心理科学进展 ›› 2023, Vol. 31 ›› Issue (1): 78-86.doi: 10.3724/SP.J.1042.2023.00078
王松雪1, 程思1, 蒋挺1, 刘勋2,3, 张明霞2,3()
收稿日期:
2021-09-26
出版日期:
2023-01-15
发布日期:
2022-10-13
通讯作者:
张明霞
E-mail:zhangmx@psych.ac.cn
基金资助:
WANG Songxue1, CHENG Si1, JIANG Ting1, LIU Xun2,3, ZHANG Mingxia2,3()
Received:
2021-09-26
Online:
2023-01-15
Published:
2022-10-13
Contact:
ZHANG Mingxia
E-mail:zhangmx@psych.ac.cn
摘要:
学习和记忆是个体赖以生存和发展的前提, 如何取得好的学习和记忆效果是心理学和神经科学关注的重点。近年来, 许多研究揭示奖赏可以促进记忆效果, 奖赏对记忆的影响逐渐成为心理学和神经科学的热点研究课题。大脑的中脑多巴胺奖赏系统与海马记忆系统在结构和功能上均有关联。奖赏通过编码和巩固阶段以不同机制对记忆效果产生作用:在记忆编码阶段, 奖赏会激活奖赏系统、注意控制系统, 将更多认知资源分配给奖赏相关信息, 从而促进奖赏信息的记忆效果; 在记忆巩固阶段, 奖赏会促进多巴胺释放, 作用于海马对奖赏相关信息的加工, 从而促进奖赏信息的记忆效果。未来研究可以关注奖赏对行为影响的复杂模式和内在奖赏对学习记忆的影响等方面。
中图分类号:
王松雪, 程思, 蒋挺, 刘勋, 张明霞. (2023). 外在奖赏对陈述性记忆的影响. 心理科学进展 , 31(1), 78-86.
WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. (2023). The effect of external rewards on declarative memory. Advances in Psychological Science, 31(1), 78-86.
[1] |
Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. E. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50(3), 507-517.
pmid: 16675403 |
[2] | Alberini, C. (2011). The role of reconsolidation and the dynamic process of long-term memory formation and storage. Frontiers in Behavioral Neuroscience, 5, Article 12. |
[3] |
Apitz, T., & Bunzeck, N. (2012). Reward modulates the neural dynamics of early visual category processing. NeuroImage, 63(3), 1614-1622.
doi: 10.1016/j.neuroimage.2012.08.046 pmid: 22971547 |
[4] |
Ariel, R., & Castel, A. D. (2014). Eyes wide open: Enhanced pupil dilation when selectively studying important information. Experimental Brain Research, 232(1), 337-344.
doi: 10.1007/s00221-013-3744-5 pmid: 24162863 |
[5] | Bialleck, K. A., Schaal, H.-P., Kranz, T. A., Fell, J., Elger, C. E., & Axmacher, N. (2011). Ventromedial prefrontal cortex activation is associated with memory formation for predictable rewards. PLoS One, 6(2), Article e16695. |
[6] |
Blain, B., & Sharot, T. (2021). Intrinsic reward: Potential cognitive and neural mechanisms. Current Opinion in Behavioral Sciences, 39, 113-118.
doi: 10.1016/j.cobeha.2021.03.008 URL |
[7] | Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A., Clement, N. J.,... The MOMCAI Group. (2014). Mechanisms of motivation-cognition interaction: Challenges and opportunities. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 443-472. |
[8] |
Brown, G. D. A., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114(3), 539-576.
pmid: 17638496 |
[9] |
Buckner, R. L., & Koutstaal, W. (1998). Functional neuroimaging studies of encoding, priming, and explicit memory retrieval. Proceedings of the National Academy of Sciences, 95(3), 891-898.
doi: 10.1073/pnas.95.3.891 URL |
[10] |
Bunzeck, N., Dayan, P., Dolan, R. J., & Duzel, E. (2010). A common mechanism for adaptive scaling of reward and novelty. Human Brain Mapping, 31(9), 1380-1394.
doi: 10.1002/hbm.20939 pmid: 20091793 |
[11] |
Castel, A. D., Farb, N. A. S., & Craik, F. I. M. (2007). Memory for general and specific value information in younger and older adults: Measuring the limits of strategic control. Memory & Cognition, 35(4), 689-700.
doi: 10.3758/BF03193307 URL |
[12] |
Castel, A. D., Murayama, K., Friedman, M. C., McGillivray, S., & Link, I. (2013). Selecting valuable information to remember: Age-related differences and similarities in self- regulated learning. Psychology and Aging, 28(1), 232-242.
doi: 10.1037/a0030678 pmid: 23276210 |
[13] |
Cerasoli, C. P., Nicklin, J. M., & Ford, M. T. (2014). Intrinsic motivation and extrinsic incentives jointly predict performance: A 40-year meta-analysis. Psychological Bulletin, 140(4), 980-1008.
doi: 10.1037/a0035661 pmid: 24491020 |
[14] | Cheng, S., Jiang, T., Xue, J., Wang, S., Chen, C., & Zhang, M. (2020). The influence of rewards on incidental memory: More does not mean better. Learning & Memory, 27(11), 462-466. |
[15] |
Cohen, M. S., Cheng, L. Y., Paller, K. A., & Reber, P. J. (2019). Separate memory-enhancing effects of reward and strategic encoding. Journal of Cognitive Neuroscience, 31(11), 1658-1673.
doi: 10.1162/jocn_a_01438 pmid: 31251891 |
[16] | Cohen, M. S., Rissman, J., Suthana, N. A., Castel, A. D., & Knowlton, B. J. (2014). Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 578-592. |
[17] |
Cohen, M. S., Rissman, J., Suthana, N. A., Castel, A. D., & Knowlton, B. J. (2016). Effects of aging on value-directed modulation of semantic network activity during verbal learning. NeuroImage, 125, 1046-1062.
doi: S1053-8119(15)00699-0 pmid: 26244278 |
[18] |
Cowan, E. T., Schapiro, A. C., Dunsmoor, J. E., & Murty, V. P. (2021). Memory consolidation as an adaptive process. Psychonomic Bulletin & Review, 28(6), 1796-1810.
doi: 10.3758/s13423-021-01978-x URL |
[19] |
Cromwell, H. C., & Schultz, W. (2003). Effects of expectations for different reward magnitudes on neuronal activity in primate striatum. Journal of Neurophysiology, 89(5), 2823-2838.
pmid: 12611937 |
[20] | Di Domenico, S. I., & Ryan, R. M. (2017). The emerging neuroscience of intrinsic motivation: A new frontier in self-determination research. Frontiers in Human Neuroscience, 11, Article 145. |
[21] | Elliott, B. L., Blais, C., McClure, S. M., & Brewer, G. A. (2020). Neural correlates underlying the effect of reward value on recognition memory. NeuroImage, 206, Article 116296. |
[22] |
Failing, M., & Theeuwes, J. (2018). Selection history: How reward modulates selectivity of visual attention. Psychonomic Bulletin & Review, 25(2), 514-538.
doi: 10.3758/s13423-017-1380-y URL |
[23] | Faraut, M. C. M., Carlson, A. A., Sullivan, S., Tudusciuc, O., Ross, I., Reed, C. M.,... Rutishauser, U. (2018). Dataset of human medial temporal lobe single neuron activity during declarative memory encoding and recognition. Scientific Data, 5(1), Article 180010. |
[24] |
Fields, H. L., & Margolis, E. B. (2015). Understanding opioid reward. Trends in Neurosciences, 38(4), 217-225.
doi: 10.1016/j.tins.2015.01.002 pmid: 25637939 |
[25] |
Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299(5614), 1898-1902.
pmid: 12649484 |
[26] |
Floresco, S. B., West, A. R., Ash, B., Moore, H., & Grace, A. A. (2003). Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nature Neuroscience, 6(9), 968-973.
pmid: 12897785 |
[27] | Forcato, C., Rodríguez, M. L., & Pedreira, M. E. (2011). Repeated labilization-reconsolidation processes strengthen declarative memory in humans. PLoS One, 6(8), Article e23305. |
[28] |
Frey, U., Schroeder, H., & Matthies, H. r. (1990). Dopaminergic antagonists prevent long-term maintenance of posttetanic LTP in the CA1 region of rat hippocampal slices. Brain Research, 522(1), 69-75.
pmid: 1977494 |
[29] |
Gasbarri, A., Packard, M. G., Campana, E., & Pacitti, C. (1994). Anterograde and retrograde tracing of projections from the ventral tegmental area to the hippocampal formation in the rat. Brain Research Bulletin, 33(4), 445-452.
pmid: 8124582 |
[30] |
Gee, D. G., Bath, K. G., Johnson, C. M., Meyer, H. C., Murty, V. P., van den Bos, W., & Hartley, C. A. (2018). Neurocognitive development of motivated behavior: Dynamic changes across childhood and adolescence. The Journal of Neuroscience, 38(44), 9433-9445.
doi: 10.1523/JNEUROSCI.1674-18.2018 URL |
[31] |
Gregory, D. F., Ritchey, M., & Murty, V. P. (2020). Amygdala and ventral tegmental area differentially interact with hippocampus and cortical medial temporal lobe during rest in humans. Hippocampus, 30(10), 1073-1080.
doi: 10.1002/hipo.23216 URL |
[32] |
Gruber, M. J., Gelman, B. D., & Ranganath, C. (2014). States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit. Neuron, 84(2), 486-496.
doi: 10.1016/j.neuron.2014.08.060 pmid: 25284006 |
[33] |
Gruber, M. J., & Ranganath, C. (2019). How curiosity enhances hippocampus-dependent memory: The prediction, appraisal, curiosity, and exploration (PACE) framework. Trends in Cognitive Sciences, 23(12), 1014-1025.
doi: S1364-6613(19)30238-4 pmid: 31706791 |
[34] |
Gruber, M. J., Ritchey, M., Wang, S. F., Doss, M. K., & Ranganath, C. (2016). Post-learning hippocampal dynamics promote preferential retention of rewarding events. Neuron, 89(5), 1110-1120.
doi: 10.1016/j.neuron.2016.01.017 pmid: 26875624 |
[35] |
Gruber, M. J., Watrous, A. J., Ekstrom, A. D., Ranganath, C., & Otten, L. J. (2013). Expected reward modulates encoding- related theta activity before an event. NeuroImage, 64, 68-74.
doi: 10.1016/j.neuroimage.2012.07.064 URL |
[36] |
Huang, Y. Y., & Kandel, E. R. (1995). D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proceedings of the National Academy of Sciences, 92(7), 2446-2450.
doi: 10.1073/pnas.92.7.2446 URL |
[37] |
Jia, T., Macare, C., Desrivières, S., Gonzalez, D. A., Tao, C., Ji, X.,... Ziesch, V. (2016). Neural basis of reward anticipation and its genetic determinants. Proceedings of the National Academy of Sciences, 113(14), 3879-3884.
doi: 10.1073/pnas.1503252113 URL |
[38] |
Kahn, I., & Shohamy, D. (2013). Intrinsic connectivity between the hippocampus, nucleus accumbens, and ventral tegmental area in humans. Hippocampus, 23(3), 187-192.
doi: 10.1002/hipo.22077 pmid: 23129267 |
[39] |
Kuhl, B. A., Johnson, M. K., & Chun, M. M. (2013). Dissociable neural mechanisms for goal-directed versus incidental memory reactivation. The Journal of Neuroscience, 33(41), 16099-16109.
doi: 10.1523/JNEUROSCI.0207-13.2013 URL |
[40] | Lansink, C. S., Goltstein, P. M., Lankelma, J. V., McNaughton, B. L., & Pennartz, C. M. A. (2009). Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biology, 7(8), Article e1000173. |
[41] |
Lee, T. G., Acuña, D. E., Kording, K. P., & Grafton, S. T. (2019). Limiting motor skill knowledge via incidental training protects against choking under pressure. Psychonomic Bulletin & Review, 26(1), 279-290.
doi: 10.3758/s13423-018-1486-x URL |
[42] |
Lee, T. G., & Grafton, S. T. (2015). Out of control: Diminished prefrontal activity coincides with impaired motor performance due to choking under pressure. NeuroImage, 105, 145-155.
doi: 10.1016/j.neuroimage.2014.10.058 pmid: 25449744 |
[43] |
Lisman, J., Buzsáki, G., Eichenbaum, H., Nadel, L., Ranganath, C., & Redish, A. D. (2017). Viewpoints: How the hippocampus contributes to memory, navigation and cognition. Nature Neuroscience, 20(11), 1434-1447.
doi: 10.1038/nn.4661 pmid: 29073641 |
[44] |
Lisman, J., Grace, A. A., & Duzel, E. (2011). A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP. Trends in Neurosciences, 34(10), 536-547.
doi: 10.1016/j.tins.2011.07.006 pmid: 21851992 |
[45] |
Lisman, J. E., & Grace, A. A. (2005). The hippocampal-VTA loop: Controlling the entry of information into long-term memory. Neuron, 46(5), 703-713.
pmid: 15924857 |
[46] |
Luo, A. H., Tahsili-Fahadan, P., Wise, R. A., Lupica, C. R., & Aston-Jones, G. (2011). Linking context with reward: A functional circuit from hippocampal CA3 to ventral tegmental area. Science, 333(6040), 353-357.
doi: 10.1126/science.1204622 pmid: 21764750 |
[47] | Mather, M., & Schoeke, A. (2011). Positive outcomes enhance incidental learning for both younger and older adults. Frontiers in Neuroscience, 5, Article 129. |
[48] |
McKenzie, S., & Eichenbaum, H. (2011). Consolidation and reconsolidation: Two lives of memories? Neuron, 71(2), 224-233.
doi: 10.1016/j.neuron.2011.06.037 pmid: 21791282 |
[49] |
Middlebrooks, C. D., Murayama, K., & Castel, A. D. (2017). Test expectancy and memory for important information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(6), 972-985.
doi: 10.1037/xlm0000360 URL |
[50] |
Miendlarzewska, E. A., Bavelier, D., & Schwartz, S. (2016). Influence of reward motivation on human declarative memory. Neuroscience & Biobehavioral Reviews, 61, 156-176.
doi: 10.1016/j.neubiorev.2015.11.015 URL |
[51] |
Murayama, K., & Kitagami, S. (2014). Consolidation power of extrinsic rewards: Reward cues enhance long-term memory for irrelevant past events. Journal of Experimental Psychology: General, 143(1), 15-20.
doi: 10.1037/a0031992 URL |
[52] |
Murayama, K., & Kuhbandner, C. (2011). Money enhances memory consolidation - But only for boring material. Cognition, 119(1), 120-124.
doi: 10.1016/j.cognition.2011.01.001 pmid: 21292249 |
[53] |
Murty, V. P., DuBrow, S., & Davachi, L. (2015). The simple act of choosing influences declarative memory. The Journal of Neuroscience, 35(16), 6255-6264.
doi: 10.1523/JNEUROSCI.4181-14.2015 URL |
[54] |
Murty, V. P., Tompary, A., Adcock, R. A., & Davachi, L. (2017). Selectivity in postencoding connectivity with high-level visual cortex is associated with reward-motivated memory. The Journal of Neuroscience, 37(3), 537-545.
doi: 10.1523/JNEUROSCI.4032-15.2016 URL |
[55] | Nguyen, L. T., Marini, F., Shende, S. A., Llano, D. A., & Mudar, R. A. (2020). Investigating EEG theta and alpha oscillations as measures of value-directed strategic processing in cognitively normal younger and older adults. Behavioural Brain Research, 391, Article 112702. |
[56] |
Nguyen, L. T., Marini, F., Zacharczuk, L., Llano, D. A., & Mudar, R. A. (2019). Theta and alpha band oscillations during value-directed strategic processing. Behavioural Brain Research, 367, 210-214.
doi: S0166-4328(18)31690-5 pmid: 30943420 |
[57] | Patil, A., Murty, V. P., Dunsmoor, J. E., Phelps, E. A., & Davachi, L. (2017). Reward retroactively enhances memory consolidation for related items. Learning & Memory, 24(1), 65-69. |
[58] |
Paton, J. J., Belova, M. A., Morrison, S. E., & Salzman, C. D. (2006). The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature, 439(7078), 865-870.
doi: 10.1038/nature04490 URL |
[59] |
Pessoa, L. (2015). Multiple influences of reward on perception and attention. Visual Cognition, 23(1-2), 272-290.
pmid: 26190929 |
[60] |
Pohlack, S. T., Meyer, P., Cacciaglia, R., Liebscher, C., Ridder, S., & Flor, H. (2014). Bigger is better! Hippocampal volume and declarative memory performance in healthy young men. Brain Structure and Function, 219(1), 255-267.
doi: 10.1007/s00429-012-0497-z pmid: 23269366 |
[61] |
Pu, M., & Yu, R. (2019). Post-encoding frontal theta activity predicts incidental memory in the reward context. Neurobiology of Learning and Memory, 158, 14-23.
doi: S1074-7427(19)30007-3 pmid: 30630040 |
[62] | Qin, N., Xue, J., Chen, C., & Zhang, M. (2020). The bright and dark sides of performance-dependent monetary rewards: Evidence from visual perception tasks. Cognitive Science, 44(3), Article e12825. |
[63] |
Russo, S. J., & Nestler, E. J. (2013). The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 14(9), 609-625.
doi: 10.1038/nrn3381 pmid: 23942470 |
[64] | Ryan, R. M., & Deci, E. L. (2020). Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemporary Educational Psychology, 61, Article 101860. |
[65] | Salvetti, B., Morris, R. G., & Wang, S. H. (2014). The role of rewarding and novel events in facilitating memory persistence in a separate spatial memory task. Learning & Memory, 21(2), 61-72. |
[66] |
Satoh, T., Nakai, S., Sato, T., & Kimura, M. (2003). Correlated coding of motivation and outcome of decision by dopamine neurons. The Journal of Neuroscience, 23(30), 9913-9923.
doi: 10.1523/JNEUROSCI.23-30-09913.2003 URL |
[67] |
Schultz, W., Stauffer, W. R., Lak, A., & Pastor-Bernier, A. (2021). Smarter than humans: Rationality reflected in primate neuronal reward signals. Current Opinion in Behavioral Sciences, 41, 50-56.
doi: 10.1016/j.cobeha.2021.03.021 URL |
[68] |
Sescousse, G., Caldú, X., Segura, B., & Dreher, J. C. (2013). Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37(4), 681-696.
doi: 10.1016/j.neubiorev.2013.02.002 URL |
[69] |
Shigemune, Y., Abe, N., Suzuki, M., Ueno, A., Mori, E., Tashiro, M.,... Fujii, T. (2010). Effects of emotion and reward motivation on neural correlates of episodic memory encoding: A PET study. Neuroscience Research, 67(1), 72-79.
doi: 10.1016/j.neures.2010.01.003 pmid: 20079775 |
[70] |
Shigemune, Y., Tsukiura, T., Kambara, T., & Kawashima, R. (2014). Remembering with gains and losses: Effects of monetary reward and punishment on successful encoding activation of source memories. Cerebral Cortex, 24(5), 1319-1331.
doi: 10.1093/cercor/bhs415 URL |
[71] |
Shigemune, Y., Tsukiura, T., Nouchi, R., Kambara, T., & Kawashima, R. (2017). Neural mechanisms underlying the reward-related enhancement of motivation when remembering episodic memories with high difficulty. Human Brain Mapping, 38(7), 3428-3443.
doi: 10.1002/hbm.23599 pmid: 28374960 |
[72] |
Shohamy, D., & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences, 14(10), 464-472.
doi: 10.1016/j.tics.2010.08.002 pmid: 20829095 |
[73] |
Singer, A. C., & Frank, L. M. (2009). Rewarded outcomes enhance reactivation of experience in the hippocampus. Neuron, 64(6), 910-921.
doi: 10.1016/j.neuron.2009.11.016 pmid: 20064396 |
[74] |
Spaniol, J., Schain, C., & Bowen, H. J. (2014). Reward- enhanced memory in younger and older adults. The Journals of Gerontology: Series B, 69(5), 730-740.
doi: 10.1093/geronb/gbt044 URL |
[75] |
Stickgold, R., & Walker, M. P. (2013). Sleep-dependent memory triage: Evolving generalization through selective processing. Nature Neuroscience, 16(2), 139-145.
doi: 10.1038/nn.3303 pmid: 23354387 |
[76] |
Wang, S. H., & Morris, R. G. M. (2010). Hippocampal- neocortical interactions in memory formation, consolidation, and reconsolidation. Annual Review of Psychology, 61(1), 49-79.
doi: 10.1146/annurev.psych.093008.100523 URL |
[77] |
Wimmer, G. E., & Büchel, C. (2016). Reactivation of reward- related patterns from single past episodes supports memory- based decision making. The Journal of Neuroscience, 36(10), 2868-2880.
doi: 10.1523/JNEUROSCI.3433-15.2016 URL |
[78] | Wittmann, B. C., Dolan, R. J., & Düzel, E. (2011). Behavioral specifications of reward-associated long-term memory enhancement in humans. Learning & Memory, 18(5), 296-300. |
[79] |
Wittmann, B. C., Schiltz, K., Boehler, C. N., & Düzel, E. (2008). Mesolimbic interaction of emotional valence and reward improves memory formation. Neuropsychologia, 46(4), 1000-1008.
doi: 10.1016/j.neuropsychologia.2007.11.020 pmid: 18191960 |
[80] |
Wittmann, B. C., Schott, B. H., Guderian, S., Frey, J. U., Heinze, H. J., & Düzel, E. (2005). Reward-related fMRI activation of dopaminergic midbrain is associated with enhanced hippocampus- dependent long-term memory formation. Neuron, 45(3), 459-467.
pmid: 15694331 |
[81] |
Wolosin, S. M., Zeithamova, D., & Preston, A. R. (2012). Reward modulation of hippocampal subfield activation during successful associative encoding and retrieval. Journal of Cognitive Neuroscience, 24(7), 1532-1547.
doi: 10.1162/jocn_a_00237 pmid: 22524296 |
[82] |
Yan, C., Li, Y., Zhang, Q., & Cui, L. (2018). Monetary incentives at retrieval promote recognition of involuntarily learned emotional information. NeuroReport, 29(4), 259-265.
doi: 10.1097/WNR.0000000000000932 pmid: 29112679 |
[83] |
Zhang, M., Tu, J., Dong, B., Chen, C., & Bao, M. (2017). Preliminary evidence for a role of the personality trait in visual perceptual learning. Neurobiology of Learning and Memory, 139, 22-27.
doi: S1074-7427(16)30388-4 pmid: 27993649 |
[1] | 王勇丽, 葛胜男, Lancy Lantin Huang, 万勤, 卢海丹. 言语想象的神经机制[J]. 心理科学进展, 2023, 31(4): 608-621. |
[2] | 孔祥祯, 张凤翔, 蒲艺. 空间导航的脑网络基础和调控机制[J]. 心理科学进展, 2023, 31(3): 330-337. |
[3] | 刘沛菡, 张火垠, 张旭凯, 李红, 雷怡. 急性疼痛与慢性疼痛对奖赏加工的影响及神经机制[J]. 心理科学进展, 2023, 31(3): 402-415. |
[4] | 张明霞, 李雨欣, 李瑾, 刘勋. 内外动机对青少年记忆的影响及其神经机制[J]. 心理科学进展, 2023, 31(1): 1-9. |
[5] | 寇娟, 杨梦圆, 魏子杰, 雷怡. 自闭症谱系障碍社交动机理论:机制及干预探索[J]. 心理科学进展, 2023, 31(1): 20-32. |
[6] | 赵冰洁, 张琪涵, 陈怡馨, 章鹏, 白学军. 智力运动专家领域内知觉与记忆的加工特点及其机制[J]. 心理科学进展, 2022, 30(9): 1993-2003. |
[7] | 邓尧, 王梦梦, 饶恒毅. 风险决策研究中的仿真气球冒险任务[J]. 心理科学进展, 2022, 30(6): 1377-1392. |
[8] | 李亮, 李红. 人们为什么会羞怯:认知机制及神经基础[J]. 心理科学进展, 2022, 30(5): 1038-1049. |
[9] | 徐慧, 王滔. 自闭症谱系障碍个体的社会动机缺陷[J]. 心理科学进展, 2022, 30(5): 1050-1061. |
[10] | 王鑫麟, 邱晓悦, 翁旭初, 杨平. 工作记忆的神经振荡调控:基于神经振荡夹带现象[J]. 心理科学进展, 2022, 30(4): 802-816. |
[11] | 李俊娇, 陈伟, 石佩, 董媛媛, 郑希付. 预期错误在恐惧记忆更新中的作用与机制[J]. 心理科学进展, 2022, 30(4): 834-850. |
[12] | 武晓菲, 肖风, 罗劲. 创造性认知重评在情绪调节中的迁移效应及其神经基础[J]. 心理科学进展, 2022, 30(3): 477-485. |
[13] | 陈幸明, 付彤, 刘昌, 张宾, 伏云发, 李恩泽, ZHANG Jian, 陈盛强, 党彩萍. 工作记忆训练诱发的神经可塑性——基于系列fMRI实验的脑区分布递减时空模型[J]. 心理科学进展, 2022, 30(2): 255-274. |
[14] | 章丽娜, 宣宾. 语言产生中词频效应老化的神经基础与时间进程[J]. 心理科学进展, 2022, 30(2): 333-342. |
[15] | 李何慧, 黄慧雅, 董琳, 罗跃嘉, 陶伍海. 发展性阅读障碍与小脑异常:小脑的功能和两者的因果关系[J]. 心理科学进展, 2022, 30(2): 343-353. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||