Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (11): 2063-2077.doi: 10.3724/SP.J.1042.2023.02063
• Regular Articles • Previous Articles Next Articles
GAO Fei1, CAI Houde2, QI Xingliang3
Received:
2022-09-21
Online:
2023-11-15
Published:
2023-08-28
CLC Number:
GAO Fei, CAI Houde, QI Xingliang. Mechanism of competitive development of hemispheric lateralization complementary pattern for word and face recognition[J]. Advances in Psychological Science, 2023, 31(11): 2063-2077.
[1] 齐星亮, 蔡厚德. (2019). 文字阅读学习的大脑可塑性机制. [2] 张文芳. (2020). [3] Abboud S., Maidenbaum S., Dehaene S., & Amedi A. (2015). A number-form area in the blind. Nature Communications, 6(1), Article 6026. https://doi.org/10.1038/ncomms7026 [4] Adibpour P., Dubois J., & Dehaene-Lambertz G. (2018). Right but not left hemispheric discrimination of faces in infancy.Nature Human Behaviour, 2(1), 67-79. [5] Ayzenberg, V., & Behrmann, M. (2022). Does the brain's ventral visual pathway compute object shape?Trends in Cognitive Sciences, 26(12), 1119-1132. [6] Behrmann, M., & Avidan, G. (2022). Face perception: Computational insights from phylogeny.Trends in Cognitive Sciences, 26(4), 350-363. [7] Behrmann, M., & Plaut, D. C. (2013). Distributed circuits, not circumscribed centers, mediate visual recognition.Trends in Cognitive Sciences, 17(5), 210-219. [8] Behrmann, M., & Plaut, D. C. (2014). Bilateral hemispheric processing of words and faces: Evidence from word impairments in prosopagnosia and face impairments in pure alexia.Cerebral Cortex, 24(4), 1102-1118. [9] Behrmann, M., & Plaut, D. C. (2015). A vision of graded hemispheric specialization.Annals of the New York Academy of Sciences, 1359, 30-46. [10] Behrmann, M., & Plaut, D. C. (2020). Hemispheric organization for visual object recognition: A theoretical account and empirical evidence.Perception, 49(4), 373-404. [11] Bouhali, F., Mongelli, V., de Schotten, M. T., & Cohen, L.(2020). Reading music and words: The anatomical connectivity of musicians' visual cortex. [12] Cai Q., Paulignan Y., Brysbaert M., Ibarrola D., & Nazir T. A. (2010). The left ventral occipito-temporal response to words depends on language lateralization but not on visual familiarity.Cereb Cortex, 20(5), 1153-1163. [13] Canário N., Jorge L.,& Castelo-Branco, M.(2020). Distinct mechanisms drive hemispheric lateralization of object recognition in the visual word form and fusiform face areas. [14] Cantlon J. F., Pinel P., Dehaene S., & Pelphrey K. A. (2011). Cortical representations of symbols, objects, and faces are pruned back during early childhood.Cerebral Cortex, 21(1), 191-199. [15] Caspers J., Palomero-Gallagher N., Caspers S., Schleicher A., Amunts K., & Zilles K. (2015). Receptor architecture of visual areas in the face and word-form recognition region of the posterior fusiform gyrus.Brain Structure and Function, 220(1), 205-219. [16] Caspers J., Zilles K., Eickhoff S. B., Schleicher A., Mohlberg H., & Amunts K. (2013). Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus.Brain Structure and Function, 218(2), 511-526. [17] Centanni T. M., Norton E. S., Park A., Beach S. D., Halverson K., Ozernov-Palchik O., .. Gabrieli J. (2018). Early development of letter specialization in left fusiform is associated with better word reading and smaller fusiform face area. Developmental Science, 21(5), Article e12658. https://doi.org/10.1111/desc.12658 [18] Collingridge G. L., Volianskis A., Bannister N., France G., Hanna L., Mercier M., .. Jane D. E. (2013). The NMDA receptor as a target for cognitive enhancement.Neuropharmacology, 64, 13-26. [19] Collins E., Dundas E., Gabay Y., Plaut D. C., & Behrmann M. (2017). Hemispheric organization in disorders of development.Visual Cognition, 25(4-6), 416-429. [20] Dai R., Huang Z., Weng X.,& He, S.(2022). Early visual exposure primes future cross-modal specialization of the fusiform face area in tactile face processing in the blind. [21] Davies-Thompson J., Johnston S., Tashakkor Y., Pancaroglu R., & Barton J. J. (2016). The relationship between visual word and face processing lateralization in the fusiform gyri: A cross-sectional study.Brain Research, 1644, 88-97. [22] de Heering, A., & Rossion, B. (2015). Rapid categorization of natural face images in the infant right hemisphere. [23] Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The ‘‘neuronal recycling'' hypothesis. In S. Dehaene, J. R. Duhamel, M. Hauser, & G. Rizzolatti (Eds.), From monkey brain to human brain (pp. 133-157). Cambridge, MA: MIT Press. [24] Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps.Neuron, 56(2), 384-398. [25] Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading.Trends in Cognitive Sciences, 15(6), 254-262. [26] Dehaene S., Cohen L., Morais J., & Kolinsky R. (2015). Illiterate to literate: Behavioural and cerebral changes induced by reading acquisition.Nature Reviews Neuroscience, 16(4), 234-244. [27] Dehaene S., Pegado F., Braga L. W., Ventura P., Nunes Filho G., Jobert A., .. Cohen L. (2010). How learning to read changes the cortical networks for vision and language.Science, 330(6009), 1359-1364. [28] Dehaene-Lambertz G., Monzalvo K., & Dehaene S. (2018). The emergence of the visual word form: Longitudinal evolution of category-specific ventral visual areas during reading acquisition. PLOS Biology, 16(3), Article e2004103. https://doi.org/10.1371/journal.pbio.2004103 [29] Dundas E. M., Plaut D. C., & Behrmann M. (2013). The joint development of hemispheric lateralization for words and faces.Journal of Experimental Psychology: General, 142(2), 348-358. [30] Dundas E. M., Plaut D. C., & Behrmann M. (2014). An ERP investigation of the co-development of hemispheric lateralization of face and word recognition.Neuropsychologia, 61, 315-323. [31] Dundas E. M., Plaut D. C., & Behrmann M. (2015). Variable left-hemisphere language and orthographic lateralization reduces right-hemisphere face lateralization.Journal of Cognitive Neuroscience, 27(5), 913-925. [32] Eggermann, E., & Feldmeyer, D. (2009). Cholinergic filtering in the recurrent excitatory microcircuit of cortical layer 4.Proceedings of the National Academy of Sciences, 106(28), 11753-11758. [33] Feng X., Monzalvo K., Dehaene S.,& Dehaene-Lambertz, G.(2022). Evolution of reading and face circuits during the first three years of reading acquisition. [34] Frässle S., Krach S., Paulus F. M., & Jansen A. (2016). Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing. [35] Gathers A. D., Bhatt R., Corbly C. R., Farley A. B., & Joseph J. E. (2004). Developmental shifts in cortical loci for face and object recognition.NeuroReport, 15(10), 1549-1553. [36] Gerlach C., Kuhn C. D., Poulsen M., Andersen K. B., Lissau C. H.,& Starrfelt, R.(2022). Lateralization of word and face processing in developmental dyslexia and developmental prosopagnosia. [37] Gerrits R., Van der Haegen L., Brysbaert M., & Vingerhoets G. (2019). Laterality for recognizing written words and faces in the fusiform gyrus covaries with language dominance.Cortex, 117, 196-204. [38] Golarai G., Ghahremani D. G., Whitfield-Gabrieli S., Reiss A., Eberhardt J. L., Gabrieli J. D., & Grill-Spector K. (2007). Differential development of high-level visual cortex correlates with category-specific recognition memory.Nature Neuroscience, 10(4), 512-522. [39] Golarai G., Liberman A., & Grill-Spector K. (2017). Experience shapes the development of neural substrates of face processing in human ventral temporal cortex.Cereb Cortex, 27(2), 1229-1244. [40] Gomez J., Barnett M., & Grill-Spector K. (2019). Extensive childhood experience with Pokemon suggests eccentricity drives organization of visual cortex.Nature Human Behaviour, 3(6), 611-624. [41] Gomez J., Barnett M. A., Natu V., Mezer A., Palomero- Gallagher N., Weiner K. S., .. Grill-Spector K. (2017). Microstructural proliferation in human cortex is coupled with the development of face processing.Science, 355(6320), 68-71. [42] Gomez J., Natu V., Jeska B., Barnett M., & Grill-Spector K. (2018). Development differentially sculpts receptive fields across early and high-level human visual cortex. Nature Communications, 9(1), Article 788. https://doi.org/10.1038/s41467-018-03166-3 [43] Gomez J., Pestilli F., Witthoft N., Golarai G., Liberman A., Poltoratski S., .. Grill-Spector K. (2015). Functionally defined white matter reveals segregated pathways in human ventral temporal cortex associated with category-specific processing.Neuron, 85(1), 216-227. [44] Grand R. L., Mondloch C. J., Maurer D., & Brent H. P. (2003). Expert face processing requires visual input to the right hemisphere during infancy.Nature Neuroscience, 6(10), 1108-1112. [45] Grill-Spector, K., & Malach, R. (2004). The human visual cortex.Annual Review of Neuroscience, 27, 649-677. [46] Grill-Spector, K., & Weiner, K. S. (2014). The functional architecture of the ventral temporal cortex and its role in categorization.Nature Reviews Neuroscience, 15(8), 536-548. [47] Grossi D., Soricelli A., Ponari M., Salvatore E., Quarantelli M., Prinster A., & Trojano L. (2014). Structural connectivity in a single case of progressive prosopagnosia: The role of the right inferior longitudinal fasciculus.Cortex, 56, 111-120. [48] Grotheer M., Herrmann K.-H., & Kovács G. (2016). Neuroimaging evidence of a bilateral representation for visually presented numbers.Journal of Neuroscience, 36(1), 88-97. [49] Hadders-Algra, M. (2022). Human face and gaze perception is highly context specific and involves bottom-up and top-down neural processing.Neuroscience and Biobehavioral Reviews, 132, 304-323. [50] Hannagan T., Amedi A., Cohen L., Dehaene-Lambertz G., & Dehaene S. (2015). Origins of the specialization for letters and numbers in ventral occipitotemporal cortex.Trends in Cognitive Sciences, 19(7), 374-382. [51] Hasson U., Levy I., Behrmann M., Hendler T., & Malach R. (2002). Eccentricity bias as an organizing principle for human high-order object areas. Neuron, 34(3), 479-490. [52] Hernandez A. E., Claussenius-Kalman H. L., Ronderos J., Castilla-Earls A. P., Sun L., Weiss S. D., & Young D. R. (2019). Neuroemergentism: A framework for studying cognition and the brain.Journal of Neurolinguistics, 49, 214-223. [53] Inamizu S., Yamada E., Ogata K., Uehara T., Kira J.-I., & Tobimatsu S. (2020). Neuromagnetic correlates of hemispheric specialization for face and word recognition.Neuroscience Research, 156, 108-116. [54] Johnson, M. H. (2005). Subcortical face processing.Nature Reviews Neuroscience, 6(10), 766-774. [55] Johnson M. H., Senju A., & Tomalski P. (2015). The two-process theory of face processing: Modifications based on two decades of data from infants and adults.Neuroscience and Biobehavioral Reviews, 50, 169-179. [56] Kanjlia S., Lane C., Feigenson L., & Bedny M. (2016). Absence of visual experience modifies the neural basis of numerical thinking.Proceedings of the National Academy of Sciences, 113(40), 11172-11177. [57] Kim H., Kim G.,& Lee, S.-H.(2019). Effects of individuation and categorization on face representations in the visual cortex. [58] Klein E., Suchan J., Moeller K., Karnath H.-O., Knops A., Wood G., .. Willmes K. (2016). Considering structural connectivity in the triple code model of numerical cognition: Differential connectivity for magnitude processing and arithmetic facts.Brain Structure and Function, 221(2), 979-995. [59] Leleu A., Rekow D., Poncet F., Schaal B., Durand K., Rossion B., & Baudouin J.-Y. (2020). Maternal odor shapes rapid face categorization in the infant brain. Developmental Science, 23(2), Article e12877. https://doi.org/10.1111/desc.12877 [60] Lerma-Usabiaga G., Carreiras M., & Paz-Alonso P. M. (2018). Converging evidence for functional and structural segregation within the left ventral occipitotemporal cortex in reading.Proceedings of the National Academy of Sciences, 115(42), E9981-E9990. [61] Li H., Liang Y., Yue Q., Zhang L., Ying K.,& Mei, L.(2021). The contributions of the left fusiform subregions to successful encoding of novel words. [62] Li S., Lee K., Zhao J., Yang Z., He S., & Weng X. (2013). Neural competition as a developmental process: Early hemispheric specialization for word processing delays specialization for face processing.Neuropsychologia, 51(5), 950-959. [63] Liu T. T., Nestor A., Vida M. D., Pyles J. A., Patterson C., Yang Y., .. Behrmann M. (2018). Successful reorganization of category-selective visual cortex following occipito- temporal lobectomy in childhood.Cell Reports, 24(5), 1113-1122. [64] Lochy A., de Heering A., & Rossion B. (2019). The non- linear development of the right hemispheric specialization for human face perception.Neuropsychologia, 126, 10-19. [65] Lochy A., Schiltz C., & Rossion B. (2020). The right hemispheric dominance for face perception in preschool children depends on the visual discrimination level. Developmental Science, 23(3), Article e12914. https://doi.org/10.1111/desc.12914 [66] Lorenz S., Weiner K. S., Caspers J., Mohlberg H., Schleicher A., Bludau S., .. Amunts K. (2017). Two new cytoarchitectonic areas on the human mid-fusiform gyrus.Cerebral Cortex, 27(1), 373-385. [67] Mongelli V., Dehaene S., Vinckier F., Peretz I., Bartolomeo P., & Cohen L. (2017). Music and words in the visual cortex: The impact of musical expertise.Cortex, 86, 260-274. [68] Monzalvo K., Fluss J., Billard C., Dehaene S., & Dehaene-Lambertz G. (2012). Cortical networks for vision and language in dyslexic and normal children of variable socio-economic status.Neuroimage, 61(1), 258-274. [69] Moret-Tatay,C., Baixauli Fortea, I., & Grau Sevilla, M. D.(2020). Challenges and insights for the visual system: Are face and word recognition two sides of the same coin? [70] Nordt M., Gomez J., Natu V., Jeska B., Barnett M., & Grill-Spector K. (2019). Learning to read increases the informativeness of distributed ventral temporal responses.Cerebral Cortex, 29(7), 3124-3139. [71] Nordt M., Gomez J., Natu V. S., Rezai A. A., Finzi D., Kular H., & Grill-Spector K. (2021). Cortical recycling in high-level visual cortex during childhood development.Nature Human Behavior, 5(12), 1686-1697. [72] O'Hearn K., Schroer E., Minshew N., & Luna B. (2010). Lack of developmental improvement on a face memory task during adolescence in autism.Neuropsychologia, 48(13), 3955-3960. [73] Op de Beeck, H. P., Pillet I., & Ritchie J. B. (2019). Factors determining where category-selective areas emerge in visual cortex.Trends in Cognitive Sciences, 23(9), 784-797. [74] Pegado F., Comerlato E., Ventura F., Jobert A., Nakamura K., Buiatti M., .. Dehaene S. (2014). Timing the impact of literacy on visual processing.Proceedings of the National Academy of Sciences, 111(49), E5233-E5242. [75] Powell L. J., Kosakowski H. L., & Saxe R. (2018). Social origins of cortical face areas.Trends in Cognitive Sciences, 22(9), 752-763. [76] Pyles J. A., Verstynen T. D., Schneider W., & Tarr M. J. (2013). Explicating the face perception network with white matter connectivity. PLoS ONE, 8(4), Article e61611. https://doi.org/10.1371/journal.pone.0061611 [77] Rekow D., Baudouin J.-Y., Poncet F., Damon F., Durand K., Schaal B., .. Leleu A. (2021). Odor-driven face-like categorization in the human infant brain. Proceedings of the National Academy of Sciences, 118(21), Article e2014979118. https://doi.org/10.1073/pnas.2014979118 [78] Rekow D., Leleu A., Poncet F., Damon F., Rossion B., Durand K., .. Baudouin, J.-Y.(2020). Categorization of objects and faces in the infant brain and its sensitivity to maternal odor: Further evidence for the role of intersensory congruency in perceptual development. [79] Roberts D. J., Ralph M. A. L., Kim E., Tainturier M.-J., Beeson P. M., Rapcsak S. Z., & Woollams A. M. (2015). Processing deficits for familiar and novel faces in patients with left posterior fusiform lesions.Cortex, 72, 79-96. [80] Roberts D. J., Woollams A. M., Kim E., Beeson P. M., Rapcsak S. Z., & Ralph, M. A. L. (2013). Efficient visual object and word recognition relies on high spatial frequency coding in the left posterior fusiform gyrus: Evidence from a case-series of patients with ventral occipito-temporal cortex damage.Cerebral Cortex, 23(11), 2568-2580. [81] Sabsevitz D. S., Middlebrooks E. H., Tatum W., Grewal S. S., Wharen R., & Ritaccio A. L. (2020). Examining the function of the visual word form area with stereo EEG electrical stimulation: A case report of pure alexia.Cortex, 129, 112-118. [82] Saygin Z. M., Osher D. E., Norton E. S., Youssoufian D. A., Beach S. D., Feather J., .. Kanwisher N. (2016). Connectivity precedes function in the development of the visual word form area.Nature Neuroscience, 19(9), 1250-1255. [83] Sehyr Z. S., Midgley K. J., Holcomb P. J., Emmorey K., Plaut D. C.,& Behrmann, M.(2020). Unique N170 signatures to words and faces in deaf ASL signers reflect experience-specific adaptations during early visual processing. [84] Shum J., Hermes D., Foster B. L., Dastjerdi M., Rangarajan V., Winawer J., .. Parvizi J. (2013). A brain area for visual numerals.The Journal of Neuroscience, 33(16), 6709-6715. [85] Skagenholt M., Skagerlund K.,& Traff, U.(2021). Neurodevelopmental differences in child and adult number processing: An fMRI-based validation of the triple code model. [86] Skagenholt M., Skagerlund K.,& Träff, U.(2022). Neurodevelopmental differences in task-evoked number network connectivity: Comparing symbolic and nonsymbolic number discrimination in children and adults. [87] Skagenholt M., Träff U., Västfjäll D., & Skagerlund K. (2018). Examining the triple code model in numerical cognition: An fMRI study. PLoS ONE, 13(6), Article e0199247. https://doi.org/10.1371/journal.pone.0199247 [88] Stewart L., Henson R., Kampe K., Walsh V., Turner R., & Frith U. (2003). Brain changes after learning to read and play music.Neuroimage, 20(1), 71-83. [89] Susilo T., Wright V., Tree J. J., & Duchaine B. (2015). Acquired prosopagnosia without word recognition deficits.Cognitive Neuropsychology, 32(6), 321-339. [90] Thiebaut de Schotten M., Cohen L., Amemiya E., Braga L. W., & Dehaene S. (2014). Learning to read improves the structure of the arcuate fasciculus.Cerebral Cortex, 24(4), 989-995. [91] Thomas C., Avidan G., Humphreys K., Jung K.-J., Gao F., & Behrmann M. (2009). Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia.Nature Neuroscience, 12(1), 29-31. [92] van Vugt, F. T., Hartmann, K., Altenmüller, E., Mohammadi, B., & Margulies, D. S.(2021). The impact of early musical training on striatal functional connectivity. [93] Vuontela V., Jiang P., Tokariev M., Savolainen P., Ma Y., Aronen E. T., .. Carlson S. (2013). Regulation of brain activity in the fusiform face and parahippocampal place areas in 7-11-year-old children.Brain and Cognition, 81(2), 203-214. [94] Weiner, K. S. (2019). The mid-fusiform sulcus (sulcus sagittalis gyri fusiformis).Anatomical Record, 302(9), 1491-1503. [95] Weiner K. S., Barnett M. A., Lorenz S., Caspers J., Stigliani A., Amunts K., .. Grill-Spector K. (2017). The cytoarchitecture of domain-specific regions in human high-level visual cortex.Cerebral Cortex, 27(1), 146-161. [96] Weiner K. S., Barnett M. A., Witthoft N., Golarai G., Stigliani A., Kay K. N., .. Grill-Spector K. (2018). Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation.Neuroimage, 170, 373-384. [97] Weiner K. S., Golarai G., Caspers J., Chuapoco M. R., Mohlberg H., Zilles K., .. Grill-Spector K. (2014). The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex.Neuroimage, 84, 453-465. [98] Weiner K. S., Natu V. S., & Grill-Spector K. (2018). On object selectivity and the anatomy of the human fusiform gyrus.Neuroimage, 173, 604-609. [99] Weiner K. S., Yeatman J. D., & Wandell B. A. (2017). The posterior arcuate fasciculus and the vertical occipital fasciculus.Cortex, 97, 274-276. [100] Weiner, K. S., & Zilles, K. (2016). The anatomical and functional specialization of the fusiform gyrus.Neuropsychologia, 83, 48-62. [101] Wong, Y. K., & Gauthier, I. (2010). A multimodal neural network recruited by expertise with musical notation.Journal of Cognitive Neuroscience, 22(4), 695-713. [102] Woodhead Z. V., Wise R. J., Sereno M., & Leech R. (2011). Dissociation of sensitivity to spatial frequency in word and face preferential areas of the fusiform gyrus.Cerebral Cortex, 21(10), 2307-2312. [103] Yakovlev, P. I., & Lecours, A. R. (1967). The myelogenetic cycles of regional maturation of the brain. In A. Minkowski (Eds.), [104] Yeatman J. D., Dougherty R. F., Ben-Shachar M., & Wandell B. A. (2012). Development of white matter and reading skills.Proceedings of the National Academy of Sciences, 109(44), E3045-E3053. [105] Yeatman, J. D., & White, A. L. (2021). Reading: The confluence of vision and language.Annual Review of Vision Science, 7, 487-517. [106] Yeo D. J., Wilkey E. D., & Price G. R. (2017). The search for the number form area: A functional neuroimaging meta-analysis.Neuroscience and Biobehavioral Reviews, 78, 145-160. [107] Zhao P., Li S., Zhao J., Gaspar C. M., & Weng X. (2015). Training by visual identification and writing leads to different visual word expertise N170 effects in preliterate Chinese children.Developmental Cognitive Neuroscience, 15, 106-116. |
[1] | Jia Yang, Yipeng Li, Jingqiu Luo, Pinglei Bao. Emergency and Development of Word Recognition Abilities in the Object Space Model [J]. Advances in Psychological Science, 2023, 31(suppl.): 178-178. |
[2] | QI Xingliang, CAI Houde. Mirror equivalence or invariance and its breaking: Evidence from behavioral to cognitive neural mechanism [J]. Advances in Psychological Science, 2021, 29(10): 1855-1865. |
[3] | Rui Dai; Zirui Huang; Xuchu Weng; Sheng He. The specialization of cross-modality tactile face processing in the blind: an fMRI study [J]. Advances in Psychological Science, 2016, 24(Suppl.): 7-. |
[4] | WANG Li-Juan;LUO Hong-Ge;YAO Xue. The Neural Mechanisms of Face Recognition in Autism Spectrum Disorders [J]. , 2009, 17(6): 1177-1184. |
[5] | SHAN Chun-Lei ;LI Jing-Wei;WENG Xu-Chu. Visual Word Form Processing: From Brain Areas to Neural Pathways [J]. , 2008, 16(3): 441-445. |
[6] | Xu Yan,Zhang Yaxu,Zhou Xiaolin. The Cognitive Neuroscience Of Face Processing: A Review [J]. , 2003, 11(1): 35-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||