心理科学进展 ›› 2022, Vol. 30 ›› Issue (11): 2487-2496.doi: 10.3724/SP.J.1042.2022.02487
收稿日期:
2021-10-18
出版日期:
2022-11-15
发布日期:
2022-11-09
通讯作者:
黄艳利,谢久书
E-mail:yhuangpsy@163.com;jiusxie@outlook.com
基金资助:
MA Yanan, HUANG Yanli(), SHI Yujing, XIE Jiushu()
Received:
2021-10-18
Online:
2022-11-15
Published:
2022-11-09
Contact:
HUANG Yanli,XIE Jiushu
E-mail:yhuangpsy@163.com;jiusxie@outlook.com
摘要:
Bouba-Kiki效应(简称BK效应)指语音和形状特征之间的映射关系。针对BK效应的产生机制, 先天论和后天论之间争论激烈。先天论的观点认为人们对语音象征的敏感性是出生时便存在的一种语言机制。而后天论的观点则强调语音象征是语言经验的产物。上述理论均获得大量研究证据的支持, 且均无法完全否定对方。这表明, 上述理论可能均未完整揭示语音象征的产生机制。鉴于此, 针对BK效应的产生机制, 梳理先天论与后天论的支持证据, 并率先提出语言相关的BK效应敏感期假设。同时, 梳理了支持BK效应敏感期的初步研究证据及可能的影响因素。进而, 以语言相关的BK效应敏感期假设为基础, 提出语音象征产生的先天后天相互作用模型, 以整合以往研究中的矛盾。最后, 展望了语音象征的未来研究进展和方向。
中图分类号:
马亚男, 黄艳利, 石宇婧, 谢久书. (2022). 语音象征的产生机制:基于敏感期的先天后天作用模型. 心理科学进展 , 30(11), 2487-2496.
MA Yanan, HUANG Yanli, SHI Yujing, XIE Jiushu. (2022). The mechanism of sound symbolism: Innate and acquired interaction model based on the sensitive period. Advances in Psychological Science, 30(11), 2487-2496.
[1] | 谢久书, 沈光银, 黄艳利. (印刷中). 双语者跨语言正字法迁移的争议与整合. 心理科学. |
[2] |
Asano, M., Imai, M., Kita, S., Kitajo, K., Okada, H., & Thierry, G. (2015). Sound symbolism scaffolds language development in preverbal infants. Cortex, 63, 196-205. https://doi.org/10.1016/j.cortex.2014.08.025
doi: 10.1016/j.cortex.2014.08.025 URL pmid: 25282057 |
[3] |
Blasi, D. E., Wichmann, S., Hammarström, H., Stadler, P. F., & Christiansen, M. H. (2016). Sound-meaning association biases evidenced across thousands of languages. Proceedings of the National Academy of Sciences, 113(39), 10818-10823. https://doi.org/10.1073/pnas.1605782113
doi: 10.1073/pnas.1605782113 URL |
[4] |
Bottini, R., Barilari, M., & Collignon, O. (2019). Sound symbolism in sighted and blind. The role of vision and orthography in sound-shape correspondences. Cognition, 185, 62-70. https://doi.org/10.1016/j.cognition.2019.01.006
doi: S0010-0277(19)30006-X URL pmid: 30660923 |
[5] |
Brand, J., Monaghan, P., & Walker, P. (2018). The changing role of sound-symbolism for small versus large vocabularies. Cognitive Science, 42(2), 578-590. https://doi.org/10.1111/cogs.12565
doi: 10.1111/cogs.12565 URL |
[6] |
Chow, H. M., & Ciaramitaro, V. (2019). What makes a shape "baba"? The shape features prioritized in sound-shape correspondence change with development. Journal of Experimental Child Psychology, 179, 73-89. https://doi.org/10.1016/j.jecp.2018.10.005
doi: S0022-0965(18)30139-5 URL pmid: 30476696 |
[7] |
Cuskley, C., Simner, J., & Kirby, S. (2017). Phonological and orthographic influences in the Bouba-Kiki effect. Psychological Research, 81(1), 119-130. https://doi.org/10.1007/s00426-015-0709-2
doi: 10.1007/s00426-015-0709-2 URL pmid: 26403463 |
[8] |
D'Anselmo, A., Prete, G., Zdybek, P., Tommasi, L., & Brancucci, A.(2019). Guessing meaning from word sounds of unfamiliar languages: A cross-cultural sound symbolism study. Frontiers in Psychology, 10, 593. https://doi.org/10.3389/fpsyg.2019.00593
doi: 10.3389/fpsyg.2019.00593 URL pmid: 30941080 |
[9] | Delgado, J., Pereira, R., Ferreira, M. F., Farinha-Fernandes, A., Guerreiro, J. C., Faustino, B., Domingues, M., Ventura, P. (2020). Sound symbolism is modulated by linguistic experience. Revista da Associação Portuguesa de Linguística, 7, 137-150. https://doi.org/10.26334/2183-9077/rapln7ano2020a9 |
[10] |
Dingemanse, M., Blasi, D. E., Lupyan, G., Christiansen, M. H., & Monaghan, P. (2015). Arbitrariness, iconicity and systematicity in language. Trends Cognitive Science, 19(10), 603-615. https://doi.org/10.1016/j.tics.2015.07.013
doi: 10.1016/j.tics.2015.07.013 URL |
[11] | Ernst, M. O. (2007). Learning to integrate arbitrary signals from vision and touch. Journal of Vision, 7(5), 7-14. https://doi.org/10.1167/7.5.7 %J Journal of Vision |
[12] | Fort, M., Lammertink, I., Peperkamp, S., Guevara-Rukoz, A., Fikkert, P., & Tsuji, S. (2018). Symbouki: A meta-analysis on the emergence of sound symbolism in early language acquisition. Developmental Science, 21(5), e12659. https://doi.org/10.1111/desc.12659 |
[13] | Fort, M., Weiss, A., Martin, A., & Peperkamp, S. (2013). Looking for the bouba-kiki effect in prelexical infants. In S. Ouni, F. Berthomier, & A. Jesse (Eds.),The 12th International Conference on Auditory-Visual Speech Processing (pp. 71-76). INRIA. |
[14] |
Fryer, L., Freeman, J., & Pring, L. (2014). Touching words is not enough: How visual experience influences haptic- auditory associations in the "Bouba-Kiki" effect. Cognition, 132(2), 164-173. https://doi.org/10.1016/j.cognition.2014.03.01
doi: 10.1016/j.cognition.2014.03.015 URL |
[15] |
Gabard-Durnam, L., & McLaughlin, K. A. (2020). Sensitive periods in human development: Charting a course for the future. Current Opinion in Behavioral Sciences, 36, 120-128. https://doi.org/10.1016/j.cobeha.2020.09.003
doi: 10.1016/j.cobeha.2020.09.003 URL |
[16] |
Gold, R., & Segal, O. (2020). The Bouba-Kiki effect in persons with prelingual auditory deprivation. Language Learning and Development, 16(1), 49-60. https://doi.org/10.1080/15475441.2019.1685386
doi: 10.1080/15475441.2019.1685386 URL |
[17] |
Graven, T., & Desebrock, C. (2018). Bouba or kiki with and without vision: Shape-audio regularities and mental images. Acta Psychologica, 188, 200-212. https://doi.org/10.1016/j.actpsy.2018.05.011
doi: S0001-6918(17)30517-6 URL pmid: 29982038 |
[18] |
Hamilton-Fletcher, G., Pisanski, K., Reby, D., Stefanczyk, M., Ward, J., & Sorokowska, A. (2018). The role of visual experience in the emergence of cross-modal correspondences. Cognition, 175, 114-121. https://doi.org/10.1016/j.cognition.2018.02.023
doi: S0010-0277(18)30059-3 URL pmid: 29502009 |
[19] | Hensch, T. K. (2018). Chapter 6-Critical periods in cortical development. In R.Gibb & B.Kolb (Eds.), The Neurobiology of Brain and Behavioral Development (pp. 133-151). Academic Press. https://doi.org/10.1016/B978-0-12-804036-2.00006-6 |
[20] | Imai, M., & Kita, S. (2014). The sound symbolism bootstrapping hypothesis for language acquisition and language evolution. Philosophical Transactions of The Royal Society B-biological Sciences, 369(1651), 20130298. https://doi.org/10.1098/rstb.2013.0298 |
[21] | Imai, M., Miyazaki, M., Yeung, H. H., Hidaka, S., Kantartzis, K., Okada, H., & Kita, S. (2015). Sound symbolism facilitates word learning in 14-month-olds. Plos One, 10(2), e0116494. https://doi.org/10.1371/journal.pone.0116494 |
[22] | Jo, J., & Ko, E. S. (2018). Korean mothers attune the frequency and acoustic saliency of sound symbolic words to the linguistic maturity of their children. Frontiers in Psychology, 9, 2225. https://doi.org/10.3389/fpsyg.2018.02225 |
[23] |
Kantartzis, K., Imai, M., Evans, D., & Kita, S. (2019). Sound symbolism facilitates long-term retention of the semantic representation of novel verbs in three-year-olds. Languages, 4(2), 21. https://doi.org/10.3390/languages4020021
doi: 10.3390/languages4020021 URL |
[24] | Kantartzis, K. (2011). Children and adults' understanding and use of sound-symbolism in novel words (Unpublished doctorial dissertation). University of Birmingham. |
[25] | Köhler, W. (1929). Gestalt psychology: An introduction to new concepts in modern psychology. New York: Liveright. |
[26] |
Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67(5), 713-727.https://doi.org/10.1016/j.neuron.2010.08.038
doi: 10.1016/j.neuron.2010.08.038 URL pmid: 20826304 |
[27] |
Laing, C. E. (2017). A perceptual advantage for onomatopoeia in early word learning: Evidence from eye-tracking. Journal of Experimental Child Psychology, 161, 32-45. https://doi.org/10.1016/j.jecp.2017.03.017
doi: S0022-0965(16)30246-6 URL pmid: 28460299 |
[28] | Lewis, M. P., Simons, G. F., & Fennig, C. D. (2015). Ethnologue: Languages of Africa and Europe (18th ed.). Dallas, TX: SIL International. |
[29] |
Lewkowicz, D. J., & Ghazanfar, A. A. (2009). The emergence of multisensory systems through perceptual narrowing. Trends in Cognitive Sciences, 13(11), 470-478. https://doi.org/10.1016/j.tics.2009.08.004
doi: 10.1016/j.tics.2009.08.004 URL pmid: 19748305 |
[30] |
Ludwig, V. U., Adachi, I., & Matsuzawa, T. (2011). Visuoauditory mappings between high luminance and high pitch are shared by chimpanzees (Pan troglodytes) and humans. Proceedings of the National Academy of Sciences, USA, 108(51), 20661-20665.https://doi.org/10.1073/pnas.1112605108
doi: 10.1073/pnas.1112605108 URL |
[31] | Margiotoudi, K., Allritz, M., Bohn, M., & Pulvermuller, F. (2019). Sound symbolic congruency detection in humans but not in great apes. Scientific Report, 9, 12705. https://doi.org/10.1038/s41598-019-49101-4 |
[32] |
Mayberry, R. I., & Kluender, R. (2018). Rethinking the critical period for language: New insights into an old question from American Sign Language. Bilingualism: Language and Cognition, 21(5), 886-905. https://doi.org/10.1017/S1366728917000724
doi: 10.1017/S1366728917000724 URL |
[33] | Monaghan, P., Shillcock, R. C., Christiansen, M. H., & Kirby, S. (2014). How arbitrary is language? Philosophical Transactions of the Royal Society B-Biological Sciences, 369(1651), 20130299. https://doi.org/10.1098/rstb.2013.0299 |
[34] |
Nielsen, A. K. S., & Dingemanse, M. (2020). Iconicity in word learning and beyond: A critical review. Language and Speech, 64(1), 52-72. https://doi.org/10.1177/0023830920914339
doi: 10.1177/0023830920914339 URL |
[35] |
Ortiz-Mantilla, S., Realpe-Bonilla, T., & Benasich, A. A. (2019). Early interactive acoustic experience with non-speech generalizes to speech and confers a syllabic processing advantage at 9 months. Cerebral Cortex, 29(4), 1789-1801. https://doi.org/10.1093/cercor/bhz001
doi: 10.1093/cercor/bhz001 URL |
[36] |
Owren, M. J., & Rendall, D. (2001). Sound on the rebound: Bringing form and function back to the forefront in understanding nonhuman primate vocal signaling. Evolutionary Anthropology, 10(2), 58-71. https://doi.org/10.1002/evan.1014
doi: 10.1002/evan.1014 URL |
[37] |
Ozturk, O., Krehm, M., & Vouloumanos, A. (2013). Sound symbolism in infancy: Evidence for sound-shape cross-modal correspondences in 4-month-olds. Journal of Experimental Child Psychology, 114(2), 173-186. https://doi.org/10.1016/j.jecp.2012.05.004
doi: 10.1016/j.jecp.2012.05.004 URL pmid: 22960203 |
[38] |
Pant, R., Kanjlia, S., & Bedny, M. (2020). A sensitive period in the neural phenotype of language in blind individuals. Developmental Cognitive Neuroscience, 41, 100744. https://doi.org/10.1016/j.dcn.2019.100744
doi: 10.1016/j.dcn.2019.100744 URL |
[39] |
Parise, C. V. (2016). Crossmodal correspondences: Standing issues and experimental guidelines. Multisensory Research, 29(1-3), 7-28. https://doi.org/10.1163/22134808-00002502
URL pmid: 27311289 |
[40] |
Park, J., Motoki, K., Pathak, A., & Spence, C. (2021). A sound brand name: The role of voiced consonants in pharmaceutical branding. Food Quality and Preference, 90, 104104. https://doi.org/10.1016/j.foodqual.2020.104104
doi: 10.1016/j.foodqual.2020.104104 URL |
[41] |
Pathak, A., & Calvert, G. A. (2020). Sounds sweet, sounds bitter: How the presence of certain sounds in a brand name can alter expectations about the product’s taste. Food Quality and Preference, 83, 103918. https://doi.org/10.1016/j.foodqual.2020.103918
doi: 10.1016/j.foodqual.2020.103918 URL |
[42] |
Pejovic, J., & Molnar, M. (2017). The development of spontaneous sound-shape matching in monolingual and bilingual infants during the first year. Developmental Psychology, 53(3), 581-586. https://doi.org/10.1037/dev0000237
doi: 10.1037/dev0000237 URL pmid: 27854461 |
[43] | Perry, L. K., Perlman, M., & Lupyan, G. (2015). Iconicity in english and spanish and its relation to lexical category and age of acquisition. Plos One, 10(9), e0137147. https://doi.org/10.1371/journal.pone.0137147 |
[44] | Perry, L. K., Perlman, M., Winter, B., Massaro, D. W., & Lupyan, G. (2018). Iconicity in the speech of children and adults. Developmental Science, 21(3), e12572. https://doi.org/10.1111/desc.12572 |
[45] | Piaget, J., & Duckworth, E. (1970). Genetic epistemology. American Behavioral Scientist, 13(3), 459-480. https://doi.org/10.1177/000276427001300320 |
[46] |
Preziosi, M. A., & Coane, J. H. (2017). Remembering that big things sound big: Sound symbolism and associative memory. Cognitive Research-Principles and Implications, 2, 10. https://doi.org/10.1186/s41235-016-0047-y
doi: 10.1186/s41235-016-0047-y URL |
[47] | Ramachandran, V. S., & Hubbard, E. M. (2001). Synaesthesia -- A window into perception, thought and language. Journal of Consciousness Studies, 8(12), 3-34. |
[48] |
Reinking, D., Labbo, L., & McKenna, M. (2000). From assimilation to accommodation: A developmental framework for integrating digital technologies into literacy research and instruction. Journal of Research in Reading, 23(2), 110-122. https://doi.org/10.1111/1467-9817.00108
doi: 10.1111/1467-9817.00108 URL |
[49] | Rendall, D., & Owren, M. J. (2010). Chapter 5.4-Vocalizations as tools for influencing the affect and behavior of others. In S. M. Brudzynski (Ed.), Handbook of Behavioral Neuroscience (Vol. 19, pp. 177-185). Elsevier. https://doi.org/10.1016/B978-0-12-374593-4.00018-8 |
[50] |
Rogers, S. K., & Ross, A. S. (1975). A cross-cultural test of the Maluma-Takete phenomenon. Perception, 4(1), 105-106. https://doi.org/10.1068/p040105
URL pmid: 1161435 |
[51] | Saussure, F. d. (1959). Course in general linguistics. New York: The Philosophical Library. |
[52] | Sedley, D. N. (2003). Plato’s Cratylus. Cambridge: Cambridge University Press. |
[53] | Shang, N., & Styles, S. J. (2017). Is a high tone pointy? Speakers of different languages match mandarin chinese tones to visual shapes differently. Frontiers in Psychology, 8, 2139. https://doi.org/10.3389/fpsyg.2017.02139 |
[54] |
Sidhu, D. M., & Pexman, P. M. (2018). Five mechanisms of sound symbolic association. Psychonomic Bulletin & Review, 25(5), 1619-1643. https://doi.org/10.3758/s13423-017-1361-1
doi: 10.3758/s13423-017-1361-1 URL |
[55] |
Sonier, R. P., Poirier, M., Guitard, D., & Saint-Aubin, J. (2020). A round Bouba is easier to remember than a curved Kiki: Sound-symbolism can support associative memory. Psychonomic Bulletin & Review, 27(4), 776-782. https://doi.org/10.3758/s13423-020-01733-8
doi: 10.3758/s13423-020-01733-8 URL |
[56] |
Sourav, S., Kekunnaya, R., Shareef, I., Banerjee, S., Bottari, D., & Röder, B. (2019). A protracted sensitive period regulates the development of cross-modal sound-shape associations in humans. Psychological Science, 30(10), 1473-1482. https://doi.org/10.1177/0956797619866625
doi: 10.1177/0956797619866625 URL pmid: 31483197 |
[57] |
Spector, F., & Maurer, D. (2013). Synesthesia: A new approach to understanding the development of perception. Psychology of Consciousness: Theory, Research, and Practice, 1(S),108-129. https://doi.org/10.1037/2326-5523.1.S.108
doi: 10.1037/2326-5523.1.S.108 URL |
[58] | Styles, S. J., & Gawne, L. (2017). When does Maluma/Takete fail? Two key failures and a meta-analysis suggest that phonology and phonotactics matter. Iperception, 8(4). https://doi.org/10.1177/2041669517724807 |
[59] |
Tzeng, C. Y., Nygaard, L. C., & Namy, L. L. (2017). Developmental change in children's sensitivity to sound symbolism. Journal of Experimental Child Psychology, 160, 107-118. https://doi.org/10.1016/j.jecp.2017.03.004
doi: S0022-0965(17)30173-X URL pmid: 28433821 |
[60] |
Werker, J. F., & Hensch, T. K. (2015). Critical periods in speech perception: New directions. Annual Review of Psychology, 66(1), 173-196. https://doi.org/10.1146/annurev-psych-010814-015104
doi: 10.1146/annurev-psych-010814-015104 URL |
[61] |
Yang, J., Asano, M., Kanazawa, S., Yamaguchi, M. K., & Imai, M. (2019). Sound symbolism processing is lateralized to the right temporal region in the prelinguistic infant brain. Science Report, 9(1), 13435. https://doi.org/10.1038/s41598-019-49917-0
doi: 10.1038/s41598-019-49917-0 URL |
[62] |
Zangenehpour, S., & Zatorre, R. J. (2010). Crossmodal recruitment of primary visual cortex following brief exposure to bimodal audiovisual stimuli. Neuropsychologia, 48(2), 591-600. https://doi.org/10.1016/j.neuropsychologia.2009.10.022.
doi: 10.1016/j.neuropsychologia.2009.10.022 URL pmid: 19883668 |
[1] | 叶舒琪, 尹俊婷, 李招贤, 罗俊龙. 情绪对直觉与分析加工的影响机制[J]. 心理科学进展, 2023, 31(5): 736-746. |
[2] | 李亚丹, 杜颖, 谢聪, 刘春宇, 杨毅隆, 李阳萍, 邱江. 语义距离与创造性思维关系的元分析[J]. 心理科学进展, 2023, 31(4): 519-534. |
[3] | 余婕, 陈有国. 时空干扰效应:基于贝叶斯模型的解释[J]. 心理科学进展, 2023, 31(4): 597-607. |
[4] | 王勇丽, 葛胜男, Lancy Lantin Huang, 万勤, 卢海丹. 言语想象的神经机制[J]. 心理科学进展, 2023, 31(4): 608-621. |
[5] | 杨庆, 李亚琴. 不确定是坏的么?不确定状态中的错误加工特点及其解释机制[J]. 心理科学进展, 2023, 31(3): 338-349. |
[6] | 王旭东, 何雅吉, 范会勇, 罗扬眉, 陈煦海. 人际愤怒的利与弊:来自元分析的证据[J]. 心理科学进展, 2023, 31(3): 386-401. |
[7] | 李清扬, 尹俊婷, 罗俊龙. 才思泉涌“举步”间:体育运动对创造性思维的影响[J]. 心理科学进展, 2023, 31(3): 455-466. |
[8] | 陈子炜, 付迪, 刘勋. 错认总比错过好——面孔视错觉的发生机制及其应用[J]. 心理科学进展, 2023, 31(2): 240-255. |
[9] | 王松雪, 程思, 蒋挺, 刘勋, 张明霞. 外在奖赏对陈述性记忆的影响[J]. 心理科学进展, 2023, 31(1): 78-86. |
[10] | 谢才凤, 邬家骅, 许丽颖, 喻丰, 张语嫣, 谢莹莹. 算法决策趋避的过程动机理论[J]. 心理科学进展, 2023, 31(1): 60-77. |
[11] | 叶伟豪 于美琪 张利会 高琪 傅明珠 卢家楣. 精准的意义:负性情绪粒度的作用机制与干预[J]. 心理科学进展, 0, (): 0-0. |
[12] | 朱传林, 刘电芝, 罗文波. 情绪体验影响估算策略运用的认知与脑机制[J]. 心理科学进展, 2022, 30(12): 2639-2649. |
[13] | 史汉文, 李雨桐, 隋雪. 情绪词类型效应:区分情绪标签词和情绪负载词的行为和神经活动证据[J]. 心理科学进展, 2022, 30(12): 2696-2707. |
[14] | 陈玉田, 陈睿, 李鹏. 工作记忆中“组块”概念的演化及理论模型[J]. 心理科学进展, 2022, 30(12): 2708-2717. |
[15] | 时慧颖, 汤洁, 刘萍萍. 眼睛效应不稳定与感知规范:一个新视角[J]. 心理科学进展, 2022, 30(12): 2718-2734. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||