心理科学进展 ›› 2020, Vol. 28 ›› Issue (1): 111-127.doi: 10.3724/SP.J.1042.2020.00111
区健新1,2, 吴寅1,2, 刘金婷1,2, 李红1,2,3()
收稿日期:
2019-01-29
出版日期:
2020-01-15
发布日期:
2019-11-21
通讯作者:
李红
E-mail:lihongszu@szu.edu.cn
基金资助:
OU Jianxin1,2, WU Yin1,2, LIU Jinting1,2, LI Hong1,2,3()
Received:
2019-01-29
Online:
2020-01-15
Published:
2019-11-21
Contact:
LI Hong
E-mail:lihongszu@szu.edu.cn
摘要:
抑郁症是一种复杂而异质的精神疾病, 给全球带来沉重的疾病负担。尽管基于症状学的诊断方法已被广泛应用于各领域, 但这种方法并不利于病理机制的探讨。另外, 该诊断方法预测效度较低, 导致其难以准确评估和比较各种治疗方案的疗效。计算精神病学方法则能通过理论驱动和数据驱动两种互补的方法解决上述问题, 从而提高对抑郁症的认识、预防和治疗。理论驱动方法基于经验知识或假设, 利用计算建模方法对数据进行多水平分析; 数据驱动方法则基于机器学习算法分析高维数据, 提高抑郁症诊断和预测的准确性, 进而提高治疗的精准度。理论驱动和数据驱动方法的发展与结合, 以及人才和资源的整合, 将会更有效地推进抑郁症的防治。
中图分类号:
区健新, 吴寅, 刘金婷, 李红. (2020). 计算精神病学:抑郁症研究和临床应用的新视角. 心理科学进展 , 28(1), 111-127.
OU Jianxin, WU Yin, LIU Jinting, LI Hong. (2020). Computational psychiatry: A new perspective on research and clinical applications in depression. Advances in Psychological Science, 28(1), 111-127.
1 | 孙也婷, 陈桃林, 何度, 董再全, 程勃超, 王淞 , .. 龚启勇. (印刷中). 基于精神影像和人工智能的抑郁症客观生物标志物研究进展.生物化学与生物物理进展. |
2 | 文宏伟, 陆菁菁, 何晖光 . ( 2018). 机器学习在神经精神疾病诊断及预测中的应用. 协和医学杂志, 9( 1), 19-24. |
3 | 谢小华, 冯建峰 . ( 2019). 上海市脑与类脑智能基础转化应用研究的现状及展望. 心理学通讯, 2( 2), 84-87. |
4 | Almgren H., van de Steen F., Kuhn S., Razi A., Friston K., & Marinazzo D . ( 2018). Variability and reliability of effective connectivity within the core default mode network: A multi-site longitudinal spectral DCM study. Neuroimage, 183, 757-768. doi: 10.1016/j.neuroimage. 2018.08.053 |
5 | Andrews S., Tsochantaridis I., & Hofmann T . ( 2002). Support vector machines for multiple-instance learning. Paper presented at the Advances in Neural Information Processing Systems 15, Vancouver, British Columbia, Canada. |
6 | ArnstenA.F., . ( 2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10( 6), 410-422. doi: 10.1038/nrn2648 |
7 | AshbyW.R., . ( 1947). Principles of the self-organizing dynamic system. Journal of General Psychology, 37( 2), 125-128. doi: 10.1080/00221309.1947.9918144 |
8 | AssociationA.P., . ( 2013). Diagnostic and statistical manual of mental disorders (DSM-5®): American Psychiatric Pub. |
9 | Bahn S., Noll R., Barnes A., Schwarz E., & Guest P. C . ( 2011). Challenges of introducing new biomarker products for neuropsychiatric disorders into the market. International Review of Neurobiology, 101, 299-327. doi: 10.1016/B978-0-12-387718-5.00012-2 |
10 | Boes A. D., Uitermarkt B. D., Albazron F. M., Lan M. J., Liston C., Pascual-Leone A., .. Fox M. D . ( 2018). Rostral anterior cingulate cortex is a structural correlate of repetitive TMS treatment response in depression. Brain Stimulation, 11( 3), 575-581. doi: 10.1016/j.brs.2018.01.029 |
11 | BzdokD., &Meyer-Lindenberg, A . ( 2018). Machine learning for precision psychiatry: Opportunities and challenges. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3( 3), 223-230. doi: 10.1016/j.bpsc. 2017.11.007 |
12 | ChekroudA.M., . ( 2017). Bigger data, harder questions- opportunities throughout mental health care. JAMA Psychiatry, 74( 12), 1183-1184. doi: 10.1001/jamapsychiatry. 2017.3333 |
13 | Chekroud A. M., Gueorguieva R., Krumholz H. M., Trivedi M. H., Krystal J. H., & McCarthy G . ( 2017). Reevaluating the efficacy and predictability of antidepressant treatments: A symptom clustering approach. JAMA Psychiatry, 74( 4), 370-378. doi: 10.1001/ jamapsychiatry. 2017.0025 |
14 | Chekroud A. M., Lane C. E., & Ross D. A . ( 2017). Computational psychiatry: Embracing uncertainty and focusing on individuals, not averages. Biological Psychiatry, 82( 6), e45-e47. doi: 10.1016/j.biopsych.2017. 07.011 |
15 | Chekroud A. M., Zotti R. J., Shehzad Z., Gueorguieva R., Johnson M. K., Trivedi M. H., .. Corlett P. R . ( 2016). Cross-trial prediction of treatment outcome in depression: A machine learning approach. Lancet Psychiatry, 3( 3), 243-250. doi: 10.1016/S2215-0366(15)00471-X |
16 | Chen C., Takahashi T., Nakagawa S., Inoue T., & Kusumi I . ( 2015). Reinforcement learning in depression: A review of computational research. Neuroscience and Biobehavioral Reviews, 55, 247-267. doi: 10.1016/j.neubiorev.2015.05. 005 |
17 | Cicero D. C., Martin E. A., Becker T. M., & Kerns J. G . ( 2014). Reinforcement learning deficits in people with schizophrenia persist after extended trials. Psychiatry Research, 220( 3), 760-764. doi: 10.1016/j.psychres.2014.08. 013 |
18 | Clark L., Chamberlain S. R., & Sahakian B. J . ( 2009). Neurocognitive mechanisms in depression: Implications for treatment. Annual Review of Neuroscience, 32( 1), 57-74. doi: 10.1146/annurev.neuro.31.060407.125618 |
19 | Cooper J. A., Arulpragasam A. R., & Treadway M. T . ( 2018). Anhedonia in depression: Biological mechanisms and computational models. Current Opinion in Behavioral Sciences, 22, 128-135. doi: 10.1016/j.cobeha.2018.01.024 |
20 | CuiZ., &Gong, G . ( 2018). The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features. Neuroimage, 178, 622-637. doi: 10.1016/j.neuroimage. 2018.06.001 |
21 | CuthbertB.., &Insel T.R, . ( 2013). Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Medicine, 11( 1), 126. doi: 10.1186/1741-7015-11-126 |
22 | Czajkowski S. M., Powell L. H., Adler N., Naar-King S., Reynolds K. D., Hunter C. M., .. Charlson M. E . ( 2015). From ideas to efficacy: The ORBIT model for developing behavioral treatments for chronic diseases. Health Psychology, 34( 10), 971-982. doi: 10.1037/hea0000161 |
23 | Davey C., Breakspear M., Pujol J., & Harrison B . ( 2018). 201. A dynamic causal model of the depressed self. Biological Psychiatry, 83( 9). doi: 10.1016/j.biopsych. 2018.02.220 |
24 | Daw N. D., Gershman S. J., Seymour B., Dayan P., & Dolan R. J . ( 2011). Model-based influences on humans' choices and striatal prediction errors. Neuron, 69( 6), 1204-1215. doi: 10.1016/j.neuron.2011.02.027 |
25 | Daw N. D., Niv Y., & Dayan P . ( 2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8( 12), 1704-1711. doi: 10.1038/nn1560 |
26 | DeBattista C., Kinrys G., Hoffman D., Goldstein C., Zajecka J., Kocsis J., .. Fava M . ( 2011). The use of referenced-EEG (rEEG) in assisting medication selection for the treatment of depression. Journal of Psychiatric Research, 45( 1), 64-75. doi: 10.1016/j.jpsychires.2010.05. 009 |
27 | DeRubeis R. J., Cohen Z. D., Forand N. R., Fournier J. C., Gelfand L. A., & Lorenzo-Luaces L . ( 2014). The Personalized Advantage Index: Translating research on prediction into individualized treatment recommendations. A demonstration. PloS One, 9( 1), e83875. doi: 10. 1371/journal.pone.0083875 |
28 | Dillon D. G., Wiecki T., Pechtel P., Webb C., Goer F., Murray L., .. Pizzagalli D. A . ( 2015). A computational analysis of flanker interference in depression. Psychological Medicine, 45( 11), 2333-2344. doi: 10.1017/ S0033291715000276 |
29 | Doll B. B., Bath K. G., Daw N. D., & Frank M. J . ( 2016). Variability in dopamine genes dissociates model-based and model-free reinforcement learning. Journal of Neuroscience, 36( 4), 1211-1222. doi: 10.1523/JNEUROSCI. 1901-15.2016 |
30 | Donde C., Amad A., Nieto I., Brunoni A. R., Neufeld N. H., Bellivier F., .. Geoffroy P. A . ( 2017). Transcranial direct-current stimulation (tDCS) for bipolar depression: A systematic review and meta-analysis. Progress in Neuro- Psychopharmacology and Biological Psychiatry, 78, 123-131. doi: 10.1016/j.pnpbp.2017.05.021 |
31 | DruckerE., &Krapfenbauer, K . ( 2013). Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. The EPMA Journal, 4( 1), 7. doi: 10.1186/1878-5085-4-7 |
32 | Drysdale A. T., Grosenick L., Downar J., Dunlop K., Mansouri F., Meng Y., .. Liston C . ( 2017). Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine, 23( 1), 28-38. doi: 10.1038/nm.4246 |
33 | Dutilh G., Vandekerckhove J., Forstmann B. U., Keuleers E., Brysbaert M., & Wagenmakers E. J . ( 2012). Testing theories of post-error slowing. Attention Perception & Psychophysics, 74( 2), 454-465. doi: 10.3758/s13414-011- 0243-2 |
34 | Eldar E., Roth C., Dayan P., & Dolan R. J . ( 2018). Decodability of reward learning signals predicts mood fluctuations. Current Biology, 28( 9), 1433-1439. doi: 10.1016/j.cub.2018.03.038 |
35 | Etkin, A. ( 2018). Addressing the causality gap in human psychiatric neuroscience. JAMA Psychiatry, 75( 1), 3-4. doi: 10.1001/jamapsychiatry.2017.3610 |
36 | Farhan A. A., Lu J., Bi J., Russell A., Wang B., & Bamis A . ( 2016). Multi-view Bi-clustering to identify smartphone sensing features indicative of depression. Paper presented at the 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Washington, DC, USA. |
37 | Feng Z., Xu S., Huang M., Shi Y., Xiong B., & Yang H . ( 2016). Disrupted causal connectivity anchored on the anterior cingulate cortex in first-episode medication-naive major depressive disorder. Progress in Neuro- Psychopharmacology and Biological Psychiatry, 64, 124-130. doi: 10.1016/j.pnpbp.2015.07.008 |
38 | Forstmann B. U., Ratcliff R., & Wagenmakers E. J . ( 2016). Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions. Annual Review of Psychology, 67, 641-666. doi: 10.1146/annurev-psych- 122414-033645 |
39 | Frässle S., Lomakina E. I., Razi A., Friston K. J., Buhmann J. M., & Stephan K. E . ( 2017). Regression DCM for fMRI. Neuroimage, 155, 406-421. doi: 10.1016/j.neuroimage.2017.02.090 |
40 | Frässle S., Yao Y., Schobi D., Aponte E. A., Heinzle J., & Stephan K. E . ( 2018). Generative models for clinical applications in computational psychiatry. Wiley Interdisciplinary Reviews: Cognitive Science, 9( 3), e1460. doi: 10.1002/wcs.1460 |
41 | FristonK.J., . ( 2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11( 2), 127-138. doi: 10.1038/nrn2787 |
42 | Friston K. J., Harrison L., & Penny W . ( 2003). Dynamic causal modelling. Neuroimage, 19( 4), 1273-1302. doi: 10. 1016/s1053-8119(03)00202-7 |
43 | Friston K. J., Kahan J., Biswal B., & Razi A . ( 2014). A DCM for resting state fMRI. Neuroimage, 94, 396-407. doi: 10.1016/j.neuroimage.2013.12.009 |
44 | Friston K. J., Litvak V., Oswal A., Razi A., Stephan K. E., van Wijk, B. C. M., .. Zeidman P . ( 2016). Bayesian model reduction and empirical Bayes for group (DCM) studies. Neuroimage, 128, 413-431. doi: 10.1016/j. neuroimage. 2015.11.015 |
45 | Friston K. J., Preller K. H., Mathys C., Cagnan H., Heinzle J., Razi A., & Zeidman P . ( 2019). Dynamic causal modelling revisited. Neuroimage, 199, 730-744. doi: 10.1016/j.neuroimage.2017.02.045 |
46 | Gilmartin M. R., Balderston N. L., & Helmstetter F. J . ( 2014). Prefrontal cortical regulation of fear learning. Trends in Neurosciences, 37( 8), 455-464. doi: 10.1016/ j.tins.2014.05.004 |
47 | GoldJ.., &Shadlen M.N, . ( 2007). The neural basis of decision making. Annual Review of Neuroscience, 30( 1), 535-574. doi: 10.1146/annurev.neuro.29.051605.113038 |
48 | GoldbergD., &Fawcett, J . ( 2012). The importance of anxiety in both major depression and bipolar disorder. Depression and Anxiety, 29( 6), 471-478. doi: 10.1002/ da.21939 |
49 | GomezP., &Perea, M . ( 2014). Decomposing encoding and decisional components in visual-word recognition: A diffusion model analysis. Quarterly Journal of Experimental Psychology, 67( 12), 2455-2466. doi: 10.1080/17470218.2014.937447 |
50 | Hammen C.., ( 2018). Risk factors for depression: An autobiographical review. Annual Review of Clinical Psychology, 14, 1-28. doi: 10.1146/annurev-clinpsy-050817- 084811 |
51 | Hanks T. D., Ditterich J., & Shadlen M. N . ( 2006). Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nature Neuroscience, 9( 5), 682-689. doi: 10.1038/nn1683 |
52 | Haque A., Guo M., Miner A. S., & Li F.-F . ( 2018). Measuring depression symptom severity from spoken language and 3D facial expressions. Arxiv Preprint Arxiv:1811.08592. |
53 | Heller A. S., Ezie C. E. C., Otto A. R., & Timpano K. R . ( 2018). Model-based learning and individual differences in depression: The moderating role of stress. Behaviour Research and Therapy, 111, 19-26. doi: 10.1016/j.brat. 2018.09.007 |
54 | Herrman H., Kieling C., McGorry P., Horton R., Sargent J., & Patel V . ( 2019). Reducing the global burden of depression: A Lancet-World Psychiatric Association Commission. The Lancet, 393( 10189), e42-e43. doi: 10.1016/ s0140-6736(18)32408-5 |
55 | Honnorat N., Dong A., Meisenzahl-Lechner E., Koutsouleris N., & Davatzikos C . ( 2017). Neuroanatomical heterogeneity of schizophrenia revealed by semi-supervised machine learning methods. Schizophrenia Research . doi: 10.1016/j. schres.2017.12.008 |
56 | HusainM., &Roiser J.P, . ( 2018). Neuroscience of apathy and anhedonia: A transdiagnostic approach. Nature Reviews Neuroscience, 19( 8), 470-484. doi: 10.1038/ s41583-018-0029-9 |
57 | Huys Q.J. M . (2015) Computational psychiatry. In: Jaeger D., Jung R. (Eds.) Encyclopedia of computational neuroscience (pp. 775-783). Springer, New York, NY |
58 | HuysQ. J.M., . ( 2018 a). Advancing clinical improvements for patients using the theory-driven and data-driven branches of computational psychiatry. JAMA Psychiatry, 75( 3), 225-226. doi: 10.1001/jamapsychiatry.2017.4246 |
59 | Huys Q. J.M. (2018b). Bayesian approaches to learning and decision-making. In A. Anticevic & J. D. Murray (Eds.), Computational Psychiatry (pp. 247-271): Academic Press. |
60 | Huys Q. J. M., Maia T. V., & Frank M. J . ( 2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nature Neuroscience, 19( 3), 404-413. doi: 10.1038/nn.4238 |
61 | Huys Q. J. M., Moutoussis M., & Williams J . (2011). Are computational models of any use to psychiatry? Neural Networks, 24( 6), 544-551. doi: 10.1016/j.neunet.2011.03.001 |
62 | InselT.., &Cuthbert B.N, . ( 2015). Medicine. Brain disorders? Precisely. Science, 348( 6234), 499-500. doi: 10.1126/science.aab2358 |
63 | Janssen R. J., Mourao-Miranda J., & Schnack H. G . ( 2018). Making individual prognoses in psychiatry using neuroimaging and machine learning. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3( 9), 798-808. doi: 10.1016/j.bpsc.2018.04.004 |
64 | Kapur S., Phillips A. G., & Insel T. R . ( 2012). Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Molecular Psychiatry, 17( 12), 1174-1179. doi: 10.1038/mp.2012.105 |
65 | KendlerK.S., . (2008). Explanatory models for psychiatric illness. American Journal of Psychiatry, 165( 6), 695-702. doi: 10.1176/appi.ajp.2008.07071061 |
66 | KrajbichI., &Rangel, A . (2011). Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions. Proceedings of the National Academy of Sciences of the United States of America, 108( 33), 13852-13857. doi: 10. 1073/pnas.1101328108 |
67 | LeCun Y., Bengio Y., & Hinton G . (2015). Deep learning. Nature, 521( 7553), 436-444. doi: 10.1038/nature14539 |
68 | Ledford, H. ( 2014). Medical research: If depression were cancer. Nature, 515( 7526), 182-184. doi: 10.1038/515182a |
69 | Lee D., Seo H., & Jung M. W . (2012). Neural basis of reinforcement learning and decision making. Annual Review of Neuroscience, 35( 1), 287-308. doi: 10.1146/ annurev-neuro-062111-150512 |
70 | Li B., Daunizeau J., Stephan K. E., Penny W., Hu D., & Friston K . (2011). Generalised filtering and stochastic DCM for fMRI. Neuroimage, 58( 2), 442-457. doi: 10. 1016/j.neuroimage.2011.01.085 |
71 | LibbrechtM.., &Noble W.S, . (2015). Machine learning applications in genetics and genomics. Nature Reviews Genetics, 16( 6), 321-332. doi: 10.1038/nrg3920 |
72 | Lin T., Liu T., Lin Y., Yan L., Chen Z., & Wang J . (2017). Comparative study on serum levels of macro and trace elements in schizophrenia based on supervised learning methods. Journal of Trace Elements in Medicine and Biology, 43, 202-208. doi: 10.1016/j.jtemb.2017.03.010 |
73 | Lu Q., Li H., Luo G., Wang Y., Tang H., Han L., & Yao Z . ( 2012). Impaired prefrontal-amygdala effective connectivity is responsible for the dysfunction of emotion process in major depressive disorder: A dynamic causal modeling study on MEG. Neuroscience Letters, 523( 2), 125-130. doi: 10.1016/j.neulet.2012.06.058 |
74 | Lu Y., Tang C., Liow C. S., Ng W. W., Ho C. S., & Ho R. C . ( 2014). A regressional analysis of maladaptive rumination, illness perception and negative emotional outcomes in Asian patients suffering from depressive disorder. Asian Journal of Psychiatry, 12, 69-76. doi: 10.1016/j.ajp.2014.06.014 |
75 | MaiaT.., &Frank M.J, . ( 2011). From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience, 14( 2), 154-162. doi: 10.1038/nn.2723 |
76 | Maia T. V., Huys Q. J. M., & Frank M. J . ( 2017). Theory-based computational psychiatry. Biological Psychiatry, 82( 6), 382-384. doi: 10.1016/j.biopsych.2017. 07.016 |
77 | MalhiG.., &Mann J.J, . ( 2018). Depression. The Lancet, 392( 10161), 2299-2312. doi: 10.1016/s0140-6736(18)31948-2 |
78 | Mazurek M. E., Roitman J. D., Ditterich J., & Shadlen M. N . ( 2003). A role for neural integrators in perceptual decision making. Cerebral Cortex, 13( 11), 1257-1269. doi: 10.1093/cercor/bhg097 |
79 | McEwenB.., &Morrison J.H, . ( 2013). The brain on stress: Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron, 79( 1), 16-29. doi: 10.1016/ j.neuron.2013.06.028 |
80 | Mendelson A. F., Zuluaga M. A., Lorenzi M., Hutton B. F., Ourselin S .,& Alzheimer's Disease Neuroimaging I. .,( 2017). Selection bias in the reported performances of AD classification pipelines. Neuroimage: Clinical, 14, 400-416. doi: 10.1016/j.nicl.2016.12.018 |
81 | Montague P. R., Dolan R. J., Friston K. J., & Dayan P . ( 2012). Computational psychiatry. Trends in Cognitive Sciences, 16( 1), 72-80. doi: 10.1016/j.tics.2011.11.018 |
82 | Moustafa A. A., Keri S., Somlai Z., Balsdon T., Frydecka D., Misiak B., & White C . ( 2015). Drift diffusion model of reward and punishment learning in schizophrenia: Modeling and experimental data. Behavioural Brain Research, 291, 147-154. doi: 10.1016/j.bbr.2015.05.024 |
83 | Niv, Y. ( 2009). Reinforcement learning in the brain. Journal of Mathematical Psychology, 53( 3), 139-154. doi: 10. 1016/j.jmp.2008.12.005 |
84 | Nouretdinov I., Costafreda S. G., Gammerman A., Chervonenkis A., Vovk V., Vapnik V., & Fu C. H . ( 2011). Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. Neuroimage, 56( 2), 809-813. doi: 10.1016/j. neuroimage.2010.05.023 |
85 | Patel M. J., Andreescu C., Price J. C., Edelman K. L., Reynolds C. F .,3rd & Aizenstein, H. J. .,( 2015). Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction. International Journal of Geriatric Psychiatry, 30( 10), 1056-1067. doi: 10.1002/gps.4262 |
86 | Patel M. J., Khalaf A., & Aizenstein H. J . ( 2016). Studying depression using imaging and machine learning methods. Neuroimage: Clinical, 10, 115-123. doi: 10.1016/j.nicl. 2015.11.003 |
87 | Paulus M. P., Huys Q. J., & Maia T. V . ( 2016). A roadmap for the development of applied computational psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1( 5), 386-392. doi: 10.1016/j.bpsc.2016. 05.001 |
88 | Pe M. L., Vandekerckhove J., & Kuppens P . ( 2013). A diffusion model account of the relationship between the emotional flanker task and rumination and depression. Emotion, 13( 4), 739-747. doi: 10.1037/a0031628 |
89 | PizzagalliD.A., . ( 2014). Depression, stress, and anhedonia: Toward a synjournal and integrated model. Annual Review of Clinical Psychology, 10( 1), 393-423. doi: 10.1146/ annurev-clinpsy-050212-185606 |
90 | Radenbach C., Reiter A. M., Engert V., Sjoerds Z., Villringer A., Heinze H. J., .. Schlagenhauf F . ( 2015). The interaction of acute and chronic stress impairs model-based behavioral control. Psychoneuroendocrinology, 53, 268-280. doi: 10.1016/j.psyneuen.2014.12.017 |
91 | Ratcliff ,R.( 1978). A theory of memory retrieval. Psychological Review, 85( 2), 59-108. doi: 10.1037/0033-295x.85.2.59 |
92 | RatcliffR., &McKoon, G . ( 2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20( 4), 873-922. doi: 10.1162/neco. 2008.12-06-420 |
93 | Ratcliff R., Smith P. L., Brown S. D., & McKoon G . ( 2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20( 4), 260-281. doi: 10.1016/j.tics.2016.01.007 |
94 | Razi A., Kahan J., Rees G., & Friston K. J . ( 2015). Construct validation of a DCM for resting state fMRI. Neuroimage, 20, 1-14. doi: 10.1016/j.neuroimage.2014. 11.027 |
95 | RobinsonO.., &Chase H.W, . ( 2017). Learning and choice in mood disorders: Searching for the computational parameters of anhedonia. Computational Psychiatry, 1( 1), 208-233. doi: 10.1162/CPSY_a_00009 |
96 | Rock P. L., Roiser J. P., Riedel W. J., & Blackwell A. D . ( 2014). Cognitive impairment in depression: A systematic review and meta-analysis. Psychological Medicine, 44( 10), 2029-2040. doi: 10.1017/S0033291713002535 |
97 | Rothkirch M., Tonn J., Kohler S., & Sterzer P . ( 2017). Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder. Brain, 140( 4), 1147-1157. doi: 10.1093/brain/awx025 |
98 | Rush A. J., Trivedi M. H., Wisniewski S. R., Nierenberg A. A., Stewart J. W., Warden D., .. Fava M . ( 2006). Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. American Journal of Psychiatry, 163( 11), 1905-1917. doi: 10.1176/ajp.2006.163.11.1905 |
99 | RussoS.., &Nestler E.J, . ( 2013). The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 14( 9), 609-625. doi: 10.1038/nrn3381 |
100 | Rutledge R. B., Moutoussis M., Smittenaar P., Zeidman P., Taylor T., Hrynkiewicz L., .. Dolan R. J . ( 2017). Association of neural and emotional impacts of reward prediction errors with major depression. JAMA Psychiatry, 74( 8), 790-797. doi: 10.1001/jamapsychiatry.2017.1713 |
101 | SchnackH.., &Kahn R.S, . ( 2016). Detecting neuroimaging biomarkers for psychiatric disorders: Sample size matters. Frontiers in Psychiatry, 7, 50. doi: 10.3389/fpsyt.2016.00050 |
102 | Schwabe,L. .( 2013) Stress and the engagement of multiple memory systems: Integration of animal and human studies. Hippocampus, 23( 11), 1035-1043. doi: 10.1002/hipo.22175 |
103 | SchwabeL., &Wolf O.T, . ( 2011). Stress-induced modulation of instrumental behavior: From goal-directed to habitual control of action. Behavioural Brain Research, 219( 2), 321-328. doi: 10.1016/j.bbr.2010.12.038 |
104 | Sejnowski T. J., Koch C., & Churchland P. S . ( 1988). Computational neuroscience. Science, 241( 4871), 1299-1306. doi: 10.1126/science.3045969 |
105 | Shalev-Shwartz S., & Ben-David, S. ( 2014) .Understanding machine learning:From theory to algorithms: Cambridge University Press From theory to algorithms: Cambridge University Press. |
106 | Shatte A. B. R., Hutchinson D. M., & Teague S. J . ( 2019). Machine learning in mental health: A scoping review of methods and applications. Psychological Medicine, 49( 9), 1426-1448. doi: 10.1017/S0033291719000151 |
107 | Singh A., Thakur N., & Sharma A . ( 2016). A review of supervised machine learning algorithms. Paper presented at the International Conference on Computing for Sustainable Global Development, New Delhi, India. |
108 | Stephan K. E., Iglesias S., Heinzle J., & Diaconescu A. O . ( 2015). Translational perspectives for computational neuroimaging. Neuron, 87( 4), 716-732. doi: 10.1016/j. neuron.2015.07.008 |
109 | Stephan K. E., Kasper L., Harrison L. M., Daunizeau J., den Ouden H. E., Breakspear M., & Friston K. J . ( 2008). Nonlinear dynamic causal models for fMRI. Neuroimage, 42( 2), 649-662. doi: 10.1016/j.neuroimage.2008.04.262 |
110 | StephanK.., &Mathys, C . ( 2014). Computational approaches to psychiatry. Current Opinion in Neurobiology, 42, 85-92. doi: 10.1016/j.conb.2013.12.007 |
111 | Stephan K. E., Penny W. D., Moran R. J., den Ouden H. E., Daunizeau J., & Friston K. J . ( 2010). Ten simple rules for dynamic causal modeling. Neuroimage, 49( 4), 3099-3109. doi: 10.1016/j.neuroimage.2009.11.015 |
112 | Stephan K. E., Schlagenhauf F., Huys Q. J. M., Raman S., Aponte E. A., Brodersen K. H., .. Heinz A . ( 2017). Computational neuroimaging strategies for single patient predictions. Neuroimage, 145( Pt B), 180-199. doi: 10.1016/ j.neuroimage.2016.06.038 |
113 | Sterzer P., Adams R. A., Fletcher P., Frith C., Lawrie S. M., Muckli L., .. Corlett P. R . ( 2018). The predictive coding account of psychosis. Biological Psychiatry, 84( 9), 634-643. doi: 10.1016/j.biopsych.2018.05.015 |
114 | SuttonR.., &Barto A.G, . ( 1998). Reinforcement learning: An introduction: MIT press. |
115 | SuttonR.., &Barto A.G, . ( 2018). Reinforcement learning: An introduction: MIT press. |
116 | Tran B. X., Vu G. T., Ha G. H., Vuong Q. H., Ho M. T., Vuong T. T .,.. Ho R. C. M. .,( 2019). Global evolution of research in artificial intelligence in health and medicine: A bibliometric study. Journal of Clinical Medicine, 8( 3), 360. doi: 10.3390/jcm8030360 |
117 | Turner B. M., van Maanen L., & Forstmann B. U . ( 2015). Informing cognitive abstractions through neuroimaging: The neural drift diffusion model. Psychological Review, 122( 2), 312-336. doi: 10.1037/a0038894 |
118 | van Ravenzwaaij, D., &Oberauer, K . ( 2009). How to use the diffusion model: Parameter recovery of three methods: EZ, fast-dm, and DMAT. Journal of Mathematical Psychology, 53( 6), 463-473. doi: 10.1016/j.jmp.2009.09.004 |
119 | Vos T., Allen C., Arora M., Barber R. M., Bhutta Z. A., Brown A .,.. Murray C. J. L. .,( 2016). Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388( 10053), 1545-1602. doi: 10. 1016/s0140-6736(16)31678-6 |
120 | Voss A., Nagler M., & Lerche V . ( 2013). Diffusion models in experimental psychology: A practical introduction. Experimental Psychology, 60( 6), 385-402. doi: 10.1027/ 1618-3169/a000218 |
121 | Wagstaff K., Cardie C., Rogers S., & Schrödl S . ( 2001). Constrained k-means clustering with background knowledge. Paper presented at the Proceedings of the Eighteenth International Conference on Machine Learning, Williamstown, MA, USA. |
122 | Wang X. W., Nie D., & Lu B. L . ( 2014). Emotional state classification from EEG data using machine learning approach. Neurocomputing, 129, 94-106. doi: 10.1016/j. neucom.2013.06.046 |
123 | White C. N., Ratcliff R., Vasey M. W., & McKoon G . ( 2009). Dysphoria and memory for emotional material: A diffusion-model analysis. Cognition & Emotion, 23( 1), 181-205. doi: 10.1080/02699930801976770 |
124 | White C. N., Ratcliff R., Vasey M. W., & McKoon G . ( 2010 a). Anxiety enhances threat processing without competition among multiple inputs: A diffusion model analysis. Emotion, 10( 5), 662-677. doi: 10.1037/a0019474 |
125 | White C. N., Ratcliff R., Vasey M. W., & McKoon G . ( 2010 b). Using diffusion models to understand clinical disorders. Journal of Mathematical Psychology, 54( 1), 39-52. doi: 10.1016/j.jmp.2010.01.004 |
126 | WHO. ( 2018). Depression. Retrieved from |
127 | Wiecki T. V., Poland J., & Frank M. J . ( 2015). Model-based cognitive neuroscience approaches to computational psychiatry: Clustering and classification. Clinical Psychological Science, 3( 3), 378-399. doi: 10. 1177/2167702614565359 |
128 | Wiecki T. V., Sofer I., & Frank M. J . ( 2013). HDDM: Hierarchical bayesian estimation of the drift-diffusion model in python. Frontiers in Neuroinformatics, 7, 14. doi: 10.3389/fninf.2013.00014 |
129 | Williams L. M., Korgaonkar M. S., Song Y. C., Paton R., Eagles S., Goldstein-Piekarski A., .. Etkin A . ( 2015). Amygdala reactivity to emotional faces in the prediction of general and medication-specific responses to antidepressant treatment in the randomized iSPOT-D trial. Neuropsychopharmacology, 40( 10), 2398-2408. doi: 10. 1038/npp.2015.89 |
130 | Wunderlich K., Dayan P., & Dolan R. J . ( 2012). Mapping value based planning and extensively trained choice in the human brain. Nature Neuroscience, 15( 5), 786-791. doi: 10.1038/nn.3068 |
[1] | 刘文华, 温秀娟, 陈灵, 杨瑞, 胡逸儒. 奖励期待和结果评估的脑电成分在精神疾病研究中的应用[J]. 心理科学进展, 2023, 31(5): 783-799. |
[2] | 磨然, 方作之, 方建东. 如何建立聊天机器人与用户间的数字治疗联盟:关系线索的作用[J]. 心理科学进展, 2023, 31(4): 669-683. |
[3] | 陈新文, 李鸿杰, 丁玉珑. 探究事件相关脑电/脑磁信号中的神经表征模式:基于分类解码和表征相似性分析的方法[J]. 心理科学进展, 2023, 31(2): 173-195. |
[4] | 李涛, 李永红, 宋慧, 高冉, 冯菲. 焦虑中的安全行为及其影响[J]. 心理科学进展, 2022, 30(9): 2067-2077. |
[5] | 于冠琳, 刘瑞璇, 张文彩. 心理治疗中隐喻的使用、疗效检验及作用机制[J]. 心理科学进展, 2022, 30(7): 1546-1560. |
[6] | 陈光华, 陶冠澎, 翟璐煜, 白学军. 自闭症谱系障碍的早期筛查工具[J]. 心理科学进展, 2022, 30(4): 738-760. |
[7] | 刘笑晗, 陈明隆, 郭静. 机器学习在儿童创伤后应激障碍识别及转归预测中的应用[J]. 心理科学进展, 2022, 30(4): 851-862. |
[8] | 王东美, 项可嘉. 促进当事人的改变:基于治疗性最近发展区的视角[J]. 心理科学进展, 2022, 30(3): 648-659. |
[9] | 陈祥和, 李文秀, 刘波, 殷荣宾. 骨源性因子ucOCN在运动抗抑郁中的作用机制[J]. 心理科学进展, 2022, 30(2): 375-388. |
[10] | 邱小燕, 葛艳莹, 胡超. 表达性写作应用于社会灾难时期心理救援的理论探讨[J]. 心理科学进展, 2022, 30(12): 2799-2808. |
[11] | 袁玉琢, 骆方. 人工智能辅助的自闭症早期患者的筛查与诊断[J]. 心理科学进展, 2022, 30(10): 2303-2320. |
[12] | 侯婷婷, 陈潇, 孔德彭, 邵秀筠, 林丰勋, 李开云. 机器学习在自闭症儿童早期识别和诊断领域的应用[J]. 心理科学进展, 2022, 30(10): 2321-2337. |
[13] | 黄观澜, 周晓璐. 抑郁症患者的语言使用模式[J]. 心理科学进展, 2021, 29(5): 838-848. |
[14] | 苏悦, 刘明明, 赵楠, 刘晓倩, 朱廷劭. 基于社交媒体数据的心理指标识别建模: 机器学习的方法[J]. 心理科学进展, 2021, 29(4): 571-585. |
[15] | 黎穗卿, 陈新玲, 翟瑜竹, 张怡洁, 章植鑫, 封春亮. 人际互动中社会学习的计算神经机制[J]. 心理科学进展, 2021, 29(4): 677-696. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||