics in Medicinal Chemistry, 12(21), 2404-2414. [38] Kong R., Li J., Orban C., Sabuncu M. R., Liu H., Schaefer A., .. Yeo, B. T. T. (2019). Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion.Cerebral Cortex, 29(6), 2533-2551. [39] Kraus B. T., Perez D., Ladwig Z., Seitzman B. A., Dworetsky A., Petersen S. E., & Gratton C. (2021). Network variants are similar between task and rest states.Neuroimage, 229, 117743. [40] Kundu P., Inati S. J., Evans J. W., Luh W. M., & Bandettini P. A. (2012). Differentiating BOLD and non- BOLD signals in fMRI time series using multi-echo EPI.Neuroimage, 60(3), 1759-1770. [41] Kwong K. K., Belliveau J. W., Chesler D. A., Goldberg I. E., Weisskoff R. M., Poncelet B. P., .. Rosen B. R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.Proceedings of the National Academy of Sciences, 89(12), 5675-5679. [42] Laumann T. O., Gordon E. M., Adeyemo B., Snyder A. Z., Joo S. J., Chen M. Y., .. Petersen S. E. (2015). Functional system and areal organization of a highly sampled individual human brain.Neuron, 87(3), 657-670. [43] Laumann T. O., Ortega M., Hoyt C. R., Seider N. A., Snyder A. Z., Dosenbach N. U., & Brain Network Plasticity Group (2021). Brain network reorganisation in an adolescent after bilateral perinatal strokes.The Lancet Neurology, 20(4), 255-256. [44] Leech R., Kamourieh S., Beckmann C. F., & Sharp D. J. (2011). Fractionating the default mode network: Distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control.Journal of Neuroscience, 31(9), 3217-3224. [45] Li W., Ward B. D., Xie C., Jones J. L., Antuono P. G., Li S. J., & Goveas J. S. (2015). Amygdala network dysfunction in late-life depression phenotypes: Relationships with symptom dimensions.Journal of Psychiatric Research, 70, 121-129. [46] Liu, T. T. (2016). Noise contributions to the fMRI signal: An overview.Neuroimage, 143, 141-151. [47] Lynch C. J., Breeden A. L., Gordon E. M., Cherry J. B. C., Turkeltaub P. E., & Vaidya C. J. (2019). Precision inhibitory stimulation of individual-specific cortical hubs disrupts information processing in humans.Cerebral Cortex, 29(9), 3912-3921. [48] Lynch C. J., Elbau I. G., Ng T. H., Wolk D., Zhu S., Ayaz A., .. Liston C. (2022). Automated optimization of TMS coil placement for personalized functional network engagement. Neuron, 110(20), 3263-3277.e4. [49] Lynch C. J., Power J. D., Scult M. A., Dubin M., Gunning F. M., & Liston C. (2020). Rapid precision functional mapping of individuals using multi-echo fMRI.Cell Reports, 33(12), 108540. [50] Marek S., Siegel J. S., Gordon E. M., Raut R. V., Gratton C., Newbold D. J., .. Dosenbach, N. U. F. (2018). Spatial and temporal organization of the individual human cerebellum. Neuron, 100(4), 977-993.e7. [51] Mayberg, H. S. (2007). Defining the neural circuitry of depression: Toward a new nosology with therapeutic implications.Biological Psychiatry, 61(6), 729-730. [52] Mei N., Santana R., & Soto D. (2022). Informative neural representations of unseen contents during higher-order processing in human brains and deep artificial networks.Nature Human Behaviour, 6(5), 720-731. [53] Miller K. L., Alfaro-Almagro F., Bangerter N. K., Thomas D. L., Yacoub E., Xu J., .. Smith S. M. (2016). Multimodal population brain imaging in the UK Biobank prospective epidemiological study.Nature Neuroscience, 19(11), 1523-1536. [54] Mink, J. W. (2001). Basal ganglia dysfunction in Tourette's syndrome: A new hypothesis.Pediatric Neurology, 25(3), 190-198. [55] Newbold D. J., Gordon E. M., Laumann T. O., Seider N. A., Montez D. F., Gross S. J., .. Dosenbach, N. U. F. (2021). Cingulo-opercular control network and disused motor circuits joined in standby mode. Proceedings of the National Academy of Sciences, 118(13), Article e2019128118. [56] Newbold D. J., Laumann T. O., Hoyt C. R., Hampton J. M., Montez D. F., Raut R. V., .. Dosenbach, N. U. F. (2020). Plasticity and spontaneous activity pulses in disused human brain circuits. Neuron, 107(3), 580-589.e6. [57] Noble S., Spann M. N., Tokoglu F., Shen X., Constable R. T., & Scheinost D. (2017). Influences on the test-retest reliability of functional connectivity MRI and its relationship with behavioral utility.Cerebral Cortex, 27(11), 5415-5429. [58] Ogawa S., Tank D. W., Menon R., Ellermann J. M., Kim S. G., Merkle H., & Ugurbil K. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging.Proceedings of the National Academy of Sciences, 89(13), 5951-5955. [59] Oliver I., Hlinka J., Kopal J., & Davidsen J. (2019). Quantifying the variability in resting-state networks.Entropy, 21(9), 882. [60] Perez D. C., Dworetsky A., Braga R. M., Beeman M., & Gratton C. (2023). Hemispheric asymmetries of individual differences in functional connectivity.Journal of Cognitive Neuroscience, 35(2), 200-225. [61] Poldrack R. A., Laumann T. O., Koyejo O., Gregory B., Hover A., Chen M. Y., .. Mumford J. A. (2015). Long-term neural and physiological phenotyping of a single human.Nature Communications, 6, 8885. [62] Porter A., Nielsen A., Dorn M., Dworetsky A., Edmonds D., & Gratton C. (2023). Masked features of task states found in individual brain networks.Cerebral Cortex, 33(6), 2879-2900. [63] Power J. D., Barnes K. A., Snyder A. Z., Schlaggar B. L., & Petersen S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.Neuroimage, 59(3), 2142-2154. [64] Power J. D., Cohen A. L., Nelson S. M., Wig G. S., Barnes K. A., Church J. A., .. Petersen S. E. (2011). Functional network organization of the human brain.Neuron, 72(4), 665-678. [65] Power J. D., Plitt M., Gotts S. J., Kundu P., Voon V., Bandettini P. A., & Martin A. (2018). Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data.Proceedings of the National Academy of Sciences, 115(9), E2105-E2114. [66] Power J. D., Schlaggar B. L., Lessov-Schlaggar C. N., & Petersen S. E. (2013). Evidence for hubs in human functional brain networks. Neuron, 79(4), 798-813. [67] Pritschet L., Santander T., Taylor C. M., Layher E., Yu S., Miller M. B., .. Jacobs E. G. (2020). Functional reorganization of brain networks across the human menstrual cycle.Neuroimage, 220, 117091. [68] Raut R. V., Mitra A., Marek S., Ortega M., Snyder A. Z., Tanenbaum A., .. Raichle M. E. (2020). Organization of propagated intrinsic brain activity in individual humans.Cerebral Cortex, 30(3), 1716-1734. [69] Ren J., Xu T., Wang D., Li M., Lin Y., Schoeppe F., .. Ahveninen J. (2021). Individual variability in functional organization of the human and monkey auditory cortex.Cerebral Cortex, 31(5), 2450-2465. [70] Risk B. B., Murden R. J., Wu J., Nebel M. B., Venkataraman A., Zhang Z., & Qiu D. (2021). Which multiband factor should you choose for your resting-state fMRI study?Neuroimage, 234, 117965. [71] Salehi M., Greene A. S., Karbasi A., Shen X., Scheinost D., & Constable R. T. (2020). There is no single functional atlas even for a single individual: Functional parcel definitions change with task.Neuroimage, 208, 116366. [72] Satterthwaite T. D., Cook P. A., Bruce S. E., Conway C., Mikkelsen E., Satchell E., .. Sheline Y. I. (2016). Dimensional depression severity in women with major depression and post-traumatic stress disorder correlates with fronto-amygdalar hypoconnectivty.Molecular Psychiatry, 21(7), 894-902. [73] Seitzman B. A., Gratton C., Laumann T. O., Gordon E. M., Adeyemo B., Dworetsky A., .. Petersen S. E. (2019). Trait-like variants in human functional brain networks.Proceedings of the National Academy of Sciences, 116(45), 22851-22861. [74] Sha Z., Wager T. D., Mechelli A., & He Y. (2019). Common dysfunction of large-scale neurocognitive networks across psychiatric disorders.Biological Psychiatry, 85(5), 379-388. [75] Smith D. M., Kraus B. T., Dworetsky A., Gordon E. M.,& Gratton, C.(2023). Brain hubs defined in the group do not overlap with regions of high inter-individual variability. [76] Sporns, O. (2013). Network attributes for segregation and integration in the human brain.Current Opinion in Neurobiology, 23(2), 162-171. [77] Sripada C., Rutherford S., Angstadt M., Thompson W. K., Luciana M., Weigard A., .. Heitzeg M. (2020). Prediction of neurocognition in youth from resting state fMRI.Molecular Psychiatry, 25(12), 3413-3421. [78] Srirangarajan T., Mortazavi L., Bortolini T., Moll J., & Knutson B. (2021). Multi-band fMRI compromises detection of mesolimbic reward responses.Neuroimage, 244, 118617. [79] Suda A., Osada T., Ogawa A., Tanaka M., Kamagata K., Aoki S., .. Konishi S. (2020). Functional organization for response inhibition in the right inferior frontal cortex of individual human brains.Cerebral Cortex, 30(12), 6325-6335. [80] Sun J., Du R., Zhang B., Hua Q., Wang Y., Zhang Y., .. Wang K. (2022). Minimal scanning duration for producing individualized repetitive transcranial magnetic stimulation targets.Brain Imaging and Behavior, 16(6), 2637-2646. [81] Sylvester C. M., Yu Q., Srivastava A. B., Marek S., Zheng A., Alexopoulos D., .. Dosenbach, N. U. F. (2020). Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry.Proceedings of the National Academy of Sciences, 117(7), 3808-3818. [82] Tarchi L., Damiani S., Fantoni T., Pisano T., Castellini G., Politi P., & Ricca V. (2022). Centrality and interhemispheric coordination are related to different clinical/behavioral factors in attention deficit/hyperactivity disorder: A resting-state fMRI study.Brain Imaging and Behavior, 16(6), 2526-2542. [83] Tomasi, D., & Volkow, N. D. (2011). Functional connectivity hubs in the human brain.Neuroimage, 57(3), 908-917. [84] van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain.Trends in Cognitive Sciences, 17(12), 683-696. [85] Wang D., Buckner R. L., Fox M. D., Holt D. J., Holmes A. J., Stoecklein S., .. Liu H. (2015). Parcellating cortical functional networks in individuals.Nature Neuroscience, 18(12), 1853-1860. [86] Wang Q., Xu Y., Zhao T., Xu Z., He Y., & Liao X. (2021). Individual uniqueness in the neonatal functional connectome.Cerebral Cortex, 31(8), 3701-3712. [87] Wig G. S., Laumann T. O., & Petersen S. E. (2014). An approach for parcellating human cortical areas using resting-state correlations.Neuroimage, 93, 276-291. [88] Xue A., Kong R., Yang Q., Eldaief M. C., Angeli P. A., DiNicola L. M., .. Yeo B. T. (2021). The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual. Journal of Neurophysiology, 125(2), 358-384. [89] Yang H., Yao X., Zhang H., Meng C., & Biswal B. (2022). Individual coactivation patterns improve the subject identification and their behavior association. [90] Yeo B. T., Krienen F. M., Sepulcre J., Sabuncu M. R., Lashkari D., Hollinshead M., .. Buckner R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity.Journal of Neurophysiology, 106(3), 1125-1165. [91] Zheng A., Montez D. F., Marek S., Gilmore A. W., Newbold D. J., Laumann T. O., .. Dosenbach, N. U. F. (2021). Parallel hippocampal-parietal circuits for self- and goal-oriented processing. Proceedings of the National Academy of Sciences, 118(34), Article e2101743118. |
[1] | Hao Wang, Wangbin Ouyang, Jian Wang, Zhengqin Yin. Visual Task-related Functional and Structural Magnetic Resonance Imaging for the Objective Quantitation of Visual Function in Patients with Advanced Retinitis Pigmentosa [J]. Advances in Psychological Science, 2023, 31(suppl.): 136-136. |
[2] | Yuwei Cui, MiYoung Kwon, Nihong Chen. Learning Improves Peripheral Vision via Enhanced Cortico-cortical Communications [J]. Advances in Psychological Science, 2023, 31(suppl.): 161-161. |
[3] | ZHANG Fengxiang, CHEN Meixuan, PU Yi, KONG Xiang-Zhen. Individual differences in spatial navigation: A multi-scale perspective [J]. Advances in Psychological Science, 2023, 31(9): 1642-1664. |
[4] | LIN Wenyi, HE Hao, GUAN Qing. Functional brain networks underlying rumination [J]. Advances in Psychological Science, 2022, 30(6): 1262-1269. |
[5] | HE Xinyu, HE Qinghua. The structural and functional changes of the insula in people with addiction [J]. Advances in Psychological Science, 2021, 29(8): 1438-1449. |
[6] | BAO Han-Wu-Shuang, CAI Hua-Jian. Psychological and behavioral effects of personal names in real world: Evidence and theories [J]. Advances in Psychological Science, 2021, 29(6): 1067-1085. |
[7] | WEI Zhenyu, DENG Xiangshu, ZHAO Zhiying. The effect of conformity tendency on prosocial behaviors [J]. Advances in Psychological Science, 2021, 29(3): 531-539. |
[8] | QIAN Liu, Ru Taotao, LUO Xue, Niu Jiaxing, Ma Yongjun, ZHOU Guofu. Effect of sleep restriction on cognitive function and its underlying mechanism [J]. Advances in Psychological Science, 2020, 28(9): 1493-1507. |
[9] | WANG Xiao, WU Guorong, WU Xinran, QIU Jiang, CHEN Hong. Language lateralization, handedness and functional connectivity [J]. Advances in Psychological Science, 2020, 28(5): 778-789. |
[10] | ZHAO Hebin, XIA Mian, CAO Ben, JIANG Guangrong. Application of contact intervention to reduce public stigma of mental disorders [J]. Advances in Psychological Science, 2019, 27(5): 843-857. |
[11] | Jingyi LU, Xuesong SHANG. Making decisions for others: Multi-dimensional psychological mechanisms and decision feelings [J]. Advances in Psychological Science, 2018, 26(9): 1545-1552. |
[12] | Kaikai DUAN, HaoMing DONG, Liwen MIAO, Xuequan SU, Jie XIANG, XiNian ZUO. Sex differences in adaptive multi-scale functional connectivity of the human brain [J]. Advances in Psychological Science, 2018, 26(9): 1567-1575. |
[13] | YE Xiaoyan, ZHANG Delong, CHANG Song, LIU Ming. The individual difference of visual mental imagery and its neural basis [J]. Advances in Psychological Science, 2018, 26(7): 1186-1192. |
[14] | Shan Xu; Xiang-Zhen Kong; Yiying Song; Jia Liua. Game-based assessment on visuospatial ability in a large population of human participants: an Internet-based big-data approach [J]. Advances in Psychological Science, 2016, 24(Suppl.): 14-. |
[15] | FENG Xiaoxia; LI Le; DING Guosheng. Abnormal inter-regional brain connectivity in developmental dyslexia [J]. Advances in Psychological Science, 2016, 24(12): 1864-1872. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||