心理科学进展 ›› 2024, Vol. 32 ›› Issue (10): 1659-1669.doi: 10.3724/SP.J.1042.2024.01659
隋雪1, 李昱霖1, 岳泽明1, 刘新1, 李雨桐1(), 刘顺华2()
收稿日期:
2024-01-10
出版日期:
2024-10-15
发布日期:
2024-08-13
通讯作者:
李雨桐, E-mail: dearliyutong@163.com;基金资助:
SUI Xue1, LI Yulin1, YUE Zeming1, LIU Xin1, LI Yutong1(), LIU Shunhua2()
Received:
2024-01-10
Online:
2024-10-15
Published:
2024-08-13
摘要:
预测性加工是指在词汇语义加工之前进行有效地预测形成预测性认知。预测性认知形成有两个主要影响因素: 先验知识和语境信息。两个因素对预测性认知形成共同作用, 相互促进。已形成的预测性认知在后续语义加工过程中还会发生相应的改变。本文梳理了能够解释预测性认知形成的理论并探讨了预测性认知形成的神经机制。最后从性别因素、语境信息呈现的时间、语境信息的唤醒度、自变量的控制等方面对未来研究进行了展望。
中图分类号:
隋雪, 李昱霖, 岳泽明, 刘新, 李雨桐, 刘顺华. (2024). 言语加工过程中预测的形成: 影响因素和神经机制. 心理科学进展 , 32(10), 1659-1669.
SUI Xue, LI Yulin, YUE Zeming, LIU Xin, LI Yutong, LIU Shunhua. (2024). Prediction formation during speech perception: Factors and neural mechanisms. Advances in Psychological Science, 32(10), 1659-1669.
[1] |
刘志方, 仝文, 张智君, 赵亚军. (2020). 语境预测性对阅读中字词加工过程的影响: 眼动证据. 心理学报, 52(9), 1031-1047.
doi: 10.3724/SP.J.1041.2020.01031 |
[2] |
仝文, 余雪, 刘志方, 朱星宇, 齐琦. (2022). 快慢读者利用语境信息的差异: 加工深度的作用. 心理与行为研究, 20(4), 450-456.
doi: 10.12139/j.1672-0628.2022.04.003 |
[3] |
王霞, 卢家楣, 陈武英. (2019). 情绪词加工过程及其情绪效应特点: ERP的证据. 心理科学进展, 27(11), 1842-1852.
doi: 10.3724/SP.J.1042.2019.01842 |
[4] |
王祯, 管健. (2021). 积极刻板印象会产生消极影响? 心理科学进展, 29(9), 1657-1668.
doi: 10.3724/SP.J.1042.2021.01657 |
[5] |
杨琪, 蒋晓鸣, 周晓林. (2022). 语言理解中的预设加工. 心理科学进展, 30(7), 1511-1523.
doi: 10.3724/SP.J.1042.2022.01511 |
[6] | Afflerbach, P. (1990). The influence of prior knowledge and text genre on readers' prediction strategies. Journal of Reading Behavior, 22(2), 131-148. |
[7] | Aristei, S., Knoop, C. A., Lubrich, O., Nehrlich, T., Enge, A., Stark, K., ... Abdel Rahman, R. (2022). Affect as anaesthetic: How emotional contexts modulate the processing of counterintuitive concepts. Language, Cognition and Neuroscience, 38(10), 1514-1530. |
[8] |
Baetens, K., der Cruyssen, L. V., Achtziger, A., Vandekerckhove, M., & Van Overwalle, F. (2011). N400 and LPP in spontaneous trait inferences. Brain Research, 1418, 83-92.
doi: 10.1016/j.brainres.2011.08.067 pmid: 21930263 |
[9] |
Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in Cognitive Sciences, 11(7), 280-289.
doi: 10.1016/j.tics.2007.05.005 pmid: 17548232 |
[10] | Bornkessel-Schlesewsky, I., Sharrad, I., Howlett, C. A., Alday, P. M., Corcoran, A. W., Bellan, V., … Schlesewsky, M. (2022). Rapid adaptation of predictive models during language comprehension: Aperiodic EEG slope, individual alpha frequency and idea density modulate individual differences in real-time model updating. Frontiers in Psychology, 13, 817516. |
[11] | Broderick, M. P., Di Liberto, G. M., Anderson, A. J., Rofes, A., & Lalor, E. C. (2021). Dissociable electrophysiological measures of natural language processing reveal differences in speech comprehension strategy in healthy ageing. Scientific Reports, 11(1), 4963. |
[12] | Broeker, L., Ewolds, H., de Oliveira, R. F., Künzell, S., & Raab, M. (2020). Additive effects of prior knowledge and predictive visual information in improving continuous tracking performance. Journal of Cognition, 3(1), 1-12. |
[13] |
Canal, P., Garnham, A., & Oakhill, J. (2015). Beyond gender stereotypes in language comprehension: Self sex-role descriptions affect the brain's potentials associated with agreement processing. Frontiers in Psychology, 6, 1953.
doi: 10.3389/fpsyg.2015.01953 pmid: 26779046 |
[14] | Davis, M. H., & Sohoglu, E. (2020). Three functions of prediction error for Bayesian inference in speech perception. In Gazzaniga, M. et al., (Eds.), The cognitive neurosciences (6th ed., pp. 177-189). MIT Press. |
[15] | Diekman, A. B., & Eagly, A. H. (2000). Stereotypes as dynamic constructs: Women and men of the past, present, and future. Personality and Social Psychology Bulletin, 26(10), 1171-1188. |
[16] | Dikker, S., & Pylkkänen, L. (2013). Predicting language: MEG evidence for lexical preactivation. Brain & Language, 127(1), 55-64. |
[17] | Ding, J., Wang, L., & Yang, Y. (2016). The dynamic influence of emotional words on sentence comprehension: An ERP study. Cognitive, Affective, & Behavioral Neuroscience, 16(3), 433-446. |
[18] | Ding, J., Wang, L., & Yang, Y. (2019). The influence of emotional words on predictive processing during sentence comprehension. Language, Cognition and Neuroscience, 35(2), 151-162. |
[19] | Ehrlich, S. F., & Rayner, K. (1981). Contextual effects on word perception and eye movements during reading. Journal of Verbal Learning and Verbal Behavior, 20(6), 641-655. |
[20] |
Elman, J. L. (2009). On the meaning of words and dinosaur bones: Lexical knowledge without a lexicon. Cognitive Science, 33(4), 547-582.
doi: 10.1111/j.1551-6709.2009.01023.x pmid: 19662108 |
[21] |
Federmeier, K. D., Wlotko, E. W., De Ochoa-Dewald, E., & Kutas, M. (2007). Multiple effects of sentential constraint on word processing. Brain Research, 1146, 75-84.
pmid: 16901469 |
[22] | Frazier, L., & Fodor, J. D. (1978). The sausage machine: A new two-stage parsing model. Cognition, 6(4), 291-325. |
[23] | Frisson, S., Harvey, D. R., & Staub, A. (2017). No prediction error cost in reading: Evidence from eye movements. Journal of Memory and Language, 95, 200-214. |
[24] |
Friston, K. J., Bastos, A. M., Pinotsis, D., & Litvak, V. (2015). LFP and oscillations—What do they tell us? Current Opinion in Neurobiology, 31, 1-6.
doi: 10.1016/j.conb.2014.05.004 pmid: 25079053 |
[25] |
Gaschler, R., Kemper, M., Zhao, F., Pumpe, I., Ruderisch, C. B., Röttger, E., & Haider, H. (2018). Differential effects of cue-based and sequence knowledge-based predictability on multitasking performance. Acta Psychologica, 191, 76-86.
doi: S0001-6918(18)30077-5 pmid: 30227313 |
[26] |
Goldstein, A., Zada, Z., Buchnik, E., Schain, M., Price, A., Aubrey, B., ... Hasson, U. (2022). Shared computational principles for language processing in humans and deep language models. Nature Neuroscience, 25(3), 369-380.
doi: 10.1038/s41593-022-01026-4 pmid: 35260860 |
[27] | Grant, A., Grey, S., & van Hell, J. G. (2020). Male fashionistas and female football fans: Gender stereotypes affect neurophysiological correlates of semantic processing during speech comprehension. Journal of Neurolinguistics, 53, 100876. |
[28] | Gubelmann, R., & Handschuh, S. (2022). Context matters: A pragmatic study of PLMs’ negation understanding. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers), 4602-4621. Dublin, Ireland. |
[29] |
Hegarty, P., & Pratto, F. (2001). The effects of social category norms and stereotypes on explanations for intergroup differences. Journal of Personality and Social Psychology, 80(5), 723-735.
pmid: 11374745 |
[30] | Hinojosa, J. A., Moreno, E. M., & Ferré, P. (2019). Affective neurolinguistics: Towards a framework for reconciling language and emotion. Language, Cognition and Neuroscience, 35(7), 813-839. |
[31] | Hinojosa, J. A., Moreno, E. M., & Ferré, P. (2020). Affective neurolinguistics: Towards a framework for reconciling language and emotion. Language, Cognition and Neuroscience, 35(7), 813-839. |
[32] |
Hoeks, J. C., Stowe, L. A., & Doedens, G. (2004). Seeing words in context: The interaction of lexical and sentence level information during reading. Cognitive brain research, 19(1), 59-73.
pmid: 14972359 |
[33] | Hopp, H., & Godfroid, A. (2023). Introduction:Second language acquisition and psycholinguistics. In A. Godfroid, & H. Hopp. (Eds.). The Routledge handbook of second language acquisition and psycholinguistics (pp. 1-9). Routledge. |
[34] | Huang, Z., Feng, C., & Qu, Q. (2023). Predicting coarse-grained semantic features in language comprehension: Evidence from ERP representational similarity analysis and Chinese classifier. Cerebral Cortex, 33(13), 8312-8320. |
[35] | Hubbard, R. J., & Federmeier, K. D. (2021). Representational pattern similarity of electrical brain activity reveals rapid and specific prediction during language comprehension. Cerebral Cortex, 31(9), 4300-4313. |
[36] | Kahalon, R., Shnabel, N., & Becker, J. C. (2020). The effects of exposure to positive gender stereotypes on women’s and men’s performance in counter-stereotypical tasks and pursuit of agentic and communal goals. Social Psychology, 51(1), 50-62. |
[37] | Kendeou, P., & Van Den Broek, P. (2007). The effects of prior knowledge and text structure on comprehension processes during reading of scientific texts. Memory & Cognition, 35(7), 1567-1577. |
[38] |
Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity analysis-connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 4.
doi: 10.3389/neuro.06.004.2008 pmid: 19104670 |
[39] | Kutas, M., & Hillyard, S. A. (1984). Event-Related Brain Potentials (ERPs) Elicited by novel stimuli during sentence processing. Annals of the New York Academy of Sciences, 425, 236-241. DOI: 10.1111/j.1749-6632.1984.tb23540.x. |
[40] | Kwisthout, J., & Van Rooij, I. (2020). Computational resource demands of a predictive Bayesian brain. Computational Brain & Behavior, 3, 174-188. |
[41] | Lieder, F., & Griffiths, T. L. (2020). Resource-rational analysis: Understanding human cognition as the optimal use of limited computational resources. Behavioral and Brain Sciences, 43, e1: 1-60. |
[42] |
Luke, S. G., & Christianson, K. (2016). Limits on lexical prediction during reading. Cognitive Psychology, 88, 22-60.
doi: 10.1016/j.cogpsych.2016.06.002 pmid: 27376659 |
[43] | Lund, T. C., Sidhu, D. M., & Pexman, P. M. (2019). Sensitivity to emotion information in children’s lexical processing. Cognition, 190, 61-71. |
[44] |
Macdonald, S. E. (1994). Gorillas' (gorilla gorilla gorilla) spatial memory in a foraging task. Journal of Comparative Psychology, 108(2), 107-113.
pmid: 8026161 |
[45] | Malmir, A., & Taji, N. (2021). The interplay of action, context, and linguistic vs. non-linguistic resources in L2 pragmatic performance: The case of requests and refusals. Language Related Research, 12(3), 215-253. |
[46] | McNally, L. (2013). Semantics and pragmatics. WIREs Cognitive Science, 4(3), 285-297. |
[47] |
Pfister, R., Heinemann, A., Kiesel, A., Thomaschke, R., & Janczyk, M. (2012). Do endogenous and exogenous action control compete for perception? Journal of Experimental Psychology: Human Perception and Performance, 38(2), 279-284.
doi: 10.1037/a0026658 pmid: 22201462 |
[48] | Piai, V., Anderson, K. L., Lin, J. J., Dewar, C., Parvizi, J., Dronkers, N. F., & Knight, R. T. (2016). Direct brain recordings reveal hippocampal rhythm underpinnings of language processing. Proceedings of the National Academy of Sciences, 113(40), 11366-11371. |
[49] |
Regel, S., Coulson, S., & Gunter, T. C. (2010). The communicative style of a speaker can affect language comprehension? ERP evidence from the comprehension of irony. Brain Research, 1311, 121-135.
doi: 10.1016/j.brainres.2009.10.077 pmid: 19900421 |
[50] |
Reuter, T., Emberson, L., Romberg, A., & Lew-Williams, C. (2018). Individual differences in nonverbal prediction and vocabulary size in infancy. Cognition, 176, 215-219.
doi: S0010-0277(18)30068-4 pmid: 29604470 |
[51] | Ryskin, R., Levy, R. P., & Fedorenko, E. (2020). Do domain- general executive resources play a role in linguistic prediction? Re-evaluation of the evidence and a path forward. Neuropsychologia, 136, 107258. |
[52] |
Ryskin, R., & Nieuwland, M. S. (2023). Prediction during language comprehension: What is next? Trends in Cognitive Sciences, 27(11), 1032-1052.
doi: 10.1016/j.tics.2023.08.003 pmid: 37704456 |
[53] | Shain, C., Blank, I. A., van Schijndel, M., Schuler, W., & Fedorenko, E. (2020). fMRI reveals language-specific predictive coding during naturalistic sentence comprehension. Neuropsychologia, 138, 107307. |
[54] | Smith, R., Snow, P., Serry, T., & Hammond, L. (2021). The role of background knowledge in reading comprehension: A critical review. Reading Psychology, 42(3), 214-240. |
[55] |
Sohoglu, E., Peelle, J. E., Carlyon, R. P., & Davis, M. H. (2012). Predictive top-down integration of prior knowledge during speech perception. Journal of Neuroscience, 32(25), 8443-8453.
doi: 10.1523/JNEUROSCI.5069-11.2012 pmid: 22723684 |
[56] | Tanenhaus, M. K., & Trueswell, C. (1995). Sentence comprehension. In J. L. Miller, & P. D. Eimas (Eds.). Speech, language, and communication (pp. 217-262). San Diego, CA: Academic Press. |
[57] | Thomas, S. (1995). Predictive strategies in teaching reading comprehension. Jumal Pendidik dan Pendidikan, 14, 103-112. |
[58] | Ufer, C., & Blank, H. (2023). Multivariate analysis of brain activity patterns as a tool to understand predictive processes in speech perception. Language, Cognition and Neuroscience, 1-17. |
[59] | van Berkum, J. J. A. (2018). Language comprehension, emotion, and sociality:Aren’t we missing something? In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of psycholinguistics (pp. 644-670). Oxford University Press. |
[60] | van Berkum, J. J. A. (2019). Language comprehension and emotion:Where are the interfaces, and who cares? In G. I. de Zubicaray, & N. O. Schiller (Eds.), The Oxford handbook of neurolinguistics (pp. 736-766). Oxford University Press. |
[61] |
van Berkum, J. J. A., van den Brink, D., Tesink, C. M. J. Y., Kos, M., & Hagoort, P. (2008). The neural integration of speaker and message. Journal of Cognitive Neuroscience, 20(4), 580-591.
doi: 10.1162/jocn.2008.20054 pmid: 18052777 |
[62] |
van den Brink, D., van Berkum, J. J. A., Bastiaansen, M. C. M., Tesink, C. M. J. Y., Kos, M., Buitelaar, J. K., & Hagoort, P. (2012). Empathy matters: ERP evidence for inter-individual differences in social language processing. Social Cognitive and Affective Neuroscience, 7(2), 173-183.
doi: 10.1093/scan/nsq094 pmid: 21148175 |
[63] | Vandello, J. A., Hettinger, V. E., Bosson, J. K., & Siddiqi, J. (2013). When equal isn't really equal: The masculine dilemma of seeking work flexibility. Journal of Social Issues, 69(2), 303-321. |
[64] | Villiger, D. (2023). Stereotypes and self-fulfilling prophecies in the Bayesian brain. Inquiry, 1-25. |
[65] |
Wang, L., Bastiaansen, M., & Yang, Y. (2015). The influence of emotional salience on the integration of person names into context. Brain Research, 1609, 82-92.
doi: 10.1016/j.brainres.2015.03.028 pmid: 25813827 |
[66] | Wang, L., Kuperberg, G., & Jensen, O. (2018). Specific lexico-semantic predictions are associated with unique spatial and temporal patterns of neural activity. Elife, 7, e39061. |
[67] |
Wang, L., Wlotko, E., Alexander, E., Schoot, L., Kim, M., Warnke, L., & Kuperberg, G. R. (2020). Neural evidence for the prediction of animacy features during language comprehension: Evidence from MEG and EEG representational similarity analysis. Journal of Neuroscience, 40(16), 3278-3291.
doi: 10.1523/JNEUROSCI.1733-19.2020 pmid: 32161141 |
[68] | Wei, W., Huang, Z., Feng, C., & Qu, Q. (2023). Predicting phonological information in language comprehension: Evidence from ERP representational similarity analysis and Chinese idioms. Cerebral Cortex, 33(15), 9367-9375. |
[69] |
White, K. R., Crites, S. L., Taylor, J. H., & Corral, G. (2009). Wait, what? Assessing stereotype incongruities using the N400 ERP component. Social Cognitive and Affective Neuroscience, 4(2), 191-198.
doi: 10.1093/scan/nsp004 pmid: 19270040 |
[70] | Wrobel, M. R. (2020). The impact of lexicon adaptation on the emotion mining from software engineering artifacts. IEEE Access, 8, 48742-48751. |
[71] |
Yao, Z., Xuan, Y., & Zhu, X. (2019). Effect of experience information on emotional word processing in alexithymia. Journal of Affective Disorders, 259, 251-258.
doi: S0165-0327(19)31461-2 pmid: 31446387 |
[72] | Zhang, Q., Ding, J., Zhang, Z., Yang, X., & Yang, Y. (2021). The effect of congruent emotional context in emotional word processing during discourse comprehension. Journal of Neurolinguistics, 59, 100989. |
[73] | Zhang, Q., Mou, C., Yang, X., Yang, Y., & Li, L. (2022). EXPRESS: The effect of contextual arousal on the integration of emotional words during discourse comprehension. Quarterly Journal of Experimental Psychology, 76(4), 17470218221098838. |
[1] | 陈志琴, 马家涛, 张雪婷. 得不偿失: 序贯决策中的短视风险漠视[J]. 心理科学进展, 2024, 32(12): 1980-1989. |
[2] | 赵一帆, 李君君, 毕鸿燕. 视觉运动整合能力与阅读关系的发展[J]. 心理科学进展, 2024, 32(12): 2091-2099. |
[3] | 张湘一, 吴一琳. 视觉注意对决策的影响及其作用机制[J]. 心理科学进展, 2024, 32(11): 1829-1843. |
[4] | 齐登辉, 张得龙. 超越视觉限制:失象症的跨学科探索[J]. 心理科学进展, 2024, 32(11): 1844-1853. |
[5] | 周帆, 田昊月, 姜英杰. 记忆快速巩固:基于图式的学习与重复再激活[J]. 心理科学进展, 2024, 32(11): 1854-1871. |
[6] | 高程, 刘昌. 加工流畅性、期望和认知目标如何塑造审美判断?——基于多模型整合的视角[J]. 心理科学进展, 2024, 32(11): 1872-1881. |
[7] | 骆南峰, 李统鉴, 陈雯, 张慧君, 刘俊池, 沈子维. 突破性创造力与渐进性创造力真的区分开了吗? 基于2011~2024文献的分析[J]. 心理科学进展, 2024, 32(11): 1882-1897. |
[8] | 孙丽君, 杨玉芳. 预期视角下音乐节拍结构的认知与神经机制[J]. 心理科学进展, 2024, 32(10): 1567-1577. |
[9] | 李兴珊, 张淇玮, 黄林洁琼. 中文词汇语义加工过程的计算模拟与实验验证[J]. 心理科学进展, 2024, 32(9): 1379-1392. |
[10] | 匡仪, 黄元娜, 马家涛, 尹述飞. 时空框架效应的理论与应用探索[J]. 心理科学进展, 2024, 32(9): 1416-1429. |
[11] | 韩海宾, 李兴珊. 听到“牛黄”能想到“黄牛”吗?——口语识别中的语音位置编码机制[J]. 心理科学进展, 2024, 32(9): 1488-1501. |
[12] | 刘月月, 何文广. 书写认知老化发生机制及神经机理[J]. 心理科学进展, 2024, 32(9): 1502-1513. |
[13] | 李俊朋, 周临舒, 江俊, 王丹妮, 蒋存梅. 音乐对亲社会行为的影响及其作用机制[J]. 心理科学进展, 2024, 32(7): 1179-1194. |
[14] | 付春野, 李艾馨, 吕小康, 王崇颖. 孤独症谱系障碍者的视觉感知:基于贝叶斯和预测编码视角[J]. 心理科学进展, 2024, 32(7): 1164-1178. |
[15] | 常茜芮, 何蔚祺. 网络游戏成瘾者的情绪加工异常[J]. 心理科学进展, 2024, 32(7): 1152-1163. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||