[1] |
马玉, 张学民, 张盈利, 魏柳青 . ( 2013). 自闭症儿童视觉动态信息的注意加工特点——来自多目标追踪任务的证据. 心理发展与教育, 29( 6), 571-577.
|
[2] |
廖彦罡, 张学民, 葛春林 . ( 2006). 运动员在多目标视觉追踪任务中表现的研究. 西安体育学院学报, 23( 2), 124-127.
|
[3] |
孙金燕 . ( 2013). 利用脑电及光电联合检测分别研究注意中的定向和执行控制(博士学位论文). 华中科技大学, 武汉.
|
[4] |
魏柳青, 张学民 . ( 2014). 多身份追踪中基于范畴的分组效应. 心理科学进展, 22( 9), 1383-1392.
|
[5] |
魏柳青, 张学民, 李永娜, 马玉 . ( 2014). 视听通道双任务对多目标追踪的影响: 干扰还是促进? 心理学报, 46( 6), 727-739.
|
[6] |
张滨熠, 丁锦红 . ( 2010). 多目标视觉追踪的注意策略及其眼动模式. 心理学探新, 30( 4), 50-53.
|
[7] |
张学民, 刘冰, 鲁学明 . ( 2009). 多目标追踪任务中不同运动方式非目标的抑制机制. 心理学报, 41( 10), 922-931.
|
[8] |
张学民, 廖彦罡, 葛春林 . ( 2008). 运动员与普通大学生在多目标追踪任务中的表现. 北京体育大学学报, 31( 4), 504-507.
|
[9] |
张学民, 鲁学明, 魏柳青 . ( 2011). 目标与非目标数量变化对多目标追踪的选择性抑制效应. 心理科学, 34( 6), 1295-1301.
|
[10] |
Allen, R., McGeorge, P., Pearson, D., & Milne, A. B . ( 2004). Attention and expertise in multiple target tracking. Applied Cognitive Psychology, 18( 3), 337-347.
|
[11] |
Alnæs, D., Sneve, M. H., Espeseth, T., Endestad, T., van de Pavert, S. H. P., & Laeng, B . ( 2014). Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus. Journal of Vision, 14( 4), 1-20.
|
[12] |
Alnæs, D., Sneve, M. H., Richard, G., Skåtun, K. C., Kaufmann, T., Nordvik, J. E., … Westlye, L. T . ( 2015). Functional connectivity indicates differential roles for the intraparietal sulcus and the superior parietal lobule in multiple object tracking. Neuroimage, 123, 129-137.
|
[13] |
Alvarez, G. A., & Franconeri, S. L . ( 2007). How many objects can you track? Evidence for a resource-limited attentive tracking mechanism. Journal of Vision, 7( 13), 1-10.
|
[14] |
Atmaca, S., Stadler, W., Keitel, A., Ott, D. V. M., Lepsien, J., & Prinz, W . ( 2013). Prediction processes during multiple object tracking (MOT): Involvement of dorsal and ventral premotor cortices. Brain Behavior, 3( 6), 683-700.
|
[15] |
Battelli, L., Alvarez, G. A., Carlson, T., & Pascual-Leone, A . ( 2009). The role of the parietal lobe in visual extinction studied with transcranial magnetic stimulation. Journal of Cognitive Neuroscience, 21(10), 1946-1955.
|
[16] |
Blumberg, E. J., Peterson, M. S., & Parasuraman, R . ( 2015). Enhancing multiple object tracking performance with noninvasive brain stimulation: A causal role for the anterior intraparietal sulcus. Frontiers in Systems Neuroscience, 9( 3), 1-9.
|
[17] |
Cavanagh, P., & Alvarez, G. A . ( 2005). Tracking multiple targets with multifocal attention. Trends in Cognitive Sciences, 9( 7), 349-354.
|
[18] |
Corbetta, M., Patel, G., & Shulman, G. L . ( 2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58( 3), 306-324.
|
[19] |
Culham, J. C., Brandt, S. A., Cavanagh, P., Kanwisher, N. G., Dale, A. M., & Tootell, R. B. H. (1998). Cortical fMRI activation produced by attentive tracking of moving targets. Journal of Neurophysiology, 80( 5), 2657-2670.
|
[20] |
Culham, J. C., Cavanagh, P., & Kanwisher, N. G . ( 2001). Attention response functions: Characterizing brain areas using fMRI activation during parametric variations of attentional load. Neuron, 32( 4), 737-745.
|
[21] |
Doran, M. M., & Hoffman, J. E . ( 2010). The Role of Visual Attention in Multiple Object Tracking: Evidence from ERPs. Attention, Perception, & Psychophysics, 72( 1), 33-33.
|
[22] |
Drew, T., Horowitz, T. S., & Vogel, E. K . ( 2013). Swapping or dropping? Electrophysiological measures of difficulty during multiple object tracking. Cognition, 126( 2), 213-223.
|
[23] |
Drew, T., Horowitz, T. S., Wolfe, J. M., & Vogel, E. K . ( 2011). Delineating the neural signatures of tracking spatial position and working memory during attentive tracking. Journal of Neuroscience, 31( 2), 659-668.
|
[24] |
Drew, T., McCollough, A. W., Horowitz, T. S., & Vogel, E. K . ( 2009). Attentional enhancement during multiple-object tracking. Psychonomic Bulletin & Review, 16( 2), 411-417.
|
[25] |
Drew, T., & Vogel, E. K . ( 2008). Neural measures of individual differences in selecting and tracking multiple moving objects. Journal of Neuroscience, 28( 216), 4183-4183.
|
[26] |
Erlikhman, G., Keane, B. P., Mettler, E., Horowitz, T. S., & Kellman, P. J . ( 2013). Automatic feature-based grouping during multiple object tracking. Journal of Experimental Psychology: Human Perception & Performance, 39( 6), 1625-1637.
|
[27] |
Franconeri, S. L., Jonathan, S. V., & Scimeca, J. M . ( 2010). Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity. Psychological Science, 21( 7), 920-925.
|
[28] |
Franconeri, S. L., Pylyshyn, Z. W., & Scholl, B. J . ( 2006). Spatiotemporal cues for tracking multiple objects through occlusion. Visual Cognition, 14, 100-103.
|
[29] |
Green, C. S., & Bavelier, D. (2006). Enumeration versus multiple object tracking: the case of action video game players. Cognition, 101( 1), 217-245.
|
[30] |
Howe, P. D., Horowitz, T. S., Akos Morocz, I., Wolfe, J., & Livingstone, M. S . ( 2009). Using fMRI to distinguish components of the multiple object tracking task. Journal of Vision, 9( 4), 1-11.
|
[31] |
Howe, P. D. L., & Holcombe, A. O . ( 2012). The effect of visual distinctiveness on multiple object tracking performance. Frontiers in Perception Science, 3, 307.
|
[32] |
Huang, J., Wang, F., Ding, Y. L., Niu, H. J., Tian, F. H., Liu, H. L., & Song, Y . ( 2015) Predicting N2pc from anticipatory HbO activity during sustained visuospatial attention: A concurrent fNIRS-ERP study. NeuroImage, 113, 225-234.
|
[33] |
Jahn, G., Wendt, J., Lotze, M., Papenmeier, F., & Huff, M . ( 2012). Brain activation during spatial updating and attentive tracking of moving targets. Brain & Cognition, 78( 2), 105-113.
|
[34] |
Jovicich, J., Peters, R. J., Koch, C., Braun, J., Chang, L., & Ernst, T . ( 2001). Brain areas specific for attentional load in a motion-tracking task. Journal of Cognitive Neuroscience, 13, 1048-1058.
|
[35] |
Liu, G., Austen, E. L., Booth, K. S., Fisher, B. D., Argue, R., Rempel, M. I., & Enns, J. T . ( 2005). Multiple-object tracking is based on scene, not retinal, coordinates. Journal of Experimental Psychology: Human Perception & Performance, 31( 2), 235-247.
|
[36] |
Liu, T. W., Chen, W. F., Liu, C. H., & Fu, X. L . ( 2012). Benefits and costs of uniqueness in multiple object tracking: The role of object complexity. Vision Research, 66, 31-38.
|
[37] |
Luck, S. J. ( 2005). An introduction to the event-related potential technique,. Cambridge MA: MIT Press.
|
[38] |
Makovski, T., & Jiang, Y. V . ( 2009 a). The role of visual working memory in attentive tracking of unique objects. Journal of Experimental Psychology: Human Perception & Performance, 35( 6), 1687-1697.
|
[39] |
Makovski, T., & Jiang, Y.V . ( 2009 b). Feature binding in attentive tracking of distinct objects. Visual cognition, 17( 1-2), 180-194.
|
[40] |
Merkel, C., Hopf, J.-M., Heinze, H.-J., & Schoenfeld, M. A . ( 2015). Neural correlates of multiple object tracking strategies. NeuroImage, 118, 63-73.
|
[41] |
Merkel, C., Stoppel, C. M., Hillyard, S. A., Heinze, H. J., Hopf, J. M., & Schoenfeld, M. A . ( 2014). Spatio-temporal patterns of brain activity distinguish strategies of multiple- object tracking. Journal of Cognitive Neuroscience, 26( 1), 28-40.
|
[42] |
Ogawa, H., & Yagi, A. (2002). The effects of the information of untracked objects on multiple object tracking. The Japanese Journal of Psychonomic Science, 21( 1), 49-50.
|
[43] |
Oksama, L., & Hyönä, J. (2004). Is multiple object tracking carried out automatically by an early vision mechanism independent of higher-order cognition? An individual difference approach. Visual Cognition, 11( 5), 631-671.
|
[44] |
Pylyshyn, Z. W . ( 2000). Situating vision in the world. Trends in Cognitive Sciences, 4( 5), 197-207.
|
[45] |
Pylyshyn, Z. W . ( 2001). Visual indexes, Preconceptual objects, and situated vision. Cognition, 80( 1-2), 127-158.
|
[46] |
Pylyshyn, Z. W. ( 2003). Seeing and visualizing : It’s not what you think. Cambridge, MA: MIT Press, Bradford Books.
|
[47] |
Pylyshyn, Z. W . ( 2006). Some puzzling findings in multiple object tracking (MOT): II. Inhibition of moving nontargets. Visual Cognition, 14( 2), 175-198.
|
[48] |
Pylyshyn, Z. W., Haladjian, H. H., King, C. E., & Reilly, J. E . ( 2008). Selective nontarget inhibition in multiple object tracking. Visual Cognition, 16( 8), 1011-1021.
|
[49] |
Pylyshyn, Z. W., & Storm, R. W . ( 1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3( 3), 179-197.
|
[50] |
Ren, D. N., Chen, W. F., Liu, C. H., & Fu, X. L . ( 2009). Identity processing in multiple-face tracking. Journal of Vision, 9( 5), 1-15.
|
[51] |
Scholl, B. J., Pylyshyn, Z. W., & Feldman, J . ( 2001). What is a visual object? Evidence from target merging in multiple object tracking. Cognition, 80( 1-2), 159-177.
|
[52] |
St.Clair, R., Huff, M., & Seiffert, A. E . ( 2010). Conflicting motion information impairs multiple object tracking. Journal of Vision, 10( 4), 1-13.
|
[53] |
Sternshein, H., Agam, Y., & Sekuler, R . ( 2011). EEG correlates of attentional load during multiple object tracking. PLoS ONE, 6( 7), e22660.
|
[54] |
Suganuma, M., & Yokosawa, K. (2006). Grouping and trajectory storage in multiple object tracking: Impairments due to common item motions. Perception, 35( 4), 483-495.
|
[55] |
Thomas, L., & Seiffert, A. (2010). Self-motion impairs multiple-object tracking. Cognition, 117( 1), 80-86.
|
[56] |
Tombu, M., & Seiffert, A. E . ( 2011). Tracking planets and moons: Mechanisms of object tracking revealed with a new paradigm. Attention, Perception, & Psychophysics, 73( 3), 738-750.
|
[57] |
Tombu, M., & Seiffert, A. E . ( 2008). Attentional costs in multiple-object tracking. Cognition, 108( 1), 1-25.
|
[58] |
Trick, L. M., Hollinsworth, H., & Brodeur, D. A . ( 2009). Multiple-object tracking across the lifespan: Do different factors contribute to diminished performance in different age groups? In Don Dedrick and Lana Trick (Eds). Computation, Cognition, and Pylyshyn. MIT press.
|
[59] |
van, Marle K., & Scholl, B. J . ( 2003). Attentive tracking of objects vs. substances. Psychological Science, 3( 9), 496-504.
|
[60] |
Wang, C. D., Hu, L. M., Hu, S. Y., Xu, Y. W., & Zhang, X. M . ( 2018). Functional specialization for feature-based and symmetry-based groupings in multiple object tracking. Cortex, 108, 265-275.
|
[61] |
Wang, C. D., Zhang, X. M., Li, Y. N., & Lyu, C . ( 2016). Additivity of feature-based and symmetry-based grouping effects in Multiple Object Tracking. Frontiers in Psychology, 7, 657.
|
[62] |
Wei, L. Q., Zhang, X. M., Lyu, C., & Li, Z . ( 2016). The categorical distinction between targets and distractors facilitates tracking in Multiple Identity Tracking task. Frontiers in Psychology, 7, 589.
|
[63] |
Wei, L. Q., Zhang, X. M., Li, Z., & Liu, J. Y . ( 2018). The semantic category-based grouping in the Multiple Identity Tracking task. Attention, Perception, & Psychophysics, 80( 1), 118-133.
|
[64] |
Wei, L., Zhang, X., Lyu, C., Hu, S., & Li, Z . ( 2017). Brain activation of semantic category-based grouping in multiple identity tracking task. PLoS ONE, 12( 5), e0177709.
|
[65] |
Yantis, S. (1992). Multielement visual tracking: Attention and perceptual organization. Cognitive Psychology, 24( 3), 295-340.
|
[66] |
Zhang, X. M., Yan, M., & Liao, Y. G . ( 2009). Differential performance of Chinese Volleyball athletes and nonathletes on a multiple-object tracking task. Perceptual and Motor Skills, 109( 3), 747-756.
|
[67] |
Zhou, K., Luo, H., Zhou, T. G., Zhuo, Y., & Chen, L . ( 2010). Topological change disturbs object continuity in attentive tracking. Proceedings of the National Academy of Science, 107( 50), 21920-21924.
|