心理科学进展 ›› 2023, Vol. 31 ›› Issue (11): 2078-2091.doi: 10.3724/SP.J.1042.2023.02078
收稿日期:
2023-03-07
出版日期:
2023-11-15
发布日期:
2023-08-28
通讯作者:
金花, E-mail: jinhua@mail.tjnu.edu.cn
基金资助:
ZHOU Guang-Fang2, JIN Hua1,2,3()
Received:
2023-03-07
Online:
2023-11-15
Published:
2023-08-28
摘要:
精准功能磁共振成像(precision functional magnetic resonance imaging, pfMRI)是指在单个个体中收集大量fMRI数据的一种数据采集策略, 相较于传统fMRI研究中针对每个被试采集少量数据, 之后通过组平均揭示认知过程的脑功能规律或是特定人群共享的脑功能特征的方法, 该方法的优势在于能够揭示每个个体的大脑特征, 因此日益受到研究者的重视和应用。迄今为止, 众多研究采用该方法从功能网络组织的个体差异、个体识别、局部区域的功能定位、个体网络枢纽的识别、个体功能网络的发展与可塑性和临床应用六个角度系统揭示了个体化的脑功能网络组织, 这些研究成果对未来脑科学研究具有重要启发。未来研究应该重点探讨现有研究所揭示的个体功能网络组织特点与行为表现的关系, 通过对数据分析和成像技术的改进减少该方法所需的扫描时间, 并尝试将该方法应用到任务态fMRI和多模态数据的融合研究中。
中图分类号:
周广方, 金花. (2023). 精准功能磁共振成像揭示个体化脑功能网络组织. 心理科学进展 , 31(11), 2078-2091.
ZHOU Guang-Fang, JIN Hua. (2023). Precision functional magnetic resonance imaging reveals individual brain functional network organization. Advances in Psychological Science, 31(11), 2078-2091.
[1] |
Ahn, Y. Y., Bagrow, J. P., & Lehmann, S. (2010). Link communities reveal multiscale complexity in networks. Nature, 466(7307), 761-764.
doi: 10.1038/nature09182 |
[2] |
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain's default network. Neuron, 65(4), 550-562.
doi: 10.1016/j.neuron.2010.02.005 pmid: 20188659 |
[3] |
Andrews-Hanna, J. R., Saxe, R., & Yarkoni, T. (2014). Contributions of episodic retrieval and mentalizing to autobiographical thought: Evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses. Neuroimage, 91, 324-335.
doi: 10.1016/j.neuroimage.2014.01.032 pmid: 24486981 |
[4] |
Barch, D. M. (2017). Resting-state functional connectivity in the human connectome project: Current status and relevance to understanding psychopathology. Harvard Review of Psychiatry, 25(5), 209-217.
doi: 10.1097/HRP.0000000000000166 pmid: 28816791 |
[5] | Bergmann, E., Gofman, X., Kavushansky, A., & Kahn, I. (2020). Individual variability in functional connectivity architecture of the mouse brain. Communications Biology, 3(1), 738. |
[6] | Bertolero, M. A., Yeo, B. T., & D'Esposito, M. (2015). The modular and integrative functional architecture of the human brain. Proceedings of the National Academy of Sciences, 112(49), E6798-E6807. |
[7] |
Bhavsar, S., Zvyagintsev, M., & Mathiak, K. (2014). BOLD sensitivity and SNR characteristics of parallel imaging- accelerated single-shot multi-echo EPI for fMRI. Neuroimage, 84, 65-75.
doi: 10.1016/j.neuroimage.2013.08.007 URL |
[8] |
Blumenstock, S., & Dudanova, I. (2020). Cortical and striatal circuits in Huntington’s disease. Frontiers in Neuroscience, 14, 82.
doi: 10.3389/fnins.2020.00082 pmid: 32116525 |
[9] |
Braga, R. M., & Buckner, R. L. (2017). Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron, 95(2), 457-471.e5.
doi: S0896-6273(17)30562-7 pmid: 28728026 |
[10] |
Braga, R. M., van Dijk, K. R. A., Polimeni, J. R., Eldaief, M. C., & Buckner, R. L. (2019). Parallel distributed networks resolved at high resolution reveal close juxtaposition of distinct regions. Journal of Neurophysiology, 121(4), 1513-1534.
doi: 10.1152/jn.00808.2018 pmid: 30785825 |
[11] |
Cash, R. F. H., Cocchi, L., Lv, J., Fitzgerald, P. B., & Zalesky, A. (2021). Functional magnetic resonance imaging-guided personalization of transcranial magnetic stimulation treatment for depression. JAMA Psychiatry, 78(3), 337-339.
doi: 10.1001/jamapsychiatry.2020.3794 pmid: 33237320 |
[12] |
Cash, R. F. H., Cocchi, L., Lv, J., Wu, Y., Fitzgerald, P. B., & Zalesky, A. (2021). Personalized connectivity-guided DLPFC-TMS for depression: Advancing computational feasibility, precision and reproducibility. Human Brain Mapping, 42(13), 4155-4172.
doi: 10.1002/hbm.25330 pmid: 33544411 |
[13] |
Cui, Z., Li, H., Xia, C. H., Larsen, B., Adebimpe, A., Baum, G. L., ... Satterthwaite, T. D. (2020). Individual variation in functional topography of association networks in youth. Neuron, 106(2), 340-353.e8.
doi: S0896-6273(20)30055-6 pmid: 32078800 |
[14] |
DiNicola, L. M., Braga, R. M., & Buckner, R. L. (2020). Parallel distributed networks dissociate episodic and social functions within the individual. Journal of Neurophysiology, 123(3), 1144-1179.
doi: 10.1152/jn.00529.2019 pmid: 32049593 |
[15] |
Dosenbach, N. U. F., Koller, J. M., Earl, E. A., Miranda- Dominguez, O., Klein, R. L., Van, A. N., ... Fair, D. A. (2017). Real-time motion analytics during brain MRI improve data quality and reduce costs. Neuroimage, 161, 80-93.
doi: S1053-8119(17)30672-9 pmid: 28803940 |
[16] |
Doucet, G., Naveau, M., Petit, L., Delcroix, N., Zago, L., Crivello, F., ... Joliot, M. (2011). Brain activity at rest: A multiscale hierarchical functional organization. Journal of Neurophysiology, 105(6), 2753-2763.
doi: 10.1152/jn.00895.2010 pmid: 21430278 |
[17] |
Duda, M., Koutra, D., & Sripada, C. (2021). Validating dynamicity in resting state fMRI with activation-informed temporal segmentation. Human Brain Mapping, 42(17), 5718-5735.
doi: 10.1002/hbm.25649 pmid: 34510647 |
[18] |
Dworetsky, A., Seitzman, B. A., Adeyemo, B., Neta, M., Coalson, R. S., Petersen, S. E., & Gratton, C. (2021). Probabilistic mapping of human functional brain networks identifies regions of high group consensus. Neuroimage, 237, 118164.
doi: 10.1016/j.neuroimage.2021.118164 URL |
[19] | Dworetsky, A., Seitzman, B. A., Adeyemo, B., Smith, D. M., Petersen, S. E., & Gratton, C. (2021). Two common and distinct forms of variation in human functional brain networks. Biorxiv. https://doi.org/10.1101/2021.09.17.460799 |
[20] |
Elliott, M. L., Knodt, A. R., & Hariri, A. R. (2021). Striving toward translation: Strategies for reliable fMRI measurement. Trends in Cognitive Sciences, 25(9), 776-787.
doi: 10.1016/j.tics.2021.05.008 pmid: 34134933 |
[21] | Evans, T. S., & Lambiotte, R. (2009). Line graphs, link partitions, and overlapping communities. Physical Review E, 80(1), 016105. |
[22] |
Fan, F., Liao, X., Lei, T., Zhao, T., Xia, M., Men, W., ... He, Y. (2021). Development of the default-mode network during childhood and adolescence: A longitudinal resting- state fMRI study. Neuroimage, 226, 117581.
doi: 10.1016/j.neuroimage.2020.117581 URL |
[23] |
Faskowitz, J., Esfahlani, F. Z., Jo, Y., Sporns, O., & Betzel, R. F. (2020). Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture. Nature Neuroscience, 23(12), 1644-1654.
doi: 10.1038/s41593-020-00719-y pmid: 33077948 |
[24] |
Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D., & Pascual-Leone, A. (2012). Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biological Psychiatry, 72(7), 595-603.
doi: 10.1016/j.biopsych.2012.04.028 pmid: 22658708 |
[25] |
Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., ... Consortium, W. U.-M. H. (2013). The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage, 80, 105-124.
doi: 10.1016/j.neuroimage.2013.04.127 pmid: 23668970 |
[26] |
Gordon, E. M., Laumann, T. O., Adeyemo, B., Huckins, J. F., Kelley, W. M., & Petersen, S. E. (2016). Generation and evaluation of a cortical area parcellation from resting-state correlations. Cerebral Cortex, 26(1), 288-303.
doi: 10.1093/cercor/bhu239 URL |
[27] |
Gordon, E. M., Laumann, T. O., Gilmore, A. W., Newbold, D. J., Greene, D. J., Berg, J. J., ... Dosenbach, N. U. F. (2017). Precision functional mapping of individual human brains. Neuron, 95(4), 791-807.e7.
doi: S0896-6273(17)30613-X pmid: 28757305 |
[28] |
Gordon, E. M., Laumann, T. O., Marek, S., Newbold, D. J., Hampton, J. M., Seider, N. A., ... Dosenbach, N. U. F. (2022). Individualized functional subnetworks connect human striatum and frontal cortex. Cerebral Cortex, 32(13), 2868-2884.
doi: 10.1093/cercor/bhab387 URL |
[29] |
Gordon, E. M., Laumann, T. O., Marek, S., Raut, R. V., Gratton, C., Newbold, D. J., ... Nelson, S. M. (2020). Default-mode network streams for coupling to language and control systems. Proceedings of the National Academy of Sciences, 117(29), 17308-17319.
doi: 10.1073/pnas.2005238117 URL |
[30] |
Gordon, E. M., Lynch, C. J., Gratton, C., Laumann, T. O., Gilmore, A. W., Greene, D. J., ... Nelson, S. M. (2018). Three distinct sets of connector hubs integrate human brain function. Cell Reports, 24(7), 1687-1695.e4.
doi: S2211-1247(18)31153-7 pmid: 30110625 |
[31] |
Gordon, E. M., Scheibel, R. S., Zambrano-Vazquez, L., Jia-Richards, M., May, G. J., Meyer, E. C., & Nelson, S. M. (2018). High-fidelity measures of whole-brain functional connectivity and white matter integrity mediate relationships between traumatic brain injury and post-traumatic stress disorder symptoms. Journal of Neurotrauma, 35(5), 767-779.
doi: 10.1089/neu.2017.5428 pmid: 29179667 |
[32] |
Gratton, C., Kraus, B. T., Greene, D. J., Gordon, E. M., Laumann, T. O., Nelson, S. M., ... Petersen, S. E. (2020). Defining individual-specific functional neuroanatomy for precision psychiatry. Biological Psychiatry, 88(1), 28-39.
doi: S0006-3223(19)31829-3 pmid: 31916942 |
[33] |
Gratton, C., Smith, D. M., & Dorn, M. (2020). Digging deeper to chart the landscape of human brain development. Neuron, 106(2), 209-211.
doi: S0896-6273(20)30237-3 pmid: 32325056 |
[34] |
Greene, D. J., Marek, S., Gordon, E. M., Siegel, J. S., Gratton, C., Laumann, T. O., ... Dosenbach, N. U. F. (2020). Integrative and network-specific connectivity of the basal ganglia and thalamus defined in individuals. Neuron, 105(4), 742-758.e6.
doi: S0896-6273(19)30975-4 pmid: 31836321 |
[35] |
Jo, Y., Faskowitz, J., Esfahlani, F. Z., Sporns, O., & Betzel, R. F. (2021). Subject identification using edge-centric functional connectivity. Neuroimage, 238, 118204.
doi: 10.1016/j.neuroimage.2021.118204 URL |
[36] | Jo, Y., Zamani Esfahlani, F., Faskowitz, J., Chumin, E. J., Sporns, O., & Betzel, R. F. (2021). The diversity and multiplexity of edge communities within and between brain systems. Cell Reports, 37(7), 110032. |
[37] |
Karbasforoushan, H., & Woodward, N. D. (2012). Resting- state networks in Schizophrenia. Current Topics in Medicinal Chemistry, 12(21), 2404-2414.
pmid: 23279179 |
[38] |
Kong, R., Li, J., Orban, C., Sabuncu, M. R., Liu, H., Schaefer, A., ... Yeo, B. T. T. (2019). Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cerebral Cortex, 29(6), 2533-2551.
doi: 10.1093/cercor/bhy123 |
[39] |
Kraus, B. T., Perez, D., Ladwig, Z., Seitzman, B. A., Dworetsky, A., Petersen, S. E., & Gratton, C. (2021). Network variants are similar between task and rest states. Neuroimage, 229, 117743.
doi: 10.1016/j.neuroimage.2021.117743 URL |
[40] |
Kundu, P., Inati, S. J., Evans, J. W., Luh, W. M., & Bandettini, P. A. (2012). Differentiating BOLD and non- BOLD signals in fMRI time series using multi-echo EPI. Neuroimage, 60(3), 1759-1770.
doi: 10.1016/j.neuroimage.2011.12.028 URL |
[41] |
Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., ... Rosen, B. R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences, 89(12), 5675-5679.
doi: 10.1073/pnas.89.12.5675 URL |
[42] |
Laumann, T. O., Gordon, E. M., Adeyemo, B., Snyder, A. Z., Joo, S. J., Chen, M. Y., ... Petersen, S. E. (2015). Functional system and areal organization of a highly sampled individual human brain. Neuron, 87(3), 657-670.
doi: 10.1016/j.neuron.2015.06.037 pmid: 26212711 |
[43] |
Laumann, T. O., Ortega, M., Hoyt, C. R., Seider, N. A., Snyder, A. Z., Dosenbach, N. U., & Brain, Network Plasticity Group (2021). Brain network reorganisation in an adolescent after bilateral perinatal strokes. The Lancet Neurology, 20(4), 255-256.
doi: 10.1016/S1474-4422(21)00062-4 URL |
[44] |
Leech, R., Kamourieh, S., Beckmann, C. F., & Sharp, D. J. (2011). Fractionating the default mode network: Distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. Journal of Neuroscience, 31(9), 3217-3224.
doi: 10.1523/JNEUROSCI.5626-10.2011 pmid: 21368033 |
[45] |
Li, W., Ward, B. D., Xie, C., Jones, J. L., Antuono, P. G., Li, S. J., & Goveas, J. S. (2015). Amygdala network dysfunction in late-life depression phenotypes: Relationships with symptom dimensions. Journal of Psychiatric Research, 70, 121-129.
doi: 10.1016/j.jpsychires.2015.09.002 pmid: 26424431 |
[46] |
Liu, T. T. (2016). Noise contributions to the fMRI signal: An overview. Neuroimage, 143, 141-151.
doi: S1053-8119(16)30469-4 pmid: 27612646 |
[47] |
Lynch, C. J., Breeden, A. L., Gordon, E. M., Cherry, J. B. C., Turkeltaub, P. E., & Vaidya, C. J. (2019). Precision inhibitory stimulation of individual-specific cortical hubs disrupts information processing in humans. Cerebral Cortex, 29(9), 3912-3921.
doi: 10.1093/cercor/bhy270 URL |
[48] |
Lynch, C. J., Elbau, I. G., Ng, T. H., Wolk, D., Zhu, S., Ayaz, A., ... Liston, C. (2022). Automated optimization of TMS coil placement for personalized functional network engagement. Neuron, 110(20), 3263-3277.e4.
doi: 10.1016/j.neuron.2022.08.012 pmid: 36113473 |
[49] | Lynch, C. J., Power, J. D., Scult, M. A., Dubin, M., Gunning, F. M., & Liston, C. (2020). Rapid precision functional mapping of individuals using multi-echo fMRI. Cell Reports, 33(12), 108540. |
[50] |
Marek, S., Siegel, J. S., Gordon, E. M., Raut, R. V., Gratton, C., Newbold, D. J., ... Dosenbach, N. U. F. (2018). Spatial and temporal organization of the individual human cerebellum. Neuron, 100(4), 977-993.e7.
doi: S0896-6273(18)30898-5 pmid: 30473014 |
[51] |
Mayberg, H. S. (2007). Defining the neural circuitry of depression: Toward a new nosology with therapeutic implications. Biological Psychiatry, 61(6), 729-730.
pmid: 17338903 |
[52] |
Mei, N., Santana, R., & Soto, D. (2022). Informative neural representations of unseen contents during higher-order processing in human brains and deep artificial networks. Nature Human Behaviour, 6(5), 720-731.
doi: 10.1038/s41562-021-01274-7 |
[53] |
Miller, K. L., Alfaro-Almagro, F., Bangerter, N. K., Thomas, D. L., Yacoub, E., Xu, J., ... Smith, S. M. (2016). Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nature Neuroscience, 19(11), 1523-1536.
doi: 10.1038/nn.4393 pmid: 27643430 |
[54] |
Mink, J. W. (2001). Basal ganglia dysfunction in Tourette’s syndrome: A new hypothesis. Pediatric Neurology, 25(3), 190-198.
doi: 10.1016/s0887-8994(01)00262-4 pmid: 11587872 |
[55] | Newbold, D. J., Gordon, E. M., Laumann, T. O., Seider, N. A., Montez, D. F., Gross, S. J., ... Dosenbach, N. U. F. (2021). Cingulo-opercular control network and disused motor circuits joined in standby mode. Proceedings of the National Academy of Sciences, 118(13), Article e2019128118. |
[56] |
Newbold, D. J., Laumann, T. O., Hoyt, C. R., Hampton, J. M., Montez, D. F., Raut, R. V., ... Dosenbach, N. U. F. (2020). Plasticity and spontaneous activity pulses in disused human brain circuits. Neuron, 107(3), 580-589.e6.
doi: S0896-6273(20)30353-6 pmid: 32778224 |
[57] |
Noble, S., Spann, M. N., Tokoglu, F., Shen, X., Constable, R. T., & Scheinost, D. (2017). Influences on the test-retest reliability of functional connectivity MRI and its relationship with behavioral utility. Cerebral Cortex, 27(11), 5415-5429.
doi: 10.1093/cercor/bhx230 URL |
[58] |
Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H., & Ugurbil, K. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences, 89(13), 5951-5955.
doi: 10.1073/pnas.89.13.5951 URL |
[59] | Oliver, I., Hlinka, J., Kopal, J., & Davidsen, J. (2019). Quantifying the variability in resting-state networks. Entropy, 21(9), 882. |
[60] |
Perez, D. C., Dworetsky, A., Braga, R. M., Beeman, M., & Gratton, C. (2023). Hemispheric asymmetries of individual differences in functional connectivity. Journal of Cognitive Neuroscience, 35(2), 200-225.
doi: 10.1162/jocn_a_01945 URL |
[61] |
Poldrack, R. A., Laumann, T. O., Koyejo, O., Gregory, B., Hover, A., Chen, M. Y., ... Mumford, J. A. (2015). Long-term neural and physiological phenotyping of a single human. Nature Communications, 6, 8885.
doi: 10.1038/ncomms9885 pmid: 26648521 |
[62] |
Porter, A., Nielsen, A., Dorn, M., Dworetsky, A., Edmonds, D., & Gratton, C. (2023). Masked features of task states found in individual brain networks. Cerebral Cortex, 33(6), 2879-2900.
doi: 10.1093/cercor/bhac247 URL |
[63] |
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 2142-2154.
doi: 10.1016/j.neuroimage.2011.10.018 pmid: 22019881 |
[64] |
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., ... Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72(4), 665-678.
doi: 10.1016/j.neuron.2011.09.006 pmid: 22099467 |
[65] | Power, J. D., Plitt, M., Gotts, S. J., Kundu, P., Voon, V., Bandettini, P. A., & Martin, A. (2018). Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data. Proceedings of the National Academy of Sciences, 115(9), E2105-E2114. |
[66] |
Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N., & Petersen, S. E. (2013). Evidence for hubs in human functional brain networks. Neuron, 79(4), 798-813.
doi: 10.1016/j.neuron.2013.07.035 pmid: 23972601 |
[67] |
Pritschet, L., Santander, T., Taylor, C. M., Layher, E., Yu, S., Miller, M. B., ... Jacobs, E. G. (2020). Functional reorganization of brain networks across the human menstrual cycle. Neuroimage, 220, 117091.
doi: 10.1016/j.neuroimage.2020.117091 URL |
[68] |
Raut, R. V., Mitra, A., Marek, S., Ortega, M., Snyder, A. Z., Tanenbaum, A., ... Raichle, M. E. (2020). Organization of propagated intrinsic brain activity in individual humans. Cerebral Cortex, 30(3), 1716-1734.
doi: 10.1093/cercor/bhz198 URL |
[69] |
Ren, J., Xu, T., Wang, D., Li, M., Lin, Y., Schoeppe, F., ... Ahveninen, J. (2021). Individual variability in functional organization of the human and monkey auditory cortex. Cerebral Cortex, 31(5), 2450-2465.
doi: 10.1093/cercor/bhaa366 URL |
[70] |
Risk, B. B., Murden, R. J., Wu, J., Nebel, M. B., Venkataraman, A., Zhang, Z., & Qiu, D. (2021). Which multiband factor should you choose for your resting-state fMRI study. Neuroimage, 234, 117965.
doi: 10.1016/j.neuroimage.2021.117965 URL |
[71] |
Salehi, M., Greene, A. S., Karbasi, A., Shen, X., Scheinost, D., & Constable, R. T. (2020). There is no single functional atlas even for a single individual: Functional parcel definitions change with task. Neuroimage, 208, 116366.
doi: 10.1016/j.neuroimage.2019.116366 URL |
[72] |
Satterthwaite, T. D., Cook, P. A., Bruce, S. E., Conway, C., Mikkelsen, E., Satchell, E., ... Sheline, Y. I. (2016). Dimensional depression severity in women with major depression and post-traumatic stress disorder correlates with fronto-amygdalar hypoconnectivty. Molecular Psychiatry, 21(7), 894-902.
doi: 10.1038/mp.2015.149 pmid: 26416545 |
[73] |
Seitzman, B. A., Gratton, C., Laumann, T. O., Gordon, E. M., Adeyemo, B., Dworetsky, A., ... Petersen, S. E. (2019). Trait-like variants in human functional brain networks. Proceedings of the National Academy of Sciences, 116(45), 22851-22861.
doi: 10.1073/pnas.1902932116 URL |
[74] |
Sha, Z., Wager, T. D., Mechelli, A., & He, Y. (2019). Common dysfunction of large-scale neurocognitive networks across psychiatric disorders. Biological Psychiatry, 85(5), 379-388.
doi: S0006-3223(18)32023-7 pmid: 30612699 |
[75] | Smith, D. M., Kraus, B. T., Dworetsky, A., Gordon, E. M., & Gratton, C. (2023). Brain hubs defined in the group do not overlap with regions of high inter-individual variability. NeuroImage. Advance online publication. https://doi.org/10.1016/j.neuroimage.2023.120195 |
[76] |
Sporns, O. (2013). Network attributes for segregation and integration in the human brain. Current Opinion in Neurobiology, 23(2), 162-171.
doi: 10.1016/j.conb.2012.11.015 pmid: 23294553 |
[77] |
Sripada, C., Rutherford, S., Angstadt, M., Thompson, W. K., Luciana, M., Weigard, A., ... Heitzeg, M. (2020). Prediction of neurocognition in youth from resting state fMRI. Molecular Psychiatry, 25(12), 3413-3421.
doi: 10.1038/s41380-019-0481-6 |
[78] |
Srirangarajan, T., Mortazavi, L., Bortolini, T., Moll, J., & Knutson, B. (2021). Multi-band fMRI compromises detection of mesolimbic reward responses. Neuroimage, 244, 118617.
doi: 10.1016/j.neuroimage.2021.118617 URL |
[79] |
Suda, A., Osada, T., Ogawa, A., Tanaka, M., Kamagata, K., Aoki, S., ... Konishi, S. (2020). Functional organization for response inhibition in the right inferior frontal cortex of individual human brains. Cerebral Cortex, 30(12), 6325-6335.
doi: 10.1093/cercor/bhaa188 URL |
[80] |
Sun, J., Du, R., Zhang, B., Hua, Q., Wang, Y., Zhang, Y., ... Wang, K. (2022). Minimal scanning duration for producing individualized repetitive transcranial magnetic stimulation targets. Brain Imaging and Behavior, 16(6), 2637-2646.
doi: 10.1007/s11682-022-00720-y pmid: 36181650 |
[81] |
Sylvester, C. M., Yu, Q., Srivastava, A. B., Marek, S., Zheng, A., Alexopoulos, D., ... Dosenbach, N. U. F. (2020). Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry. Proceedings of the National Academy of Sciences, 117(7), 3808-3818.
doi: 10.1073/pnas.1910842117 URL |
[82] |
Tarchi, L., Damiani, S., Fantoni, T., Pisano, T., Castellini, G., Politi, P., & Ricca, V. (2022). Centrality and interhemispheric coordination are related to different clinical/behavioral factors in attention deficit/hyperactivity disorder: A resting-state fMRI study. Brain Imaging and Behavior, 16(6), 2526-2542.
doi: 10.1007/s11682-022-00708-8 |
[83] |
Tomasi, D., & Volkow, N. D. (2011). Functional connectivity hubs in the human brain. Neuroimage, 57(3), 908-917.
doi: 10.1016/j.neuroimage.2011.05.024 pmid: 21609769 |
[84] |
van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17(12), 683-696.
doi: 10.1016/j.tics.2013.09.012 pmid: 24231140 |
[85] |
Wang, D., Buckner, R. L., Fox, M. D., Holt, D. J., Holmes, A. J., Stoecklein, S., ... Liu, H. (2015). Parcellating cortical functional networks in individuals. Nature Neuroscience, 18(12), 1853-1860.
doi: 10.1038/nn.4164 pmid: 26551545 |
[86] |
Wang, Q., Xu, Y., Zhao, T., Xu, Z., He, Y., & Liao, X. (2021). Individual uniqueness in the neonatal functional connectome. Cerebral Cortex, 31(8), 3701-3712.
doi: 10.1093/cercor/bhab041 URL |
[87] |
Wig, G. S., Laumann, T. O., & Petersen, S. E. (2014). An approach for parcellating human cortical areas using resting-state correlations. Neuroimage, 93, 276-291.
doi: 10.1016/j.neuroimage.2013.07.035 URL |
[88] |
Xue, A., Kong, R., Yang, Q., Eldaief, M. C., Angeli, P. A., DiNicola, L. M., ... Yeo, B. T. (2021). The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual. Journal of Neurophysiology, 125(2), 358-384.
doi: 10.1152/jn.00561.2020 pmid: 33427596 |
[89] | Yang, H., Yao, X., Zhang, H., Meng, C., & Biswal, B. (2022). Individual coactivation patterns improve the subject identification and their behavior association. Biorxiv. https://doi.org/10.1101/2022.01.06.475181 |
[90] |
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., ... Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125-1165.
doi: 10.1152/jn.00338.2011 pmid: 21653723 |
[91] | Zheng, A., Montez, D. F., Marek, S., Gilmore, A. W., Newbold, D. J., Laumann, T. O., ... Dosenbach, N. U. F. (2021). Parallel hippocampal-parietal circuits for self- and goal-oriented processing. Proceedings of the National Academy of Sciences, 118(34), Article e2101743118. |
[1] | 张凤翔, 陈美璇, 蒲艺, 孔祥祯. 空间导航能力个体差异的多层次形成机制[J]. 心理科学进展, 2023, 31(9): 1642-1664. |
[2] | 张才蕙, 叶渐桥, 杨静. 汉语作为第二语言学习的脑机制[J]. 心理科学进展, 2023, 31(5): 747-758. |
[3] | 林雯仪, 何昊, 关青. 反刍思维的脑功能网络机制[J]. 心理科学进展, 2022, 30(6): 1262-1269. |
[4] | 贺馨宇, 何清华. 脑岛在成瘾中的结构和功能异常[J]. 心理科学进展, 2021, 29(8): 1438-1449. |
[5] | 包寒吴霜, 蔡华俭. 姓名对个体心理与行为的实际影响:证据和理论[J]. 心理科学进展, 2021, 29(6): 1067-1085. |
[6] | 钱柳, 汝涛涛, 罗雪, 牛佳兴, 马永骏, 周国富. 睡眠限制对认知功能的影响及其潜在作用机制[J]. 心理科学进展, 2020, 28(9): 1493-1507. |
[7] | 王潇, 吴国榕, 吴欣然, 邱江, 陈红. 语言功能偏侧化及其与利手、功能连接的关系[J]. 心理科学进展, 2020, 28(5): 778-789. |
[8] | 毕爱玲, 张秀艳, 陈美清, 陈嵘, 郭大东, 毕宏生. 电针干预对弱视大鼠初级视皮层突触密度、线粒体面积和脑功能连接的影响[J]. 心理科学进展, 2019, 27(suppl.): 6-6. |
[9] | 崔琳, 郭冰冰, 李佳欣, 骆钰, 赵丹, 孟明. 加工情绪性电影刺激一致性体验与特异性体验分离的神经机制[J]. 心理科学进展, 2019, 27(suppl.): 137-137. |
[10] | 王一丹, 何生, 张杰栋. 基于降维分析的人类面孔加工脑区的细分[J]. 心理科学进展, 2019, 27(suppl.): 161-161. |
[11] | 赵鹤宾, 夏勉, 曹奔, 江光荣. 接触干预在减少精神障碍公众污名中的应用[J]. 心理科学进展, 2019, 27(5): 843-857. |
[12] | 陆静怡, 尚雪松. 为他人做决策:多维度心理机制与决策体验[J]. 心理科学进展, 2018, 26(9): 1545-1552. |
[13] | 段凯凯, 董昊铭, 苗丽雯, 苏学权, 相洁, 左西年. 人脑自适应多尺度功能连接的性别差异[J]. 心理科学进展, 2018, 26(9): 1567-1575. |
[14] | 叶晓燕, 张得龙, 常松, 刘鸣. 视觉表象个体差异及其神经基础[J]. 心理科学进展, 2018, 26(7): 1186-1192. |
[15] | 叶晓燕, 张得龙, 倪冰, 董霁月, 蔡红杰. 基于心理旋转范式探讨视觉表象的个体差异[J]. 心理科学进展, 2017, 25(suppl.): 37-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||