Advances in Psychological Science ›› 2024, Vol. 32 ›› Issue (11): 1768-1785.doi: 10.3724/SP.J.1042.2024.01768
• Conceptual Framework • Previous Articles Next Articles
ZHANG Zhenduo1, GUO Jianing1, LI Hao2, WANG Honglei3
Received:
2024-04-20
Online:
2024-11-15
Published:
2024-09-05
CLC Number:
ZHANG Zhenduo, GUO Jianing, LI Hao, WANG Honglei. Challenge or hindrance? The impact of platform algorithmic stressor on digital gig workers' proactive service behavior[J]. Advances in Psychological Science, 2024, 32(11): 1768-1785.
[1] 代同亮, 董华, 雷星晖. (2022). 源于挑战还是霸凌:职场压力对破坏性建言行为作用机制研究. [2] 范志灵, 刘善仕, 裴嘉良, 年鹏翔, 张建平. (2023) 感知算法控制对零工工作者安全绩效的非线性影响. [3] 冯向楠, 詹婧. (2019). 人工智能时代互联网平台劳动过程研究——以平台外卖骑手为例. [4] 高雪原, 张志朋, 钱智超, 谢宝国, 闻效仪. (2023). 零工工作者工作压力:形成机理与量表开发. [5] 姜福斌, 王震. (2022). 压力认知评价理论在管理心理学中的应用:场景、方式与迷思. [6] 李海舰, 李凌霄. (2022). 中国“共享员工”劳动用工模式研究. [7] 李胜蓝, 江立华. (2020). 新型劳动时间控制与虚假自由——外卖骑手的劳动过程研究. [8] 李延昊, 苏竣. (2022). 智能技术背景下的新兴自组织形态研究——基于“形成-适应-反馈”的自组织过程分析框架. [9] 李志成, 王震, 祝振兵, 占小军. (2018). 基于情绪认知评价的员工绩效压力对亲组织非伦理行为的影响研究. [10] 刘得格, 时勘, 王永丽, 龚会. (2011). 挑战-阻碍性压力源与工作投入和满意度的关系. [11] 刘善仕, 裴嘉良, 葛淳棉, 刘小浪, 谌一璠. (2022). 在线劳动平台算法管理:理论探索与研究展望. [12] 龙立荣, 梁佳佳, 董婧霓. (2021). 平台零工工作者的人力资源管理:挑战与对策. [13] 马君, 赵爽. (2022). 算法管理与员工创造力的整合分析框架. [14] 裴嘉良, 刘善仕, 崔勋, 瞿皎姣. (2021). 零工工作者感知算法控制:概念化、测量与服务绩效影响验证. [15] 裴嘉良, 刘善仕, 张志朋, 谢宇. (2024). 好算法, 坏算法?算法逻辑下零工工作者的过度劳动研究. [16] 孙锐, 袁圆, 朱秋华, 陈丽君, 赵坤. (2024(2024, 9月). 感知算法控制的双刃剑效应对零工工作者情绪耗竭的影响:基于合法性判断视角. 系统管理学报. http://kns.cnki.net/kcms/detail/31.1977.N.20230905.1543.002.html [17] 魏巍, 刘贝妮. (2023). 算法管理能提高数字零工劳动者的平台承诺吗? ——“控制主义”和“决策主义”的双刃剑效应. [18] 魏巍, 刘贝妮, 凌亚如. (2022). 平台算法下数字零工职业污名感知对离职倾向的影响. [19] 谢小云, 左玉涵, 胡琼晶. (2021). 数字化时代的人力资源管理:基于人与技术交互的视角. [20] 徐虹, 杨红艳, 张妍. (2021). 挑战性-阻断性工作压力对员工创新行为的影响——有调节的中介效应. [21] 姚柱, 罗瑾琏. (2022). 时间压力对知识隐藏的影响研究:动机与情绪的双路径. [22] 玉胜贤, 刘敏, 刘善仕, 刘婷婷. (2024(2024, 4月). 平台算法控制对零工工作者离职倾向的影响机制研究. 管理学报. http://kns.cnki.net/kcms/detail/42.1725.C.20240416.0913.008.html [23] 曾庆巍, 刘爱书, 钟继超. (2016). 沉浸反刍和反思反刍在大学生儿童期心理虐待与特质抑郁间的中介作用. [24] 张志朋, 闻效仪, 钱智超, 高雪原, 裴嘉良. (2024). 算法逻辑下零工工作者的情绪劳动策略选择. [25] 张志学, 赵曙明, 连汇文, 谢小云. (2021). 数智时代的自我管理和自我领导:现状与未来. [26] 周海明, 陆欣欣, 时勘. (2018). 时间压力何时增加工作专注——工作特征的调节作用. [27] Amaya, J., & Holweg, M. (2024). Using algorithms to improve knowledge work.Journal of Operations Management, 70(3), 482-513. [28] Arnold M. B.(1960). Emotion and personality. Columbia University Press. [29] Ashford S. J., Caza B. B., & Reid E. M. (2018). From surviving to thriving in the gig economy: A research agenda for individuals in the new world of work.Research in Organizational Behavior, 38, 23-41. [30] Auer E. M., Behrend T. S., Collmus A. B., Landers R. N., & Miles A. F. (2021). Pay for performance, satisfaction and retention in longitudinal crowdsourced research.Plos One, 16(1), e0245460. [31] Bai B., Dai H., Zhang D. J., Zhang F., & Hu H. (2022). The impacts of algorithmic work assignment on fairness perceptions and productivity: Evidence from field experiments.Manufacturing & Service Operations Management, 24(6), 3060-3078. [32] Barati, M., & Ansari, B. (2022). Effects of algorithmic control on power asymmetry and inequality within organizations.Journal of Management Control, 33(4), 525-544. [33] Bashir, F., & Nadeem, M. (20192019 (201920192019). The linkage between workplace ostracism and proactive customer service performance in Pakistani banking industry: (A conservation of resource and job embeddedness perspective). Science Journal of Business and Management, Forthcoming, Available at SSRN: https://ssrn.com/abstract=3343378 or http://dx.doi.org/10.2139/ssrn.3343378 [34] Behl A., Jayawardena N., Ishizaka A., Gupta M., & Shankar A. (2022). Gamification and gigification: A multidimensional theoretical approach.Journal of Business Research, 139, 1378-1393. [35] Binnewies C., Sonnentag S., & Mojza E. J. (2009). Daily performance at work: Feeling recovered in the morning as a predictor of day-level job performance.Journal of Organizational Behavior, 30(1), 67-93. [36] Brough P., Timms C., Siu O. L., Kalliath T., O’Driscoll M. P., Sit C. H., ... Lu C. Q. (2013). Validation of the Job Demands-Resources model in cross-national samples: Cross-sectional and longitudinal predictions of psychological strain and work engagement.Human Relations, 66(10), 1311-1335. [37] Cram W. A., Wiener M., Tarafdar M., & Benlian A. (2022). Examining the impact of algorithmic control on Uber drivers’ technostress.Journal of Management Information Systems, 39(2), 426-453. [38] Cropley M.,& Zijlstra, F. R. (2011). Work and rumination. In J. Langan-Fox & C. L. Cooper (Eds.), Handbook of Stress in The Occupations (pp. 487-501). Edward Elgar Publishing. [39] Cutolo, D., & Kenney, M. (2021). Platform-dependent entrepreneurs: Power asymmetries, risks, and strategies in the platform economy.Academy of Management Perspectives, 35(4), 584-605. [40] D’Arcy, J., & Teh, P. L. (2019). Predicting employee information security policy compliance on a daily basis: The interplay of security-related stress, emotions, and neutralization.Information & Management, 56(7), 103151. [41] Day A., Paquet S., Scott N., & Hambley L. (2012). Perceived information and communication technology (ICT) demands on employee outcomes: The moderating effect of organizational ICT support.Journal of Occupational Health Psychology, 17(4), 473-491. [42] Duggan J., Sherman U., Carbery R., & McDonnell A. (2020). Algorithmic management and App‐work in the gig economy: A research agenda for employment relations and HRM.Human Resource Management Journal, 30(1), 114-132. [43] Eatough E. M., Chang C. H., Miloslavic S. A., & Johnson R. E. (2011). Relationships of role stressors with organizational citizenship behavior: A meta-analysis.Journal of Applied Psychology, 96(3), 619-632. [44] Flaxman P. E., Stride C. B., Söderberg M., Lloyd J., Guenole N., & Bond F. W. (2018). Relationships between two dimensions of employee perfectionism, postwork cognitive processing, and work day functioning.European Journal of Work and Organizational Psychology, 27(1), 56-69. [45] Galière, S. (2020). When food‐delivery platform workers consent to algorithmic management: A Foucauldian perspective.New Technology, Work and Employment, 35(3), 357-370. [46] Garben, S. (2019). The regulatory challenge of occupational safety and health in the online platform economy.International Social Security Review, 72(3), 95-112. [47] Granger S., Caza B. B., Ashford S. J., & Reid E. M. (2022). Adapting to a jolt: A mixed methods study identifying challenges and personal resources impacting professional gig workers' well-being during COVID-19. [48] Hinkin, T. R. (1998). A brief tutorial on the development of measures for use in survey questionnaires.Organizational Research Methods, 1(1), 104-121. [49] Jago A. S., Raveendhran R., Fast N., & Gratch J. (2024). Algorithmic management diminishes status: An unintended consequence of using machines to perform social roles.Journal of Experimental Social Psychology, 110, 104553. [50] Kellogg K. C., Valentine M. A., & Christin A. (2020). Algorithms at work: The new contested terrain of control.Academy of Management Annals, 14(1), 366-410. [51] Kwon, K., & Kim, T. (2020). An integrative literature review of employee engagement and innovative behavior: Revisiting the JD-R model.Human Resource Management Review, 30(2), 100704. [52] Lazarus, R. S. (1991). Progress on a cognitive-motivational- relational theory of emotion.American Psychologist, 46(8), 819-834. [53] Lazarus, R. S., & Folkman, S. (1984). [54] Lee, M. K. (2018). Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management.Big Data & Society, 5(1), 2053951718756684. [55] Lesener T., Gusy B., & Wolter C. (2019). The job demands- resources model: A meta-analytic review of longitudinal studies.Work & Stress, 33(1), 76-103. [56] Liao, H., & Chuang, A. (2004). A multilevel investigation of factors influencing employee service performance and customer outcomes.Academy of Management Journal, 47(1), 41-58. [57] Liu F., Li P., Taris T. W., & Peeters M. C. (2022). Creative performance pressure as a double‐edged sword for creativity: The role of appraisals and resources. [58] Lu Y., Yang M. M., Zhu J., & Wang Y. (2024). Dark side of algorithmic management on platform worker behaviors: A mixed‐method study.Human Resource Management, 63(3), 477-498. [59] Ma J., Peng Y., & Wu B. (2021). Challenging or hindering? The roles of goal orientation and cognitive appraisal in stressor-performance relationships.Journal of Organizational Behavior, 42(3), 388-406. [60] McCarthy J. M., Trougakos J. P., & Cheng B. H. (2016). Are anxious workers less productive workers? It depends on the quality of social exchange.Journal of Applied Psychology, 101(2), 279-291. [61] Möhlmann M., Zalmanson L., Henfridsson O., & Gregory R. W. (2021). Algorithmic management of work on online labor platforms: When matching meets control.MIS Quarterly, 45(4), 1999-2022. [62] Moore, S., & Hayes, L. J. (2018). The electronic monitoring of care work—The redefinition of paid working time.Humans and Machines at Work, 101-124. [63] Neves P., Mesdaghinia S., Eisenberger R., & Wickham R. E. (2017). Timesizing Proximity and Perceived Organizational Support: Contributions to Employee Well-being and Extra-role Performance.Journal of Change Management, 18(1), 70-90. [64] Newlands, G. (2021). Algorithmic surveillance in the gig economy: The organization of work through Lefebvrian conceived space.Organization Studies, 42(5), 719-737. [65] Nguyen-Phuoc D. Q., Nguyen N. A. N., Nguyen M. H., Nguyen L. N. T., & Oviedo-Trespalacios O. (2022). Factors influencing road safety compliance among food delivery riders: An extension of the job demands- resources (JD-R) model.Transportation Research. Part A: Policy & Practice, 166, 541-556. [66] Nielsen M. B., Mearns K., Matthiesen S. B., & Eid J. (2011). Using the Job Demands-Resources model to investigate risk perception, safety climate and job satisfaction in safety critical organizations.Scandinavian Journal of Psychology, 52(5), 465-475. [67] Nixon A. E., Mazzola J. J., Bauer J., Krueger J. R., & Spector P. E. (2011). Can work make you sick? A meta-analysis of the relationships between job stressors and physical symptoms.Work & Stress, 25(1), 1-22. [68] Parent-Rocheleau, X., & Parker, S. K. (2022). Algorithms as work designers: How algorithmic management influences the design of jobs.Human Resource Management Review, 32(3), 100838. [69] Paškvan M., Kubicek B., Prem R., & Korunka C. (2016). Cognitive appraisal of work intensification.International Journal of Stress Management, 23(2), 124-146. [70] Querstret, D., & Cropley, M. (2012). Exploring the relationship between work-related rumination, sleep quality, and work-related fatigue.Journal of Occupational Health Psychology, 17(3), 341-353. [71] Rank J., Carsten J. M., Unger J. M., & Spector P. E. (2007). Proactive customer service performance: Relationships with individual, task, and leadership variables.Human Performance, 20(4), 363-390. [72] Raub, S., & Liao, H. (2012). Doing the right thing without being told: Joint effects of initiative climate and general self-efficacy on employee proactive customer service performance.Journal of Applied Psychology, 97(3), 651-667. [73] Reeve, J. (2018). [74] Rhee S. Y., Hur W. M., & Kim M. (2017). The relationship of coworker incivility to job performance and the moderating role of self-efficacy and compassion at work: The job demands-resources (JD-R) approach.Journal of Business and Psychology, 32(6), 711-726. [75] Rodell, J. B., & Judge, T. A. (2009). Can “good” stressors spark “bad” behaviors? The mediating role of emotions in links of challenge and hindrance stressors with citizenship and counterproductive behaviors.Journal of Applied Psychology, 94(6), 1438-1451. [76] Sayre, G. M. (2023). The costs of insecurity: Pay volatility and health outcomes.Journal of Applied Psychology, 108(7), 1223-1243. [77] Schaufeli W. B., Salanova M., González-Romá V., & Bakker A. B. (2002). The measurement of engagement and burnout: A two sample confirmatory factor analytic approach.Journal of Happiness Studies, 3(1), 71-92. [78] Shevchuk A., Strebkov D., & Davis S. N. (2018). Work value orientations and worker well-being in the new economy: Implications of the job demands-resources model among internet freelancers.International Journal of Sociology and Social Policy, 38(9/10), 736-753. [79] Smith R. E., Smoll F. L., & Schutz R. W. (1990). Measurement and correlates of sport-specific cognitive and somatic trait anxiety: The Sport Anxiety Scale.Anxiety Research, 2(4), 263-280. [80] Tarafdar M., Cooper C. L., & Stich J. F. (2019). The technostress trifecta‐techno eustress, techno distress and design: Theoretical directions and an agenda for research.Information Systems Journal, 29(1), 6-42. [81] Vahle-Hinz T., Mauno S., De Bloom J., & Kinnunen U. (2017). Rumination for innovation? Analysing the longitudinal effects of work-related rumination on creativity at work and off-job recovery.Work & Stress, 31(4), 315-337. [82] Vallas, S., & Schor, J. B. (2020). What do platforms do? Understanding the gig economy.Annual Review of Sociology, 46, 273-294. [83] Van Doorn, N. (2017). Platform labor: On the gendered and racialized exploitation of low-income service work in the ‘on-demand’ economy.Information, Communication & Society, 20(6), 898-914. [84] Waardenburg L., Huysman M., & Sergeeva A. V. (2022). In the land of the blind, the one-eyed man is king: Knowledge brokerage in the age of learning algorithms.Organization Science, 33(1), 59-82. [85] Wang C., Chen J., & Xie P. (2022). Observation or interaction? Impact mechanisms of gig platform monitoring on gig workers’ cognitive work engagement.International Journal of Information Management, 67, 102548. [86] Weinberger E., Wach D., Stephan U., & Wegge J. (2018). Having a creative day: Understanding entrepreneurs' daily idea generation through a recovery lens.Journal of Business Venturing, 33(1), 1-19. [87] Wiener M., Cram W. A., & Benlian A. (2023). Algorithmic control and gig workers: A legitimacy perspective of Uber drivers.European Journal of Information Systems, 32(3), 485-507. [88] Wood A. J., Graham M., Lehdonvirta V., & Hjorth I. (2019). Good gig, bad gig: Autonomy and algorithmic control in the global gig economy.Work, Employment and Society, 33(1), 56-75. [89] Wu, D., & Huang, J. L. (2024). Gig work and gig workers: An integrative review and agenda for future research. [90] Wu Q., Zhang H., Li Z., & Liu K. (2019). Labor control in the gig economy: Evidence from Uber in China.Journal of Industrial Relations, 61(4), 574-596. [91] Wu X., Liu Q., Qu H., & Wang J. (2023). The effect of algorithmic management and workers’ coping behavior: An exploratory qualitative research of Chinese food-delivery platform.Tourism Management, 96, 104716. [92] Xie, H., & Feng, X. (2023). Feeling stressed but in full flow? Leader mindfulness shapes subordinates’ perseverative cognition and reaction.Journal of Managerial Psychology, 39(3), 323-351. [93] Ybarra, M. L., & Mitchell, K. J. (2007). Prevalence and frequency of Internet harassment instigation: Implications for adolescent health.Journal of Adolescent Health, 41(2), 189-195. |
[1] | SU Tao, ZENG Haowen, ZHONG Xiaolin, MA Wencong, CHEN Xiude. Woe-fortune interdependence: A meta-analysis of the two-sided effect of narcissistic leadership on subordinates’ work efficiency [J]. Advances in Psychological Science, 2024, 32(9): 1463-1487. |
[2] | LIU Zhengguang, LI Mengyin. Being a good parent helps to be a better leader? A leadership development model from parent-leader enrichment perspective [J]. Advances in Psychological Science, 2024, 32(9): 1551-1566. |
[3] | ZHAO Kai, YANG Runshu, YU Xi, PENG Gege. Exploring the proximal and distal ripple effects of star employees in the organizational context: The theoretical framework of social influence [J]. Advances in Psychological Science, 2024, 32(8): 1265-1286. |
[4] | LI Yuhui, YANG Chenlu. The concept of team temporal leadership and its mechanisms on team and individual effectiveness [J]. Advances in Psychological Science, 2024, 32(7): 1073-1086. |
[5] | CHEN Silu, ZHANG Guanglei, LIU Wenxing, TIAN Yuan. The driving mechanism and its function mechanism of gratitude-focused human resource management practices [J]. Advances in Psychological Science, 2024, 32(6): 908-927. |
[6] | LIU Xia, WEI Wu. The interpersonal effects and mechanisms of workplace mindfulness [J]. Advances in Psychological Science, 2024, 32(6): 981-994. |
[7] | CHENG Xiang, LI Fangjun. The ambivalent reaction of being envied: A perspective of self-based agency and communion [J]. Advances in Psychological Science, 2023, 31(12): 2406-2418. |
[8] | HUANG Min-xue, LIU Yuan. Psychological mechanisms underlying adopting human-machine collaboration in augmented managerial decision-making: A perspective of Self-Determination Theory [J]. Advances in Psychological Science, 2023, 31(11): 1981-1993. |
[9] | CAO Man, ZHAO Shuming, ZHANG Qiuping, LÜ Hongjiang. The effect of team leaders’ Simmelian brokerage on team cooperation from the social network perspective [J]. Advances in Psychological Science, 2023, 31(11): 1994-2004. |
[10] | ZHANG Xinggui, HU Xiandan, SU Tao. Do high performance work systems impair employee well-being? Evidence from a meta-analysis [J]. Advances in Psychological Science, 2023, 31(11): 2005-2024. |
[11] | FU Chunjie, ZHANG Qian, JIANG Jianwu, LI Rui, WANG Wei. The dynamic mechanism of voice behavior oriented human resource practice promoting employee subsequent voice behavior [J]. Advances in Psychological Science, 2023, 31(10): 1800-1813. |
[12] | SUN Jianqun, YE Wenjuan, LI Rui, TIAN Xiaoming. The antecedents and consequences of team constructive deviation: A routine-evolution perspective [J]. Advances in Psychological Science, 2023, 31(6): 932-943. |
[13] | ZHOU Kong, ZHOU Xuan, YING Xueqing. From idea generation to idea implementation: The effects of team pay-for-performance on team innovation [J]. Advances in Psychological Science, 2023, 31(6): 944-957. |
[14] | CHENG Ken, WANG Yifei, LIN Yinghui, WANG Jing. Observer reactions to unethical pro-organizational behavior and their feedback effects [J]. Advances in Psychological Science, 2022, 30(9): 1944-1954. |
[15] | CHEN Xiao, XIE Bin, PENG Jian, NIE Qi. The antecedents and consequences of workplace loneliness: A regulatory focus theory perspective [J]. Advances in Psychological Science, 2022, 30(7): 1463-1481. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||