Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (11): 2063-2077.doi: 10.3724/SP.J.1042.2023.02063
• Regular Articles • Previous Articles Next Articles
GAO Fei1, CAI Houde2(), QI Xingliang3
Received:
2022-09-21
Online:
2023-11-15
Published:
2023-08-28
CLC Number:
GAO Fei, CAI Houde, QI Xingliang. Mechanism of competitive development of hemispheric lateralization complementary pattern for word and face recognition[J]. Advances in Psychological Science, 2023, 31(11): 2063-2077.
[1] | 齐星亮, 蔡厚德. (2019). 文字阅读学习的大脑可塑性机制. 心理科学, 42(5), 1127-1133. |
[2] | 张文芳. (2020). 幼儿文字与面孔专家化加工的关系及其影响因素 (博士论文). 中国科学院大学, 北京. |
[3] | Abboud, S., Maidenbaum, S., Dehaene, S., & Amedi, A. (2015). A number-form area in the blind. Nature Communications, 6(1), Article 6026. https://doi.org/10.1038/ncomms7026 |
[4] |
Adibpour, P., Dubois, J., & Dehaene-Lambertz, G. (2018). Right but not left hemispheric discrimination of faces in infancy. Nature Human Behaviour, 2(1), 67-79.
doi: 10.1038/s41562-017-0249-4 pmid: 30980049 |
[5] |
Ayzenberg, V., & Behrmann, M. (2022). Does the brain's ventral visual pathway compute object shape. Trends in Cognitive Sciences, 26(12), 1119-1132.
doi: 10.1016/j.tics.2022.09.019 URL |
[6] |
Behrmann, M., & Avidan, G. (2022). Face perception: Computational insights from phylogeny. Trends in Cognitive Sciences, 26(4), 350-363.
doi: 10.1016/j.tics.2022.01.006 pmid: 35232662 |
[7] |
Behrmann, M., & Plaut, D. C. (2013). Distributed circuits, not circumscribed centers, mediate visual recognition. Trends in Cognitive Sciences, 17(5), 210-219.
doi: 10.1016/j.tics.2013.03.007 pmid: 23608364 |
[8] |
Behrmann, M., & Plaut, D. C. (2014). Bilateral hemispheric processing of words and faces: Evidence from word impairments in prosopagnosia and face impairments in pure alexia. Cerebral Cortex, 24(4), 1102-1118.
doi: 10.1093/cercor/bhs390 URL |
[9] | Behrmann, M., & Plaut, D. C. (2015). A vision of graded hemispheric specialization. Annals of the New York Academy of Sciences, 1359, 30-46. |
[10] |
Behrmann, M., & Plaut, D. C. (2020). Hemispheric organization for visual object recognition: A theoretical account and empirical evidence. Perception, 49(4), 373-404.
doi: 10.1177/0301006619899049 pmid: 31980013 |
[11] | Bouhali, F., Mongelli, V., de Schotten, M. T., & Cohen, L. (2020). Reading music and words: The anatomical connectivity of musicians' visual cortex. Neuroimage, 212, Article 116666. https://doi.org/10.1016/j.neuroimage.2020.116666 |
[12] |
Cai, Q., Paulignan, Y., Brysbaert, M., Ibarrola, D., & Nazir, T. A. (2010). The left ventral occipito-temporal response to words depends on language lateralization but not on visual familiarity. Cereb Cortex, 20(5), 1153-1163.
doi: 10.1093/cercor/bhp175 pmid: 19684250 |
[13] | Canário, N., Jorge, L., & Castelo-Branco, M. (2020). Distinct mechanisms drive hemispheric lateralization of object recognition in the visual word form and fusiform face areas. Brain and Language, 210, Article 104860. https://doi.org/10.1016/j.bandl.2020.104860 |
[14] |
Cantlon, J. F., Pinel, P., Dehaene, S., & Pelphrey, K. A. (2011). Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cerebral Cortex, 21(1), 191-199.
doi: 10.1093/cercor/bhq078 URL |
[15] | Caspers, J., Palomero-Gallagher, N., Caspers, S., Schleicher, A., Amunts, K., & Zilles, K. (2015). Receptor architecture of visual areas in the face and word-form recognition region of the posterior fusiform gyrus. Brain Structure and Function, 220(1), 205-219. |
[16] |
Caspers, J., Zilles, K., Eickhoff, S. B., Schleicher, A., Mohlberg, H., & Amunts, K. (2013). Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus. Brain Structure and Function, 218(2), 511-526.
doi: 10.1007/s00429-012-0411-8 URL |
[17] | Centanni, T. M., Norton, E. S., Park, A., Beach, S. D., Halverson, K., Ozernov-Palchik, O., ... Gabrieli, J. (2018). Early development of letter specialization in left fusiform is associated with better word reading and smaller fusiform face area. Developmental Science, 21(5), Article e12658. https://doi.org/10.1111/desc.12658 |
[18] |
Collingridge, G. L., Volianskis, A., Bannister, N., France, G., Hanna, L., Mercier, M., ... Jane, D. E. (2013). The NMDA receptor as a target for cognitive enhancement. Neuropharmacology, 64, 13-26.
doi: 10.1016/j.neuropharm.2012.06.051 pmid: 22796429 |
[19] |
Collins, E., Dundas, E., Gabay, Y., Plaut, D. C., & Behrmann, M. (2017). Hemispheric organization in disorders of development. Visual Cognition, 25(4-6), 416-429.
doi: 10.1080/13506285.2017.1370430 pmid: 30464702 |
[20] | Dai, R., Huang, Z., Weng, X., & He, S. (2022). Early visual exposure primes future cross-modal specialization of the fusiform face area in tactile face processing in the blind. Neuroimage, 253, Article 119062. https://doi.org/10.1016/j.neuroimage.2022.119062 |
[21] |
Davies-Thompson, J., Johnston, S., Tashakkor, Y., Pancaroglu, R., & Barton, J. J. (2016). The relationship between visual word and face processing lateralization in the fusiform gyri: A cross-sectional study. Brain Research, 1644, 88-97.
doi: 10.1016/j.brainres.2016.05.009 pmid: 27178362 |
[22] | de Heering, A., & Rossion, B. (2015). Rapid categorization of natural face images in the infant right hemisphere. Elife, 4, Article e06564. https://doi.org/10.7554/eLife.06564.001 |
[23] | Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic:The ‘‘neuronal recycling’’ hypothesis. In S.Dehaene, J. R.Duhamel, M.Hauser, & G.Rizzolatti (Eds.), From monkey brain to human brain (pp. 133-157). Cambridge, MA: MIT Press. |
[24] |
Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384-398.
doi: 10.1016/j.neuron.2007.10.004 pmid: 17964253 |
[25] |
Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15(6), 254-262.
doi: 10.1016/j.tics.2011.04.003 pmid: 21592844 |
[26] |
Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: Behavioural and cerebral changes induced by reading acquisition. Nature Reviews Neuroscience, 16(4), 234-244.
doi: 10.1038/nrn3924 pmid: 25783611 |
[27] |
Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., ... Cohen, L. (2010). How learning to read changes the cortical networks for vision and language. Science, 330(6009), 1359-1364.
doi: 10.1126/science.1194140 pmid: 21071632 |
[28] | Dehaene-Lambertz, G., Monzalvo, K., & Dehaene, S. (2018). The emergence of the visual word form: Longitudinal evolution of category-specific ventral visual areas during reading acquisition. PLOS Biology, 16(3), Article e2004103. https://doi.org/10.1371/journal.pbio.2004103 |
[29] |
Dundas, E. M., Plaut, D. C., & Behrmann, M. (2013). The joint development of hemispheric lateralization for words and faces. Journal of Experimental Psychology: General, 142(2), 348-358.
doi: 10.1037/a0029503 URL |
[30] |
Dundas, E. M., Plaut, D. C., & Behrmann, M. (2014). An ERP investigation of the co-development of hemispheric lateralization of face and word recognition. Neuropsychologia, 61, 315-323.
doi: 10.1016/j.neuropsychologia.2014.05.006 pmid: 24933662 |
[31] |
Dundas, E. M., Plaut, D. C., & Behrmann, M. (2015). Variable left-hemisphere language and orthographic lateralization reduces right-hemisphere face lateralization. Journal of Cognitive Neuroscience, 27(5), 913-925.
doi: 10.1162/jocn_a_00757 pmid: 25390197 |
[32] | Eggermann, E., & Feldmeyer, D. (2009). Cholinergic filtering in the recurrent excitatory microcircuit of cortical layer 4. Proceedings of the National Academy of Sciences, 106(28), 11753-11758. |
[33] | Feng, X., Monzalvo, K., Dehaene, S., & Dehaene-Lambertz, G. (2022). Evolution of reading and face circuits during the first three years of reading acquisition. Neuroimage, 259, Article 119394. https://doi.org/10.1016/j.neuroimage.2022.119394 |
[34] | Frässle, S., Krach, S., Paulus, F. M., & Jansen, A. (2016). Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing. Scientific Reports, 6, Article 27153. https://doi.org/10.1038/srep27153 |
[35] |
Gathers, A. D., Bhatt, R., Corbly, C. R., Farley, A. B., & Joseph, J. E. (2004). Developmental shifts in cortical loci for face and object recognition. NeuroReport, 15(10), 1549-1553.
pmid: 15232281 |
[36] | Gerlach, C., Kuhn, C. D., Poulsen, M., Andersen, K. B., Lissau, C. H., & Starrfelt, R. (2022). Lateralization of word and face processing in developmental dyslexia and developmental prosopagnosia. Neuropsychologia, 170, https://doi.org/10.1016/j.neuropsychologia.2022.108208 |
[37] |
Gerrits, R., Van der Haegen, L., Brysbaert, M., & Vingerhoets, G. (2019). Laterality for recognizing written words and faces in the fusiform gyrus covaries with language dominance. Cortex, 117, 196-204.
doi: S0010-9452(19)30122-4 pmid: 30986634 |
[38] |
Golarai, G., Ghahremani, D. G., Whitfield-Gabrieli, S., Reiss, A., Eberhardt, J. L., Gabrieli, J. D., & Grill-Spector, K. (2007). Differential development of high-level visual cortex correlates with category-specific recognition memory. Nature Neuroscience, 10(4), 512-522.
pmid: 17351637 |
[39] |
Golarai, G., Liberman, A., & Grill-Spector, K. (2017). Experience shapes the development of neural substrates of face processing in human ventral temporal cortex. Cereb Cortex, 27(2), 1229-1244.
doi: 10.1093/cercor/bhv314 pmid: 26683171 |
[40] |
Gomez, J., Barnett, M., & Grill-Spector, K. (2019). Extensive childhood experience with Pokemon suggests eccentricity drives organization of visual cortex. Nature Human Behaviour, 3(6), 611-624.
doi: 10.1038/s41562-019-0592-8 |
[41] |
Gomez, J., Barnett, M. A., Natu, V., Mezer, A., Palomero- Gallagher, N., Weiner, K. S., ... Grill-Spector, K. (2017). Microstructural proliferation in human cortex is coupled with the development of face processing. Science, 355(6320), 68-71.
doi: 10.1126/science.aag0311 pmid: 28059764 |
[42] | Gomez, J., Natu, V., Jeska, B., Barnett, M., & Grill-Spector, K. (2018). Development differentially sculpts receptive fields across early and high-level human visual cortex. Nature Communications, 9(1), Article 788. https://doi.org/10.1038/s41467-018-03166-3 |
[43] |
Gomez, J., Pestilli, F., Witthoft, N., Golarai, G., Liberman, A., Poltoratski, S., ... Grill-Spector, K. (2015). Functionally defined white matter reveals segregated pathways in human ventral temporal cortex associated with category-specific processing. Neuron, 85(1), 216-227.
doi: S0896-6273(14)01136-2 pmid: 25569351 |
[44] |
Grand, R. L., Mondloch, C. J., Maurer, D., & Brent, H. P. (2003). Expert face processing requires visual input to the right hemisphere during infancy. Nature Neuroscience, 6(10), 1108-1112.
doi: 10.1038/nn1121 pmid: 12958600 |
[45] |
Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annual Review of Neuroscience, 27, 649-677.
pmid: 15217346 |
[46] |
Grill-Spector, K., & Weiner, K. S. (2014). The functional architecture of the ventral temporal cortex and its role in categorization. Nature Reviews Neuroscience, 15(8), 536-548.
doi: 10.1038/nrn3747 pmid: 24962370 |
[47] |
Grossi, D., Soricelli, A., Ponari, M., Salvatore, E., Quarantelli, M., Prinster, A., & Trojano, L. (2014). Structural connectivity in a single case of progressive prosopagnosia: The role of the right inferior longitudinal fasciculus. Cortex, 56, 111-120.
doi: 10.1016/j.cortex.2012.09.010 pmid: 23099263 |
[48] |
Grotheer, M., Herrmann, K.-H., & Kovács, G. (2016). Neuroimaging evidence of a bilateral representation for visually presented numbers. Journal of Neuroscience, 36(1), 88-97.
doi: 10.1523/JNEUROSCI.2129-15.2016 pmid: 26740652 |
[49] |
Hadders-Algra, M. (2022). Human face and gaze perception is highly context specific and involves bottom-up and top-down neural processing. Neuroscience and Biobehavioral Reviews, 132, 304-323.
doi: 10.1016/j.neubiorev.2021.11.042 URL |
[50] |
Hannagan, T., Amedi, A., Cohen, L., Dehaene-Lambertz, G., & Dehaene, S. (2015). Origins of the specialization for letters and numbers in ventral occipitotemporal cortex. Trends in Cognitive Sciences, 19(7), 374-382.
doi: 10.1016/j.tics.2015.05.006 pmid: 26072689 |
[51] |
Hasson, U., Levy, I., Behrmann, M., Hendler, T., & Malach, R. (2002). Eccentricity bias as an organizing principle for human high-order object areas. Neuron, 34(3), 479-490.
doi: 10.1016/s0896-6273(02)00662-1 pmid: 11988177 |
[52] |
Hernandez, A. E., Claussenius-Kalman, H. L., Ronderos, J., Castilla-Earls, A. P., Sun, L., Weiss, S. D., & Young, D. R. (2019). Neuroemergentism: A framework for studying cognition and the brain. Journal of Neurolinguistics, 49, 214-223.
doi: 10.1016/j.jneuroling.2017.12.010 pmid: 30636843 |
[53] |
Inamizu, S., Yamada, E., Ogata, K., Uehara, T., Kira, J.-I., & Tobimatsu, S. (2020). Neuromagnetic correlates of hemispheric specialization for face and word recognition. Neuroscience Research, 156, 108-116.
doi: S0168-0102(19)30613-3 pmid: 31730780 |
[54] |
Johnson, M. H. (2005). Subcortical face processing. Nature Reviews Neuroscience, 6(10), 766-774.
pmid: 16276354 |
[55] |
Johnson, M. H., Senju, A., & Tomalski, P. (2015). The two-process theory of face processing: Modifications based on two decades of data from infants and adults. Neuroscience and Biobehavioral Reviews, 50, 169-179.
doi: 10.1016/j.neubiorev.2014.10.009 pmid: 25454353 |
[56] |
Kanjlia, S., Lane, C., Feigenson, L., & Bedny, M. (2016). Absence of visual experience modifies the neural basis of numerical thinking. Proceedings of the National Academy of Sciences, 113(40), 11172-11177.
doi: 10.1073/pnas.1524982113 URL |
[57] | Kim, H., Kim, G., & Lee, S.-H. (2019). Effects of individuation and categorization on face representations in the visual cortex. Neuroscience Letters, 708, Article 134344. https://doi.org/10.1016/j.neulet.2019.134344 |
[58] |
Klein, E., Suchan, J., Moeller, K., Karnath, H.-O., Knops, A., Wood, G., ... Willmes, K. (2016). Considering structural connectivity in the triple code model of numerical cognition: Differential connectivity for magnitude processing and arithmetic facts. Brain Structure and Function, 221(2), 979-995.
doi: 10.1007/s00429-014-0951-1 URL |
[59] | Leleu, A., Rekow, D., Poncet, F., Schaal, B., Durand, K., Rossion, B., & Baudouin, J.-Y. (2020). Maternal odor shapes rapid face categorization in the infant brain. Developmental Science, 23(2), Article e12877. https://doi.org/10.1111/desc.12877 |
[60] | Lerma-Usabiaga, G., Carreiras, M., & Paz-Alonso, P. M. (2018). Converging evidence for functional and structural segregation within the left ventral occipitotemporal cortex in reading. Proceedings of the National Academy of Sciences, 115(42), E9981-E9990. |
[61] | Li, H., Liang, Y., Yue, Q., Zhang, L., Ying, K., & Mei, L. (2021). The contributions of the left fusiform subregions to successful encoding of novel words. Brain and Cognition, 148, Article 105690. https://doi.org/10.1016/j.bandc.2021.105690 |
[62] |
Li, S., Lee, K., Zhao, J., Yang, Z., He, S., & Weng, X. (2013). Neural competition as a developmental process: Early hemispheric specialization for word processing delays specialization for face processing. Neuropsychologia, 51(5), 950-959.
doi: 10.1016/j.neuropsychologia.2013.02.006 pmid: 23462239 |
[63] |
Liu, T. T., Nestor, A., Vida, M. D., Pyles, J. A., Patterson, C., Yang, Y., ... Behrmann, M. (2018). Successful reorganization of category-selective visual cortex following occipito- temporal lobectomy in childhood. Cell Reports, 24(5), 1113-1122.
doi: 10.1016/j.celrep.2018.06.099 URL |
[64] |
Lochy, A., de Heering, A., & Rossion, B. (2019). The non- linear development of the right hemispheric specialization for human face perception. Neuropsychologia, 126, 10-19.
doi: 10.1016/j.neuropsychologia.2017.06.029 URL |
[65] | Lochy, A., Schiltz, C., & Rossion, B. (2020). The right hemispheric dominance for face perception in preschool children depends on the visual discrimination level. Developmental Science, 23(3), Article e12914. https://doi.org/10.1111/desc.12914 |
[66] | Lorenz, S., Weiner, K. S., Caspers, J., Mohlberg, H., Schleicher, A., Bludau, S., ... Amunts, K. (2017). Two new cytoarchitectonic areas on the human mid-fusiform gyrus. Cerebral Cortex, 27(1), 373-385. |
[67] |
Mongelli, V., Dehaene, S., Vinckier, F., Peretz, I., Bartolomeo, P., & Cohen, L. (2017). Music and words in the visual cortex: The impact of musical expertise. Cortex, 86, 260-274.
doi: S0010-9452(16)30147-2 pmid: 27317491 |
[68] |
Monzalvo, K., Fluss, J., Billard, C., Dehaene, S., & Dehaene-Lambertz, G. (2012). Cortical networks for vision and language in dyslexic and normal children of variable socio-economic status. Neuroimage, 61(1), 258-274.
doi: 10.1016/j.neuroimage.2012.02.035 pmid: 22387166 |
[69] | Moret-Tatay, C., Baixauli Fortea, I., & Grau Sevilla, M. D. (2020). Challenges and insights for the visual system: Are face and word recognition two sides of the same coin. Journal of Neurolinguistics, 56, Article 100941. https://doi.org/10.1016/j.jneuroling.2020.100941 |
[70] |
Nordt, M., Gomez, J., Natu, V., Jeska, B., Barnett, M., & Grill-Spector, K. (2019). Learning to read increases the informativeness of distributed ventral temporal responses. Cerebral Cortex, 29(7), 3124-3139.
doi: 10.1093/cercor/bhy178 URL |
[71] | Nordt, M., Gomez, J., Natu, V. S., Rezai, A. A., Finzi, D., Kular, H., & Grill-Spector, K. (2021). Cortical recycling in high-level visual cortex during childhood development. Nature Human Behavior, 5(12), 1686-1697. |
[72] |
O'Hearn, K., Schroer, E., Minshew, N., & Luna, B. (2010). Lack of developmental improvement on a face memory task during adolescence in autism. Neuropsychologia, 48(13), 3955-3960.
doi: 10.1016/j.neuropsychologia.2010.08.024 pmid: 20813119 |
[73] |
Op de Beeck, H. P., Pillet, I., & Ritchie, J. B. (2019). Factors determining where category-selective areas emerge in visual cortex. Trends in Cognitive Sciences, 23(9), 784-797.
doi: S1364-6613(19)30158-5 pmid: 31327671 |
[74] | Pegado, F., Comerlato, E., Ventura, F., Jobert, A., Nakamura, K., Buiatti, M., ... Dehaene, S. (2014). Timing the impact of literacy on visual processing. Proceedings of the National Academy of Sciences, 111(49), E5233-E5242. |
[75] |
Powell, L. J., Kosakowski, H. L., & Saxe, R. (2018). Social origins of cortical face areas. Trends in Cognitive Sciences, 22(9), 752-763.
doi: S1364-6613(18)30149-9 pmid: 30041864 |
[76] | Pyles, J. A., Verstynen, T. D., Schneider, W., & Tarr, M. J. (2013). Explicating the face perception network with white matter connectivity. PLoS ONE, 8(4), Article e61611. https://doi.org/10.1371/journal.pone.0061611 |
[77] | Rekow, D., Baudouin, J.-Y., Poncet, F., Damon, F., Durand, K., Schaal, B., ... Leleu, A. (2021). Odor-driven face-like categorization in the human infant brain. Proceedings of the National Academy of Sciences, 118(21), Article e2014979118. https://doi.org/10.1073/pnas.2014979118 |
[78] | Rekow, D., Leleu, A., Poncet, F., Damon, F., Rossion, B., Durand, K., ... Baudouin, J.-Y. (2020). Categorization of objects and faces in the infant brain and its sensitivity to maternal odor: Further evidence for the role of intersensory congruency in perceptual development. Cognitive Development, 55, Article 100930. https://doi.org/10.1016/j.cogdev.2020.100930 |
[79] |
Roberts, D. J., Ralph, M. A. L., Kim, E., Tainturier, M.-J., Beeson, P. M., Rapcsak, S. Z., & Woollams, A. M. (2015). Processing deficits for familiar and novel faces in patients with left posterior fusiform lesions. Cortex, 72, 79-96.
doi: S0010-9452(15)00060-X pmid: 25837867 |
[80] |
Roberts, D. J., Woollams, A. M., Kim, E., Beeson, P. M., Rapcsak, S. Z., & Ralph, M. A. L. (2013). Efficient visual object and word recognition relies on high spatial frequency coding in the left posterior fusiform gyrus: Evidence from a case-series of patients with ventral occipito-temporal cortex damage. Cerebral Cortex, 23(11), 2568-2580.
doi: 10.1093/cercor/bhs224 URL |
[81] | Sabsevitz, D. S., Middlebrooks, E. H., Tatum, W., Grewal, S. S., Wharen, R., & Ritaccio, A. L. (2020). Examining the function of the visual word form area with stereo EEG electrical stimulation: A case report of pure alexia. Cortex, 129, 112-118. |
[82] |
Saygin, Z. M., Osher, D. E., Norton, E. S., Youssoufian, D. A., Beach, S. D., Feather, J., ... Kanwisher, N. (2016). Connectivity precedes function in the development of the visual word form area. Nature Neuroscience, 19(9), 1250-1255.
doi: 10.1038/nn.4354 pmid: 27500407 |
[83] | Sehyr, Z. S., Midgley, K. J., Holcomb, P. J., Emmorey, K., Plaut, D. C., & Behrmann, M. (2020). Unique N170 signatures to words and faces in deaf ASL signers reflect experience-specific adaptations during early visual processing. Neuropsychologia, 141, Article 107414. https://doi.org/10.1016/j.neuropsychologia.2020.107414 |
[84] |
Shum, J., Hermes, D., Foster, B. L., Dastjerdi, M., Rangarajan, V., Winawer, J., ... Parvizi, J. (2013). A brain area for visual numerals. The Journal of Neuroscience, 33(16), 6709-6715.
doi: 10.1523/JNEUROSCI.4558-12.2013 URL |
[85] | Skagenholt, M., Skagerlund, K., & Traff, U. (2021). Neurodevelopmental differences in child and adult number processing: An fMRI-based validation of the triple code model. Developmental Cognitive Neuroscience, 48, Article 100933. https://doi.org/10.1016/j.dcn.2021.100933 |
[86] | Skagenholt, M., Skagerlund, K., & Träff, U. (2022). Neurodevelopmental differences in task-evoked number network connectivity: Comparing symbolic and nonsymbolic number discrimination in children and adults. Developmental Cognitive Neuroscience, 58, Article 101159. https://doi.org/10.1016/j.dcn.2022.101159 |
[87] | Skagenholt, M., Träff, U., Västfjäll, D., & Skagerlund, K. (2018). Examining the triple code model in numerical cognition: An fMRI study. PLoS ONE, 13(6), Article e0199247. https://doi.org/10.1371/journal.pone.0199247 |
[88] |
Stewart, L., Henson, R., Kampe, K., Walsh, V., Turner, R., & Frith, U. (2003). Brain changes after learning to read and play music. Neuroimage, 20(1), 71-83.
doi: 10.1016/s1053-8119(03)00248-9 pmid: 14527571 |
[89] |
Susilo, T., Wright, V., Tree, J. J., & Duchaine, B. (2015). Acquired prosopagnosia without word recognition deficits. Cognitive Neuropsychology, 32(6), 321-339.
doi: 10.1080/02643294.2015.1081882 pmid: 26402384 |
[90] |
Thiebaut de Schotten, M., Cohen, L., Amemiya, E., Braga, L. W., & Dehaene, S. (2014). Learning to read improves the structure of the arcuate fasciculus. Cerebral Cortex, 24(4), 989-995.
doi: 10.1093/cercor/bhs383 URL |
[91] |
Thomas, C., Avidan, G., Humphreys, K., Jung, K.-J., Gao, F., & Behrmann, M. (2009). Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia. Nature Neuroscience, 12(1), 29-31.
doi: 10.1038/nn.2224 pmid: 19029889 |
[92] | van Vugt, F. T., Hartmann, K., Altenmüller, E., Mohammadi, B., & Margulies, D. S. (2021). The impact of early musical training on striatal functional connectivity. Neuroimage, 238, Article 118251. https://doi.org/10.1016/j.neuroimage.2021.118251 |
[93] |
Vuontela, V., Jiang, P., Tokariev, M., Savolainen, P., Ma, Y., Aronen, E. T., ... Carlson, S. (2013). Regulation of brain activity in the fusiform face and parahippocampal place areas in 7-11-year-old children. Brain and Cognition, 81(2), 203-214.
doi: 10.1016/j.bandc.2012.11.003 pmid: 23262175 |
[94] |
Weiner, K. S. (2019). The mid-fusiform sulcus (sulcus sagittalis gyri fusiformis). Anatomical Record, 302(9), 1491-1503.
doi: 10.1002/ar.24041 |
[95] |
Weiner, K. S., Barnett, M. A., Lorenz, S., Caspers, J., Stigliani, A., Amunts, K., ... Grill-Spector, K. (2017). The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cerebral Cortex, 27(1), 146-161.
doi: 10.1093/cercor/bhw361 URL |
[96] |
Weiner, K. S., Barnett, M. A., Witthoft, N., Golarai, G., Stigliani, A., Kay, K. N., ... Grill-Spector, K. (2018). Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation. Neuroimage, 170, 373-384.
doi: S1053-8119(17)30333-6 pmid: 28435097 |
[97] |
Weiner, K. S., Golarai, G., Caspers, J., Chuapoco, M. R., Mohlberg, H., Zilles, K., ... Grill-Spector, K. (2014). The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex. Neuroimage, 84, 453-465.
doi: 10.1016/j.neuroimage.2013.08.068 pmid: 24021838 |
[98] |
Weiner, K. S., Natu, V. S., & Grill-Spector, K. (2018). On object selectivity and the anatomy of the human fusiform gyrus. Neuroimage, 173, 604-609.
doi: S1053-8119(18)30137-X pmid: 29471101 |
[99] |
Weiner, K. S., Yeatman, J. D., & Wandell, B. A. (2017). The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex, 97, 274-276.
doi: S0010-9452(16)30050-8 pmid: 27132243 |
[100] |
Weiner, K. S., & Zilles, K. (2016). The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia, 83, 48-62.
doi: S0028-3932(15)30080-4 pmid: 26119921 |
[101] |
Wong, Y. K., & Gauthier, I. (2010). A multimodal neural network recruited by expertise with musical notation. Journal of Cognitive Neuroscience, 22(4), 695-713.
doi: 10.1162/jocn.2009.21229 pmid: 19320551 |
[102] |
Woodhead, Z. V., Wise, R. J., Sereno, M., & Leech, R. (2011). Dissociation of sensitivity to spatial frequency in word and face preferential areas of the fusiform gyrus. Cerebral Cortex, 21(10), 2307-2312.
doi: 10.1093/cercor/bhr008 URL |
[103] | Yakovlev, P. I., & Lecours, A. R. (1967). The myelogenetic cycles of regional maturation of the brain. In A.Minkowski (Eds.), Regional development of the brain in early life (pp. 3-70). Oxford: Blackwell Science. |
[104] | Yeatman, J. D., Dougherty, R. F., Ben-Shachar, M., & Wandell, B. A. (2012). Development of white matter and reading skills. Proceedings of the National Academy of Sciences, 109(44), E3045-E3053. |
[105] |
Yeatman, J. D., & White, A. L. (2021). Reading: The confluence of vision and language. Annual Review of Vision Science, 7, 487-517.
doi: 10.1146/annurev-vision-093019-113509 pmid: 34166065 |
[106] |
Yeo, D. J., Wilkey, E. D., & Price, G. R. (2017). The search for the number form area: A functional neuroimaging meta-analysis. Neuroscience and Biobehavioral Reviews, 78, 145-160.
doi: S0149-7634(17)30032-5 pmid: 28467892 |
[107] |
Zhao, P., Li, S., Zhao, J., Gaspar, C. M., & Weng, X. (2015). Training by visual identification and writing leads to different visual word expertise N170 effects in preliterate Chinese children. Developmental Cognitive Neuroscience, 15, 106-116.
doi: 10.1016/j.dcn.2015.09.002 pmid: 26409757 |
[1] | Jia Yang, Yipeng Li, Jingqiu Luo, Pinglei Bao. Emergency and Development of Word Recognition Abilities in the Object Space Model [J]. Advances in Psychological Science, 2023, 31(suppl.): 178-178. |
[2] | QI Xingliang, CAI Houde. Mirror equivalence or invariance and its breaking: Evidence from behavioral to cognitive neural mechanism [J]. Advances in Psychological Science, 2021, 29(10): 1855-1865. |
[3] | Rui Dai; Zirui Huang; Xuchu Weng; Sheng He. The specialization of cross-modality tactile face processing in the blind: an fMRI study [J]. Advances in Psychological Science, 2016, 24(Suppl.): 7-. |
[4] | WANG Li-Juan;LUO Hong-Ge;YAO Xue. The Neural Mechanisms of Face Recognition in Autism Spectrum Disorders [J]. , 2009, 17(6): 1177-1184. |
[5] | SHAN Chun-Lei ;LI Jing-Wei;WENG Xu-Chu. Visual Word Form Processing: From Brain Areas to Neural Pathways [J]. , 2008, 16(3): 441-445. |
[6] | Xu Yan,Zhang Yaxu,Zhou Xiaolin. The Cognitive Neuroscience Of Face Processing: A Review [J]. , 2003, 11(1): 35-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||