心理科学进展 ›› 2020, Vol. 28 ›› Issue (2): 252-265.doi: 10.3724/SP.J.1042.2020.00252 cstr: 32111.14.2020.00252
收稿日期:
2019-01-28
出版日期:
2020-02-15
发布日期:
2019-12-25
基金资助:
ZHENG Hong1,2, PU Cheng-cheng3, WANG Yi1,2(), Raymond C. K. CHAN1,2
Received:
2019-01-28
Online:
2020-02-15
Published:
2019-12-25
摘要:
将机器学习应用于精神疾患的临床和基础研究是近年来的趋势。研究者将机器学习应用于精神分裂症患者及高危人群的T1加权像和弥散张量成像的脑影像数据中, 为了解疾病的生理病理学机制提供帮助。回顾以往研究发现额叶及颞叶的脑结构特征具有较高的区分能力, 行为数据和脑影像数据结合的分类效果优于单模态数据。现阶段研究存在样本量不足和泛化能力欠缺的局限, 未来研究应注意扩大样本量、制定标准化的分类方法, 从而进一步探究机器学习在精神疾患中的作用。
中图分类号:
郑泓, 蒲城城, 王毅, 陈楚侨. (2020). 基于脑结构像的精神分裂症机器学习分类. 心理科学进展 , 28(2), 252-265.
ZHENG Hong, PU Cheng-cheng, WANG Yi, Raymond C. K. CHAN. (2020). The classification of schizophrenia based on brain structural features: A machine learning approach. Advances in Psychological Science, 28(2), 252-265.
[1] | 周志华 . (2016). 机器学习. 清华大学出版社. |
[2] | Ardekani, B. A., Tabesh, A., Sevy, S., Robinson, D. G., Bilder, R. M., & Szeszko, P. R . ( 2011). Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers. Human Brain Mapping, 32( 1), 1-9. |
[3] | Bakhshi, K., & Chance, S. A .( 2015). The neuropathology of schizophrenia: A selective review of past studies and emerging themes in brain structure and cytoarchitecture. Neuroscience. 33, 82-102. |
[4] | Beleites, C., Neugebauer, U., Bocklitz, T., Krafft, C., & Popp, J . ( 2013). Sample size planning for classification models. Analytica Chimica Acta, 760, 25-33. doi: 10.1016/j.aca. 2012.11.007 |
[5] | Bengio, Y., Courville, A., & Vincent, P .( 2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence. 35(8), 1798-1828. |
[6] | Borgwardt, S., Koutsouleris, N., Aston, J., Studerus, E., Smieskova, R., Riecher-Rössler, A., & Meisenzahl, E. M . ( 2013). Distinguishing prodromal from first-episode psychosis using neuroanatomical single-subject pattern recognition. Schizophrenia Bulletin, 39( 5), 1105-1114. |
[7] | Carpenter, W. T., & Buchanan, R. W . ( 1994). Schizophrenia. New England Journal of Medicine, 330( 10), 681-690. |
[8] | Chin, R., You, A. X. B., Meng, F. W., Zhou, J., & Sim, K . ( 2018). Recognition of schizophrenia with regularized support vector machine and sequential region of interest selection using structural magnetic resonance imaging. Scientific Reports, 8( 1), 13858. |
[9] | Chu, W.-L., Huang, M.-W., Jian, B.-L., Hsu, C.-Y., & Cheng, K.-S . ( 2016). A correlative classification study of schizophrenic patients with results of clinical evaluation and structural magnetic resonance images. Behavioural Neurology, 2016, 1-11. |
[10] | de Moura, A. M., Pinaya, W. H. L., Gadelha, A., Zugman, A., Noto, C., Cordeiro, Q., … Sato, J. R .( 2018). Investigating brain structural patterns in first episode psychosis and schizophrenia using MRI and a machine learning approach. Psychiatry Research - Neuroimaging, 275(March), 14-20. |
[11] | Deng, Y., Hung, K. S. Y., Lui, S. S. Y., Chui, W. W. H., Lee, J. C. W., Wang, Y., … Cheung, E. F. C .( 2019). Tractography-based classification in distinguishing patients with first-episode schizophrenia from healthy individuals. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 88, 66-73. |
[12] | de Pierrefeu, A., Löfstedt, T., Laidi, C., Hadj-Selem, F., Bourgin, J., Hajek, T., … Duchesnay, E . ( 2018). Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine learning with structured sparsity. Acta Psychiatrica Scandinavica. 138 (6), 571-580. |
[13] | Dluhoš, P., Schwarz, D., Cahn, W., van Haren, N., Kahn, R., Španiel, F., Schnack, H .( 2017). Multi-center machine learning in imaging psychiatry: A meta-model approach. NeuroImage, 155(April), 10-24. |
[14] | Dwyer, D. B., Falkai, P., & Koutsouleris, N . ( 2018). Machine learning approaches for clinical psychology and psychiatry. Annual Review of Clinical Psychology, 14(1), 91-118. |
[15] | Dyrba, M., Grothe, M., Kirste, T., & Teipel, S. J . ( 2015). Multimodal analysis of functional and structural disconnection in Alzheimer’s disease using multiple kernel SVM. Human Brain Mapping, 36(6), 2118-2131. |
[16] | Ebdrup, B. H., Axelsen, M. C., Bak, N., Fagerlund, B., Oranje, B., Raghava, J. M., … Glenthøj, B. Y . ( 2018). Accuracy of diagnostic classification algorithms using cognitive-, electrophysiological-, and neuroanatomical data in antipsychotic-naïve schizophrenia patients. Psychological Medicine. |
[17] | Gould, I. C., Shepherd, A. M., Laurens, K. R., Cairns, M. J., Carr, V. J., & Green, M. J . ( 2014). Multivariate neuroanatomical classification of cognitive subtypes in schizophrenia: A support vector machine learning approach. NeuroImage: Clinical, 6, 229-236. |
[18] | Greenstein, D., Malley, J. D., Weisinger, B., Clasen, L., & Gogtay, N., & .( 2012). Using multivariate machine learning methods and structural MRI to classify childhood onset schizophrenia and healthy controls. Frontiers in Psychiatry, 3(June), 1-12. |
[19] | Guo, S., Palaniyappan, L., Liddle, P. F., & Feng, J . ( 2016). Dynamic cerebral reorganization in the pathophysiology of schizophrenia: A MRI-derived cortical thickness study. Psychological Medicine, 46( 10), 2201-2214. |
[20] | Guyon, I., Weston, J., Barnhill, S., & Vapnik, V . ( 2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46( 1-3), 389-422. |
[21] | Iwabuchi, S. J., Liddle, P. F., & Palaniyappan, L .( 2013). Clinical utility of machine-learning approaches in schizophrenia: Improving diagnostic confidence for translational neuroimaging. Frontiers in Psychiatry, 4(August), 1-9. |
[22] | Kambeitz, J., Kambeitz-Ilankovic, L., Leucht, S., Wood, S., Davatzikos, C., Malchow, B., … Koutsouleris, N .( 2015). Detecting neuroimaging biomarkers for schizophrenia: A meta-analysis of multivariate pattern recognition studies. Neuropsychopharmacology, 40 (7), 1742-1751. |
[23] | Karageorgiou, E., Schulz, S. C., Gollub, R. L., Andreasen, N. C., Ho, B. C., Lauriello, J., ... & Georgopoulos, A. P . ( 2011). Neuropsychological testing and structural magnetic resonance imaging as diagnostic biomarkers early in the course of schizophrenia and related psychoses. Neuroinformatics, 9( 4), 321-333. |
[24] | Lecun, Y., Bengio, Y., & Hinton, G . ( 2015). Deep learning. Nature, 521, 436-444. |
[25] | Lu, X. B., Yang, Y. Z., Wu, F. C., Gao, M. J., Xu, Y., Zhang, Y., … Wu, K . ( 2016). Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images. Medicine (United States), 95( 30), e3973. |
[26] | Lu, X.-B., Zhang, Y., Yang, D.-Y., Yang, Y.-Z., Wu, F.-C., Ning, Y.-P., & Wu, K . ( 2018). Analysis of first-episode and chronic schizophrenia using multi-modal magnetic resonance imaging. European Review for Medical and Pharmacological Sciences, 22( 19), 6422-6435. |
[27] | Madsen, K. H., Krohne, L. G., Cai, X.-L., Wang, Y., & Chan, R. C. K . ( 2018). Perspectives on machine learning for classification of Schizotypy using fMRI data. Schizophrenia bulletin, 44( suppl_2), S480-S490. |
[28] | Meoded, A., Poretti, A., Mori, S., & Zhang, J . ( 2017). Diffusion Tensor Imaging (DTI). Reference Module in Neuroscience and Biobehavioral Psychology, (March 2016), 1-11. |
[29] | Mikolas, P., Hlinka, J., Skoch, A., Pitra, Z., Frodl, T., Spaniel, F., & Hajek, T . ( 2018). Machine learning classification of first-episode schizophrenia spectrum disorders and controls using whole brain white matter fractional anisotropy. BMC Psychiatry, 18( 1), 97. |
[30] | Mitchell, T . ( 1997). Machine Learning. McGraw-Hill,New York. |
[31] | Nieuwenhuis, M., van Haren, N. E. M., Hulshoff Pol, H. E., Cahn, W., Kahn, R. S., & Schnack, H. G . ( 2012). Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. NeuroImage, 61(3), 606-612. |
[32] | Palaniyappan, L . ( 2017). Progressive cortical reorganisation: A framework for investigating structural changes in schizophrenia. Neuroscience and Biobehavioral Reviews, 79, 1-3. |
[33] | Peng, B., Lu, J., Saxena, A., Zhou, Z. Y., Zhang, T., Wang, S. H., & Dai, Y. K .( 2017). Examining brain morphometry associated with self-esteem in young adults using multilevel-ROI-features-based classification method. Frontiers in Computational Neuroscience, 11(May), 1-10. |
[34] | Peruzzo, D., Castellani, U., Perlini, C., Bellani, M., Marinelli, V., Rambaldelli, G., … Brambilla, P . ( 2015). Classification of first-episode psychosis: A multi-modal multi-feature approach integrating structural and diffusion imaging. Journal of Neural Transmission, 122(6), 897-905. |
[35] | Pettersson-Yeo, W., Benetti, S., Marquand, A. F., Dell’Acqua, F., Williams, S. C. R., Allen, P., … Mechelli, A . ( 2013). Using genetic, cognitive and multi-modal neuroimaging data to identify ultra-high-risk and first-episode psychosis at the individual level. Psychological Medicine, 43(12), 2547-2562. |
[36] | Pinaya, W. H. L., Gadelha, A., Doyle, O. M., Noto, C., Zugman, A., Cordeiro, Q., … Sato, J. R . ( 2016). Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Scientific Reports, 6( 1), 38897. |
[37] | Qureshi, M. N. I., Oh, J., Cho, D., Jo, H. J., & Lee, B . ( 2017). Multimodal discrimination of schizophrenia using hybrid weighted feature concatenation of brain functional connectivity and anatomical features with an extreme learning machine. Frontiers in Neuroinformatics, 11(September), 1-14. |
[38] | Rathi, Y., Malcolm, J., Michailovich, O., Goldstein, J., Seidman, L., McCarley, R. W., & Westin, C.-F . ( 2010). Biomarkers for identifying first-episode schizophrenia patients using diffusion weighted imaging. Med Image Comput Comput-Assist Interv, 13, 657-665. |
[39] | Riley, P . ( 2019). Three pitfalls to avoid in machine learning. Nature, 572( 7767), 27-29. |
[40] | Salvador, R., Radua, J., Canales-Rodríguez, E. J., Solanes, A., Sarró, S., Goikolea, J. M., … Pomarol-Clote, E . ( 2017). Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis. PLoS ONE, 12( 4), e0175683. |
[41] | Samuel, A. L . ( 1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3( 3), 210-229. |
[42] | Schmidhuber, J . ( 2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. |
[43] | Schnack, H. G., Nieuwenhuis, M., van Haren, N. E. M., Abramovic, L., Scheewe, T. W., Brouwer, R. M., … Kahn, R. S . ( 2014). Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. NeuroImage, 84, 299-306. |
[44] | Squarcina, L., Castellani, U., Bellani, M., Perlini, C., Lasalvia, A., Dusi, N., … Brambilla, P .( 2017). Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques. NeuroImage, 145(Pt B), 238-245. |
[45] | Sui, J., Castro, E., He, H., Bridwell, D., Du, Y. H., Pearlson, G. D., … Calhoun, V. D .( 2014). Combination of fMRI- sMRI-EEG data improves discrimination of schizophrenia patients by ensemble feature selection. Conference Proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2014(2), 3889-3892. |
[46] | Sui, J., He, H., Yu, Q. B., Chen, J. Y., Rogers, J., Pearlson, G. D., … Calhoun, V. D .( 2013). Combination of resting state fMRI, DTI, and sMRI data to discriminate schizophrenia by N-way MCCA + jICA. Frontiers in Human Neuroscience, 7(May), 1-14. |
[47] | Takayanagi, Y., Takahashi, T., Orikabe, L., Mozue, Y., Kawasaki, Y., Nakamura, K., .. Suzuki, M . ( 2011). Classification of first-episode schizophrenia patients and healthy subjects by automated MRI measures of regional brain volume and cortical thickness. PloS ONE, 6( 6), e21047. |
[48] | Tas, C., Mogulkoc, H., Eryilmaz, G., Gogcegoz-Gul, I., Erguzel, T. T., Metin, B., & Tarhan, N. K . ( 2018). Discriminating schizophrenia and schizo-obsessive disorder: A structural MRI study combining VBM and machine learning methods. Neural Computing and Applications, 29( 2), 377- 387. |
[49] | Valli, I., Marquand, A. F., Mechelli, A., Raffin, M., Allen, P., Seal, M. L., & McGuire, P . ( 2016). Identifying individuals at high risk of psychosis: Predictive utility of support vector machine using structural and functional MRI data. Frontiers in Psychiatry, 7, 52. |
[50] | Wang, L. B., Shen, H., Li, B. J., & Hu, D. W . ( 2011). Classification of schizophrenic patients and healthy controls using multiple spatially independent components of structural MRI data. Frontiers of Electrical and Electronic Engineering in China, 6( 2), 353-362. |
[51] | Winterburn, J. L., Voineskos, A. N., Devenyi, G. A., Plitman, E., de la Fuente-Sandoval, C., Bhagwat, N., … Chakravarty, M. M .( 2017). Can we accurately classify schizophrenia patients from healthy controls using magnetic resonance imaging and machine learning? A multi-method and multi-dataset study. Schizophrenia Research. |
[52] | Xiao, Y., Yan, Z. H., Zhao, Y. J., Tao, B., Sun, H. Q., Li, F., … Lui, S .( 2017). Support vector machine-based classification of first episode drug-naïve schizophrenia patients and healthy controls using structural MRI. Schizophrenia Research. |
[53] | Zarogianni, E., Storkey, A. J., Johnstone, E. C., Owens, D. G. C., & CLawrie, S. M .( 2017). Improved individualized prediction of schizophrenia in subjects at familial high risk, based on neuroanatomical data, schizotypal and neurocognitive features. Schizophrenia Research, 181, 6-12. |
[54] | Zanetti, M. V., Schaufelberger, M. S., Doshi, J., Ou, Y. M., Ferreira, L. K., Menezes, P. R., ... Busatto, G. F . ( 2013). Neuroanatomical pattern classification in a population- based sample of first-episode schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 43, 116-125. |
[1] | 高白雪, 谢云龙, 罗俊龙, 贺雯. 机器学习在提高非自杀性自伤预测力中的应用:一项系统综述[J]. 心理科学进展, 2025, 33(3): 506-519. |
[2] | 赵子卿, 余锦婷, 陈嘉彦, 王芸茹, 黄佳, 陈楚侨. 精神病临床高危人群的症状和功能改变:一项系统综述和三水平元分析[J]. 心理科学进展, 2025, 33(1): 42-61. |
[3] | 高旭亮, 李宁. 机器学习方法在测验安全领域的应用[J]. 心理科学进展, 2024, 32(11): 1814-1828. |
[4] | 夏行之, 夏海森, 杜向东. 精神分裂症患者对情绪图片唤醒研究[J]. 心理科学进展, 2023, 31(suppl.): 131-131. |
[5] | 陈新文, 李鸿杰, 丁玉珑. 探究事件相关脑电/脑磁信号中的神经表征模式:基于分类解码和表征相似性分析的方法[J]. 心理科学进展, 2023, 31(2): 173-195. |
[6] | 卜晓鸥, 王耀, 杜亚雯, 王沛. 机器学习在发展性阅读障碍儿童早期筛查中的应用[J]. 心理科学进展, 2023, 31(11): 2092-2105. |
[7] | 周振友, 孔丽, 陈楚侨. 精神分裂症肠道微生物与脑影像和临床表征的关系[J]. 心理科学进展, 2022, 30(8): 1856-1869. |
[8] | 刘笑晗, 陈明隆, 郭静. 机器学习在儿童创伤后应激障碍识别及转归预测中的应用[J]. 心理科学进展, 2022, 30(4): 851-862. |
[9] | 侯婷婷, 陈潇, 孔德彭, 邵秀筠, 林丰勋, 李开云. 机器学习在自闭症儿童早期识别和诊断领域的应用[J]. 心理科学进展, 2022, 30(10): 2321-2337. |
[10] | 李谷静, 张丽蓉, 米莉, 贺辉, 卢竞, 罗程, 尧德中. 舞动治疗:一种自下而上的精神分裂症干预探索[J]. 心理科学进展, 2021, 29(8): 1371-1380. |
[11] | 欧华星, 陈伟海. 多巴胺D2受体参与调节感觉门控的机制[J]. 心理科学进展, 2021, 29(6): 1030-1041. |
[12] | 苏悦, 刘明明, 赵楠, 刘晓倩, 朱廷劭. 基于社交媒体数据的心理指标识别建模: 机器学习的方法[J]. 心理科学进展, 2021, 29(4): 571-585. |
[13] | 董健宇, 韦文棋, 吴珂, 妮娜, 王粲霏, 付莹, 彭歆. 机器学习在抑郁症领域的应用[J]. 心理科学进展, 2020, 28(2): 266-274. |
[14] | 王盛, 陈雅弘, 王锦琰. 动物前注意加工模型的建立及评价: 基于精神类疾病损伤[J]. 心理科学进展, 2020, 28(12): 2027-2039. |
[15] | 梁静, 阮倩男, 李贺, 马梦晴, 颜文靖. 认知负荷取向下基于记忆-反应冲突的欺骗检测[J]. 心理科学进展, 2020, 28(10): 1619-1630. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1246
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 857
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||