[1] 戴隆农, 潘运. (2021). 数字-空间联结的内在机制: 基于工作记忆的视角.心理科学, 44(4), 793-799. [2] 兰哲, 陈霖. (1998). 拓扑性质知觉的大脑半球功能不对称性研究.心理科学, 21(3), 205-208. [3] 刘炜, 张智君, 赵亚军. (2012). 基于数量感知的数量适应.心理学报, 44(10), 1297-1308. [4] 徐继红, 司继伟, 周新林, 董奇. (2010). 数量估计的研究回顾.心理科学, 33(3), 646-648. [5] 张真, 苏彦捷. (2007). 人类数能力的演化基础——数能力比较研究的启示.心理科学进展, 15(1), 57-63. [6] 朱滢. (2005). 陈霖的拓扑性质知觉理论.心理科学, 28(5), 1031-1034. [7] Anobile G., Arrighi R., Castaldi E., & Burr D. C. (2021a). A sensorimotor numerosity system.Trends in Cognitive Sciences, 25(1), 24-36. [8] Anobile G., Arrighi R., Togoli I., & Burr D. C. (2016). A shared numerical representation for action and perception. Elife, 5, e16161. [9] Anobile G., Castaldi E., Maldonado Moscoso P. A., Arrighi R., & Burr D. (2021b). Groupitizing improves estimation of numerosity of auditory sequences.Frontiers in Human Neuroscience, 15, 339. [10] Anobile G., Castaldi E., Moscoso P. A. M., Burr D. C., & Arrighi R. (2020a). “Groupitizing”: A strategy for numerosity estimation.Scientific Reports, 10(1), 13436. [11] Anobile G., Domenici N., Togoli I., Burr D., & Arrighi R. (2020b). Distortions of visual time induced by motor adaptation.Journal of Experimental Psychology: General, 149(7), 1333-1343. [12] Barlow, H., & HILL, R. (1964). Evidence for a physiological explanation of the waterfall phenomenon and figural after-effects.Nature, 200, 1345-1347. [13] Burr D., Anobile G., Castaldi E., & Arrighi R. (2021). Numbers in action.Behavioral and Brain Sciences, 44, e185. [14] Burr, D., & Ross, J. (2008). A visual sense of number.Current Biology, 18(6), 425-428. [15] Cai Y., Hofstetter S., Harvey B. M., & Dumoulin S. O. (2022). Attention drives human numerosity-selective responses.Cell Reports, 39(13), 111005. [16] Caponi C., Maldonado M. P., Castaldi E., Arrighi R., & Grasso P. A. (2023). EEG signature of grouping strategies in numerosity perception.Frontiers in Neuroscience, 17, 1190317. [17] Cheng X., Lin C., Lou C., Zhang W., Han Y., Ding X., & Fan Z. (2021). Small numerosity advantage for sequential enumeration on RSVP stimuli: An object individuation- based account.Psychological Research, 85(2), 734-763. [18] Cicchini G. M., Anobile G., Burr D. C., Marchesini P., & Arrighi R. (2023). The role of non-numerical information in the perception of temporal numerosity.Frontiers in Psychology, 14, 1197064. [19] Ciccione, L., & Dehaene, S. (2020). Grouping mechanisms in numerosity perception.Open Mind, 4, 102-118. [20] Czarnecka M., Rączy K., Szewczyk J., Paplińska M., Jednoróg K., Marchewka A., .. Szwed M. (2023). Overlapping but separate number representations in the intraparietal sulcus—Probing format- and modality- independence in sighted Braille readers.Cortex, 162, 65-80. [21] de Hevia M. D., Izard V., Coubart A., Spelke E. S., & Streri A. (2014). Representations of space, time, and number in neonates.Proceedings of the National Academy of Sciences, 111(13), 4809-4813. [22] Dehaene, S., & Changeux, J. (1993). Development of Elementary Numerical abilities: A neuronal model.Journal of Cognitive Neuroscience, 5(4), 390-407. [23] Dehaene S., Dehaene-Lambertz G., & Cohen L. (1998). Abstract representations of numbers in the animal and human brain.Trends in Neurosciences, 21(8), 355-361. [24] Elder J. H., Oleskiw T. D., & Fruend I. (2018). The role of global cues in the perceptual grouping of natural shapes.Journal of Vision, 18(12), 14. [25] Fornaciai M., Togoli I., & Arrighi R. (2018). Motion- induced compression of perceived numerosity.Scientific Reports, 8(1), 6966. [26] Grasso P. A., Anobile G., Arrighi R., Burr D. C., & Cicchini G. M. (2022). Numerosity perception is tuned to salient environmental features.iScience, 25(4), 104104. [27] Guillaume M., Roy E., Van Rinsveld A., Starkey G., Uncapher M., & Mccandliss B. (2022). Groupitizing reflects conceptual developments in math cognition and inequities in math achievement from childhood through adolescence.Child Development, 94(2), 335-347. [28] Harvey B. M., Klein B. P., Petridou N., & Dumoulin S. O. (2013). Topographic representation of numerosity in the human parietal cortex.Science, 341(6150), 1123-1126. [29] Hayden A., Bhatt R., & Quinn P. (2006). Infants’ sensitivity to uniform connectedness as a cue for perceptual organization.Psychonomic Bulletin & Review, 13(2), 257-261. [30] He L., Zhang J., Zhou T., & Chen L. (2009). Connectedness affects dot numerosity judgment: Implications for configural processing.Psychonomic Bulletin & Review, 16(3), 509-517. [31] He L., Zhou K., Zhou T., He S., & Chen L. (2015). Topology-defined units in numerosity perception.Proceedings of the National Academy of Sciences of the United States of America, 112(41), E5647-E5655. [32] Hubbard E., Piazza M., Pinel P., & Dehaene S. (2005). Interactions between number and space in parietal cortex.Nature reviews. Neuroscience, 6, 435-448. [33] Humphreys, G. W., & Riddoch, J. (1993). Interactions between object and space systems revealed through neuropsychology.Attention and Performance, 14, 143-162. [34] Luna D., Villalba-Garcia C., Montoro P. R., & Hinojosa J. A. (2016). Dominance dynamics of competition between intrinsic and extrinsic grouping cues.Acta Psychologica, 170, 146-154. [35] Maldonado Moscoso P. A., Castaldi E., Burr D. C., Arrighi R., & Anobile G. (2020). Grouping strategies in number estimation extend the subitizing range.Scientific Reports, 10(1), 14979. [36] Maldonado M. P., Greenlee M. W., Anobile G., Arrighi R., Burr D. C., & Castaldi E. (2021). Groupitizing modifies neural coding of numerosity.Human Brain Mapping, 43(3), 915-928. [37] Malone S. A., Pritchard V. E., Heron-Delaney M., Burgoyne K., Lervåg A., & Hulme C. (2019). The relationship between numerosity discrimination and arithmetic skill reflects the approximate number system and cannot be explained by inhibitory control. Journal of Experimental Child Psychology, 184, 220-231. [38] Montoro P. R., Villalba-García C., Luna D., & Hinojosa J. A. (2017). Common region wins the competition between extrinsic grouping cues: Evidence from a task without explicit attention to grouping.Psychonomic Bulletin & Review, 24(6), 1856-1861. [39] Palmer, S. E. (1992). Common region: A new principle of perceptual grouping.Cognitive Psychology, 24(3), 436-447. [40] Palmer, S. E., & Beck, D. M. (2007). The repetition discrimination task: An objective method for studying perceptual grouping.Perception & Psychophysics, 69(1), 68-78. [41] Palmer, S., & Rock, I. (1994). On the nature and order of organizational processing: A reply to Peterson.Psychonomic Bulletin & Review, 1(4), 515-519. [42] Pan Y., Yang H., Li M., Zhang J., & Cui L. (2021). Grouping strategies in numerosity perception between intrinsic and extrinsic grouping cues.Scientific Reports, 11(1), 17605. [43] Pennock I. M. L., Schmidt T. T., Zorbek D., & Blankenburg F. (2021). Representation of visual numerosity information during working memory in humans: An fMRI decoding study.Human Brain Mapping, 42(9), 2778-2789. [44] Piazza M., Mechelli A., Butterworth B., & Price C. J. (2002). Are subitizing and counting implemented as separate or functionally overlapping processes? Neuroimage, 15(2), 435-446. [45] Piazza, M., & Izard, V. (2009). How humans count: Numerosity and the parietal cortex.Neuroscientist, 15(3), 261-273. [46] Revkin S., Piazza M., Izard V., Cohen L., & Dehaene S. (2008). Does subitizing reflect numerical estimation? Psychological Science, 19(6), 607-614. [47] Simon O., Mangin J., Cohen L., Le Bihan D., & Dehaene S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe.Neuron, 33(3), 475-487. [48] Simon, T., & Vaishnavi, S. (1996). Subitizing and counting depend on different attentional mechanisms: Evidence from visual enumeration in afterimages.Perception & Psychophysics, 58, 915-926. [49] Soltész F., Szucs D., & Szucs L. (2010). Relationships between magnitude representation, counting and memory in 4- to 7-year-old children: A developmental study.Behavioral and Brain Functions, 6(1), 13. [50] Starkey, G. S., & McCandliss, B. D. (2014). The emergence of “groupitizing” in children’s numerical cognition.Journal of Experimental Child Psychology, 126, 120-137. [51] Thompson, P., & Burr, D. (2009). Visual aftereffects.Current Biology, 19(1), R11-R14. [52] Togoli I., Crollen V., Arrighi R., & Collignon O. (2020). The shared numerical representation for action and perception develops independently from vision.Cortex, 129, 436-445. [53] Tsouli A., Harvey B. M., Hofstetter S., Cai Y., van der Smagt, M. J., Te P. S., & Dumoulin S. O. (2022). The role of neural tuning in quantity perception.Trends in Cognitive Sciences, 26(1), 11-24. [54] Tudusciuc, O., & Nieder, A. (2007). Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex.Proceedings of the National Academy of Sciences of the United States of America, 104(36), 14513-14518. [55] Wagemans J., Elder J. H., Kubovy M., Palmer S. E., Peterson M. A., Singh M., & von der Heydt, R. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization.Psychological Bulletin, 138(6), 1172-1217. [56] Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity.Trends in Cognitive Sciences, 7(11), 483-488. [57] Wege T., Trezise K., & Inglis M. (2021). Finding the subitizing in groupitizing: Evidence for parallel subitizing of dots and groups in grouped arrays.Psychonomic Bulletin & Review, 29, 476-484. [58] Wender, K., & Rothkegel, R. (2000). Subitizing and its subprocesses.Psychological research, 64(2), 81-92. [59] Whalen J., Gallistel C. R., & Gelman R. (2016). Nonverbal Counting in Humans: The Psychophysics of Number Representation.Psychological Science, 10(2), 130-137. [60] Zhang D., Zhou L., Yang A., Li S., Chang C., Liu J., & Zhou K. (2023). A connectome-based neuromarker of nonverbal number acuity and arithmetic skills.Cerebral Cortex, 33(3), 881-894. [61] Zorzi M., Stoianov I., & Umiltà C. (2005). Computational modeling of numerical cognition.Handbook of Mathematical Cognition, 5, 67-84. |