心理科学进展 ›› 2023, Vol. 31 ›› Issue (12): 2306-2318.doi: 10.3724/SP.J.1042.2023.02306
收稿日期:
2022-11-13
出版日期:
2023-12-15
发布日期:
2023-09-11
通讯作者:
马小凤, E-mail: psymaxiaofeng@126.com
基金资助:
LI Yunduan1,2, MA Xiaofeng1,2(), HU Yu1,2
Received:
2022-11-13
Online:
2023-12-15
Published:
2023-09-11
摘要:
发展性阅读障碍(Developmental dyslexia, DD)儿童的早期识别及干预对个人和社会发展都至关重要。语音意识缺陷是DD的核心缺陷, 本质上由更基础的听觉加工缺陷所引起。节奏作为听觉加工的主要影响因素之一发生于个体生命早期, 是儿童语言习得的关键指标之一。梳理已有研究发现, DD儿童表现出节奏异常的行为和神经特点, 这些特点导致个体解码效率更低, 阅读理解更吃力, 书写质量也更差。DD儿童节奏能力异常可以预测其阅读加工层面的缺陷。因此, 可考虑将节奏异常特点作为DD儿童正式入学前的潜在识别标志。未来研究可将节奏异常作为切入点, 深入探究DD儿童节奏异常的个体差异以及汉语DD儿童节奏异常的特点和作用机制, 为开发更具生态效度的节奏测量工具和提高DD的早期识别及干预效率提供实证及理论依据。
中图分类号:
李运端, 马小凤, 胡钰. (2023). 发展性阅读障碍儿童潜在的早期识别标志——节奏异常及其特点. 心理科学进展 , 31(12), 2306-2318.
LI Yunduan, MA Xiaofeng, HU Yu. (2023). Potential early identification markers for children with developmental dyslexia: Atypical rhythm and its characteristics. Advances in Psychological Science, 31(12), 2306-2318.
[1] |
陈梁杰, 刘雷, 葛钟书, 杨晓东, 李量. (2022). 节律在听觉言语理解中的作用. 心理科学进展, 30(8), 1818-1831. 10.3724/sp.J.1042.2022.01818
doi: 10.3724/SP.J.1042.2022.01818 URL |
[2] | 王久菊, 孟祥芝, 李虹, 崔新, 洪恬, 杨斌让, … 王玉凤. (2023). 汉语发展性阅读障碍诊断与干预的专家意见. 中国心理卫生杂志, (3), 185-191. https://kns.cnki.net/kcms/detail/11.1873.R.20230201.1016.002.html |
[3] |
王润洲, 毕鸿燕. (2021). 发展性阅读障碍的听觉时间加工缺陷. 心理科学进展, 29(7), 1231-1238.
doi: 10.3724/SP.J.1042.2021.01231 |
[4] |
卫垌圻, 曹慧, 毕鸿燕, 杨炀. (2020). 发展性阅读障碍书写加工缺陷及其神经机制. 心理科学进展, 28(1), 75-84.
doi: 10.3724/SP.J.1042.2020.00075 |
[5] | Adams, M. J. (1994). Beginning to read: Thinking and learning about print. MIT Press. |
[6] |
Alamargot, D., Morin, M.-F., & Simard-Dupuis, E. (2020). Handwriting delay in dyslexia: Children at the end of primary school still make numerous short pauses when producing letters. Journal of Learning Disabilities, 53(3), 163-175.
doi: 10.1177/0022219420903705 pmid: 32036738 |
[7] |
Alonzo, C. N., McIlraith, A. L., Catts, H. W., & Hogan, T. P. (2020). Predicting dyslexia in children with developmental language disorder. Journal of Speech, Language, and Hearing Research, 63(1), 151-162.
doi: 10.1044/2019_JSLHR-L-18-0265 URL |
[8] |
Arvaniti, A. (2009). Rhythm, timing and the timing of rhythm. Phonetica, 66(1-2), 46-63.
doi: 10.1159/000208930 pmid: 19390230 |
[9] | Attaheri, A., Choisdealbha, Á. N., Rocha, S., Brusini, P., Di Liberto, G. M., Mead, N., … Williams, I. (2022). Infant low-frequency EEG cortical power, cortical tracking and phase-amplitude coupling predicts language a year later. BioRxiv, 2022.2011.2002.514963. |
[10] |
Bégel, V., Dalla Bella, S., Devignes, Q., Vandenbergue, M., Lemaître, M.-P., & Dellacherie, D. (2022). Rhythm as an independent determinant of developmental dyslexia. Developmental Psychology, 58(2), 339-358. 10.1037/dev0001293
doi: 10.1037/dev0001293 URL |
[11] | Bégel, V., Seilles, A., & Dalla Bella, S. (2018). Rhythm Workers: A music-based serious game for training rhythm skills. Music & Science, 1(1), 2059204318794369. |
[12] |
Bekius, A., Cope, T. E., & Grube, M. (2016). The beat to read: A cross-lingual link between rhythmic regularity perception and reading skill. Frontiers in Human Neuroscience, 10, 425.
doi: 10.3389/fnhum.2016.00425 pmid: 27630551 |
[13] |
Berninger, V. W., Nielsen, K. H., Abbott, R. D., Wijsman, E., & Raskind, W. (2008). Writing problems in developmental dyslexia: Under-recognized and under-treated. Journal of School Psychology, 46(1), 1-21.
doi: 10.1016/j.jsp.2006.11.008 pmid: 18438452 |
[14] |
Brandlistuen, R. E., Flatø, M., Stoltenberg, C., Helland, S. S., & Wang, M. V. (2021). Gender gaps in preschool age: A study of behavior, neurodevelopment and pre-academic skills. Scandinavian Journal of Public Health, 49(5), 503-510.
doi: 10.1177/1403494820944740 URL |
[15] |
Bruderer, A. G., Danielson, D. K., Kandhadai, P., & Werker, J. F. (2015). Sensorimotor influences on speech perception in infancy. Proceedings of the National Academy of Sciences of the United States of America, 112(44), 13531-13536.
doi: 10.1073/pnas.1508631112 pmid: 26460030 |
[16] |
Bryant, P., & Goswami, U. (1986). Strengths and weaknesses of the reading level design: A comment on Backman, Mamen, and Ferguson. Psychological Bulletin, 100(1), 101-103.
doi: 10.1037/0033-2909.100.1.101 URL |
[17] |
Buzsáki, G., & Vöröslakos, M. (2023). Brain rhythms have come of age. Neuron, 111(7), 922-926.
doi: 10.1016/j.neuron.2023.03.018 pmid: 37023714 |
[18] |
Caccia, M., & Lorusso, M. L. (2021). The processing of rhythmic structures in music and prosody by children with developmental dyslexia and developmental language disorder. Developmental Science, 24(1), e12981. 10.1111/desc.12981
doi: 10.1111/desc.v24.1 URL |
[19] |
Calet, N., Gutiérrez-Palma, N., Defior, S., & Jiménez- Fernández, G. (2019). Linguistic and non-linguistic prosodic skills in Spanish children with developmental dyslexia. Research in Developmental Disabilities, 90, 92-100. 10.1016/j.ridd.2019.04.013
doi: S0891-4222(19)30080-0 URL pmid: 31085452 |
[20] |
Cancer, A., Bonacina, S., Antonietti, A., Salandi, A., Molteni, M., & Lorusso, M. L. (2020). The effectiveness of interventions for developmental dyslexia: Rhythmic reading training compared with hemisphere-specific stimulation and action video games. Frontiers in Psychology, 11, 1158.
doi: 10.3389/fpsyg.2020.01158 pmid: 32581961 |
[21] |
Carr, K. W., White-Schwoch, T., Tierney, A. T., Strait, D. L., & Kraus, N. (2014). Beat synchronization predicts neural speech encoding and reading readiness in preschoolers. Proceedings of the National Academy of Sciences, 111(40), 14559-14564.
doi: 10.1073/pnas.1406219111 URL |
[22] | Catts, H. W., & Hogan, T. P. (2020). Dyslexia: An ounce of prevention is better than a pound of diagnosis and treatment. Reading League Journal, 2, 6-13. |
[23] |
Cheng-Lai, A., Li-Tsang, C. W., Chan, A. H., & Lo, A. G. (2013). Writing to dictation and handwriting performance among Chinese children with dyslexia: Relationships with orthographic knowledge and perceptual-motor skills. Research in Developmental Disabilities, 34(10), 3372-3383.
doi: 10.1016/j.ridd.2013.06.039 pmid: 23911643 |
[24] |
Cirelli, L. K., Spinelli, C., Nozaradan, S., & Trainor, L. J. (2016). Measuring neural entrainment to beat and meter in infants: Effects of music background. Frontiers in Neuroscience, 10, 229.
doi: 10.3389/fnins.2016.00229 pmid: 27252619 |
[25] |
Colling, L. J., Noble, H. L., & Goswami, U. (2017). Neural entrainment and sensorimotor synchronization to the beat in children with developmental dyslexia: An EEG study. Frontiers in Neuroscience, 11, 360.
doi: 10.3389/fnins.2017.00360 pmid: 28747870 |
[26] |
Cutini, S., Szűcs, D., Mead, N., Huss, M., & Goswami, U. (2016). Atypical right hemisphere response to slow temporal modulations in children with developmental dyslexia. Neuroimage, 143, 40-49.
doi: S1053-8119(16)30390-1 pmid: 27520749 |
[27] |
Dauer, R. M. (1983). Stress-timing and syllable-timing reanalyzed. Journal of Phonetics, 11(1), 51-62.
doi: 10.1016/S0095-4470(19)30776-4 URL |
[28] |
Edalati, M., Wallois, F., Safaie, J., Ghostine, G., Kongolo, G., Trainor, L. J., & Moghimi, S. (2023). Rhythm in the premature neonate brain: Very early processing of auditory beat and meter. Journal of Neuroscience, 43(15), 2794-2802.
doi: 10.1523/JNEUROSCI.1100-22.2023 pmid: 36914264 |
[29] |
Edele, A., & Stanat, P. (2016). The role of first-language listening comprehension in second-language reading comprehension. Journal of Educational Psychology, 108(2), 163-180.
doi: 10.1037/edu0000060 URL |
[30] |
Fiveash, A., Bedoin, N., Gordon, R. L., & Tillmann, B. (2021). Processing rhythm in speech and music: Shared mechanisms and implications for developmental speech and language disorders. Neuropsychology, 35(8), 771-791. 10.1037/neu0000766
doi: 10.1037/neu0000766 URL pmid: 34435803 |
[31] |
Fiveash, A., Falk, S., & Tillmann, B. (2021). What you hear first, is what you get: Initial metrical cue presentation modulates syllable detection in sentence processing. Attention, Perception and Psychophysics, 83(4), 1861-1877.10.3758/s13414-021-02251-y
doi: 10.3758/s13414-021-02251-y URL |
[32] |
Flaugnacco, E., Lopez, L., Terribili, C., Zoia, S., Buda, S., Tilli, S., Monasta, L., Montico, M., Sila, A., Ronfani, L., & Schön, D. (2014). Rhythm perception and production predict reading abilities in developmental dyslexia. Frontiers in Human Neuroscience, 8, 392.
doi: 10.3389/fnhum.2014.00392 pmid: 24926248 |
[33] |
Gallego-Molina, N. J., Ortiz, A., Martínez-Murcia, F. J., Formoso, M. A., & Giménez, A. (2022). Complex network modeling of EEG band coupling in dyslexia: An exploratory analysis of auditory processing and diagnosis. Knowledge-Based Systems, 240, 108098.
doi: 10.1016/j.knosys.2021.108098 URL |
[34] |
Gibbon, S., Attaheri, A., Ní Choisdealbha, Á., Rocha, S., Brusini, P., Mead, N., … Goswami, U. (2021). Machine learning accurately classifies neural responses to rhythmic speech vs. non-speech from 8-week-old infant EEG. Brain and Language, 220, 104968.
doi: 10.1016/j.bandl.2021.104968 URL |
[35] | Gordon, E. (2002). Primary measures of music audiation kit. GIA Publications. |
[36] |
Goswami, U. (2003). Why theories about developmental dyslexia require developmental designs. Trends in Cognitive Sciences, 7(12), 534-540.
doi: 10.1016/j.tics.2003.10.003 pmid: 14643369 |
[37] |
Goswami, U. (2019a). A neural oscillations perspective on phonological development and phonological processing in developmental dyslexia. Language and Linguistics Compass, 13(5), e12328. 10.1111/lnc3.12328
doi: 10.1111/lnc3.v13.5 URL |
[38] | Goswami, U. (2019b). Speech rhythm and language acquisition:An amplitude modulation phase hierarchy perspective. Annals of the New York Academy of Sciences, 1453(1), 67-78. |
[39] |
Goswami, U., Fosker, T., Huss, M., Mead, N., & Szűcs, D. (2011). Rise time and formant transition duration in the discrimination of speech sounds: The Ba-Wa distinction in developmental dyslexia. Developmental Science, 14(1), 34-43.
doi: 10.1111/j.1467-7687.2010.00955.x pmid: 21159086 |
[40] |
Goswami, U., Gerson, D., & Astruc, L. (2010). Amplitude envelope perception, phonology and prosodic sensitivity in children with developmental dyslexia. Reading and Writing, 23(8), 995-1019.
doi: 10.1007/s11145-009-9186-6 URL |
[41] |
Goswami, U., Huss, M., Mead, N., & Fosker, T. (2021). Auditory sensory processing and phonological development in high IQ and exceptional readers, typically developing readers, and children with dyslexia: A longitudinal study. Child development, 92(3), 1083-1098.
doi: 10.1111/cdev.v92.3 URL |
[42] |
Goswami, U., Huss, M., Mead, N., Fosker, T., & Verney, J. P. (2013). Perception of patterns of musical beat distribution in phonological developmental dyslexia: Significant longitudinal relations with word reading and reading comprehension. Cortex, 49(5), 1363-1376.
doi: 10.1016/j.cortex.2012.05.005 pmid: 22726605 |
[43] | Goswami, U., & Leong, V. (2013). Speech rhythm and temporal structure: Converging perspectives? Laboratory Phonology, 4(1), 67-92. |
[44] | György, B. (2019). The brain from inside out. Oxford University Press. |
[45] |
Hämäläinen, J. A., Rupp, A., Soltész, F., Szücs, D., & Goswami, U. (2012). Reduced phase locking to slow amplitude modulation in adults with dyslexia: An MEG study. Neuroimage, 59(3), 2952-2961.
doi: 10.1016/j.neuroimage.2011.09.075 pmid: 22001790 |
[46] |
Hannon, E. E., & Trehub, S. E. (2005). Tuning in to musical rhythms: Infants learn more readily than adults. Proceedings of the National Academy of Sciences, 102(35), 12639-12643.
doi: 10.1073/pnas.0504254102 URL |
[47] |
Helland, T., Morken, F., & Helland, W. A. (2021). Kindergarten screening tools filled out by parents and teachers targeting dyslexia. Predictions and developmental trajectories from age 5 to age 15 years. Dyslexia, 27(4), 413-435.
doi: 10.1002/dys.1698 pmid: 34585461 |
[48] |
Holliman, A. J., Wood, C., & Sheehy, K. (2010a). The contribution of sensitivity to speech rhythm and non‐speech rhythm to early reading development. Educational Psychology, 30(3), 247-267. 10.1080/01443410903560922
doi: 10.1080/01443410903560922 URL |
[49] |
Holliman, A. J., Wood, C., & Sheehy, K. (2010b). A cross-sectional study of prosodic sensitivity and reading difficulties. Journal of Research in Reading, 35(1), 32-48. 10.1111/j.1467-9817.2010.01459.x
doi: 10.1111/jrir.2012.35.issue-1 URL |
[50] |
Huss, M., Verney, J. P., Fosker, T., Mead, N., & Goswami, U. (2011). Music, rhythm, rise time perception and developmental dyslexia: Perception of musical meter predicts reading and phonology. Cortex, 47(6), 674-689.
doi: 10.1016/j.cortex.2010.07.010 pmid: 20843509 |
[51] |
Im, K., Raschle, N. M., Smith, S. A., Ellen Grant, P., & Gaab, N. (2016). Atypical sulcal pattern in children with developmental dyslexia and at-risk kindergarteners. Cerebral Cortex, 26(3), 1138-1148.
doi: 10.1093/cercor/bhu305 URL |
[52] |
Kalashnikova, M., Burnham, D., & Goswami, U. (2021). Rhythm discrimination and metronome tapping in 4-year- old children at risk for developmental dyslexia. Cognitive Development, 60, 101129.
doi: 10.1016/j.cogdev.2021.101129 URL |
[53] | Kalashnikova, M., Goswami, U., & Burnham, D. (2018). Mothers speak differently to infants at‐risk for dyslexia. Developmental Science, 21(1), e12487. |
[54] | Kalashnikova, M., Goswami, U., & Burnham, D. (2019). Sensitivity to amplitude envelope rise time in infancy and vocabulary development at 3 years: A significant relationship. Developmental Science, 22(6), e12836. |
[55] |
Keshavarzi, M., Mandke, K., Macfarlane, A., Parvez, L., Gabrielczyk, F., Wilson, A., & Goswami, U. (2022). Atypical delta-band phase consistency and atypical preferred phase in children with dyslexia during neural entrainment to rhythmic audio-visual speech. NeuroImage: Clinical, 35, 103054.
doi: 10.1016/j.nicl.2022.103054 URL |
[56] | Kitzen, K. R. (2001). Prosodic sensitivity, morphological ability, and reading ability in young adults with and without childhood histories of reading difficulty (Unpublished master’s thesis). Columbia University, New York. |
[57] |
Kotz, S. A., Ravignani, A., & Fitch, W. T. (2018). The evolution of rhythm processing. Trends in Cognitive Sciences, 22(10), 896-910.
doi: S1364-6613(18)30191-8 pmid: 30266149 |
[58] |
Kuerten, A. B., Mota, M. B., & Segaert, K. (2020). Developmental dyslexia: A condensed review of literature. Ilha do Desterro, 72(3), 249-270.
doi: 10.5007/2175-8026.2019v72n3p249 URL |
[59] | Ladányi, E., Persici, V., Fiveash, A., Tillmann, B., & Gordon, R. L. (2020). Is atypical rhythm a risk factor for developmental speech and language disorders? Wiley Interdisciplinary Reviews: Cognitive Science, 11(5), e1528. |
[60] | Lallier, M., Lizarazu, M., Molinaro, N., Bourguignon, M., Ríos-López, P., & Carreiras, M. (2018). From auditory rhythm processing to grapheme-to-phoneme conversion:How neural oscillations can shed light on developmental dyslexia. In Lachmann, T., & Weis, T. (Eds.), Reading and dyslexia. literacy studies (Vol. 16, pp. 147-163). Springer, Cham. 10.1007/978-3-319-90805-2_8 |
[61] |
Lallier, M., Molinaro, N., Lizarazu, M., Bourguignon, M., & Carreiras, M. (2017). Amodal atypical neural oscillatory activity in dyslexia: A cross-linguistic perspective. Clinical Psychological Science, 5(2), 379-401.
doi: 10.1177/2167702616670119 URL |
[62] |
Lam, S. S., Au, R. K., Leung, H. W., & Li-Tsang, C. W. (2011). Chinese handwriting performance of primary school children with dyslexia. Research in Developmental Disabilities, 32(5), 1745-1756.
doi: 10.1016/j.ridd.2011.03.001 pmid: 21507609 |
[63] |
Lampis, V., Ventura, R., Di Segni, M., Marino, C., D'Amato, F. R., & Mascheretti, S. (2021). Animal models of developmental dyslexia: Where we are and what we are missing. Neuroscience and Biobehavioral Reviews, 131, 1180-1197. 10.1016/j.neubiorev.2021.10.022
doi: 10.1016/j.neubiorev.2021.10.022 URL pmid: 34699847 |
[64] |
Laubrock, J., & Kliegl, R. (2015). The eye-voice span during reading aloud. Frontiers in Psychology, 6, 1432.
doi: 10.3389/fpsyg.2015.01432 pmid: 26441800 |
[65] |
Leong, V., Hämäläinen, J., Soltész, F., & Goswami, U. (2011). Rise time perception and detection of syllable stress in adults with developmental dyslexia. Journal of Memory and Language, 64(1), 59-73.
doi: 10.1016/j.jml.2010.09.003 URL |
[66] |
Li, Y., Li, J., Yang, Y., & Bi, H.-Y. (2022). Disruption of dynamic functional connectivity in children with developmental dyslexia. Language, Cognition and Neuroscience, 38(5), 621-635.
doi: 10.1080/23273798.2022.2129084 URL |
[67] |
Lizarazu, M., di Covella, L. S., van Wassenhove, V., Rivière, D., Mizzi, R., Lehongre, K., Hertz-Pannier, L., & Ramus, F. (2021). Neural entrainment to speech and nonspeech in dyslexia: Conceptual replication and extension of previous investigations. Cortex, 137, 160-178.
doi: 10.1016/j.cortex.2020.12.024 pmid: 33618156 |
[68] | Llinás, R. (1993). Is dyslexia a dyschronia? In P. Tallal, A. M. Galaburda, R. R. Llinás, & C. von Euler (Eds.), Temporal information processing in the nervous system: Special reference to dyslexia and dysphasia (pp. 48-56). New York Academy of Sciences. |
[69] |
Lundetræ, K., & Thomson, J. M. (2018). Rhythm production at school entry as a predictor of poor reading and spelling at the end of first grade. Reading and Writing, 31(1), 215-237. 10.1007/s11145-017-9782-9
doi: 10.1007/s11145-017-9782-9 URL pmid: 29367807 |
[70] | Martinez-Murcia, F. J., Ortiz, A., Gorriz, J. M., Ramirez, J., Lopez-Abarejo, P. J., Lopez-Zamora, M., & Luque, J. L. (2020). EEG connectivity analysis using denoising autoencoders for the detection of dyslexia. International Journal of Neural Systems, 30(7), 2050037. |
[71] | Mascheretti, S., de Luca, A., Trezzi, V., Peruzzo, D., Nordio, A., Marino, C., & Arrigoni, F. (2017). Neurogenetics of developmental dyslexia: From genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Translational Psychiatry, 7(1), e987-e987. |
[72] |
McArthur, G., Kohnen, S., Larsen, L., Jones, K., Anandakumar, T., Banales, E., & Castles, A. (2013). Getting to grips with the heterogeneity of developmental dyslexia. Cognitive Neuropsychology, 30(1), 1-24.
doi: 10.1080/02643294.2013.784192 pmid: 23614389 |
[73] |
Mehler, J., Jusczyk, P., Lambertz, G., Halsted, N., Bertoncini, J., & Amiel-Tison, C. (1988). A precursor of language acquisition in young infants. Cognition, 29(2), 143-178.
pmid: 3168420 |
[74] |
Meng, X., Sai, X., Wang, C., Wang, J., Sha, S., & Zhou, X. (2005). Auditory and speech processing and reading development in Chinese school children: Behavioural and ERP evidence. Dyslexia, 11(4), 292-310.
doi: 10.1002/dys.309 pmid: 16355749 |
[75] |
Menghini, D., Hagberg, G. E., Caltagirone, C., Petrosini, L., & Vicari, S. (2006). Implicit learning deficits in dyslexic adults: An fMRI study. Neuroimage, 33(4), 1218-1226.
pmid: 17035046 |
[76] |
Mittag, M., Larson, E., Clarke, M., Taulu, S., & Kuhl, P. K. (2021). Auditory deficits in infants at risk for dyslexia during a linguistic sensitive period predict future language. NeuroImage: Clinical, 30, 102578.
doi: 10.1016/j.nicl.2021.102578 URL |
[77] |
Näätänen, R. (1990). The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behavioral and Brain Sciences, 13(2), 201-233.
doi: 10.1017/S0140525X00078407 URL |
[78] | Nolan, F., & Jeon, H.-S. (2014). Speech rhythm: A metaphor? Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1658), 20130396. |
[79] | Ortiz, A., Martinez-Murcia, F. J., Luque, J. L., Giménez, A., Morales-Ortega, R., & Ortega, J. (2020). Dyslexia diagnosis by EEG temporal and spectral descriptors: An anomaly detection approach. International journal of Neural Systems, 30(7), 2050029. |
[80] | Overy, K. (2003). Dyslexia and music:From timing deficits to musical intervention. Annals of the New York Academy of Sciences, 999(1), 497-505. |
[81] |
Ozernov‐Palchik, O., & Gaab, N. (2016). Tackling the ‘dyslexia paradox’: Reading brain and behavior for early markers of developmental dyslexia. Wiley Interdisciplinary Reviews: Cognitive Science, 7(2), 156-176.
doi: 10.1002/wcs.1383 pmid: 26836227 |
[82] |
Ozernov-Palchik, O., Wolf, M., & Patel, A. D. (2018). Relationships between early literacy and nonlinguistic rhythmic processes in kindergarteners. Journal of Experimental Child Psychology, 167, 354-368.
doi: S0022-0965(17)30192-3 pmid: 29227852 |
[83] |
Pagliarini, E., Guasti, M. T., Toneatto, C., Granocchio, E., Riva, F., Sarti, D., Molteni, B., & Stucchi, N. (2015). Dyslexic children fail to comply with the rhythmic constraints of handwriting. Human Movement Science, 42, 161-182.
doi: 10.1016/j.humov.2015.04.012 pmid: 26037277 |
[84] | Pagliarini, E., Scocchia, L., Granocchio, E., Sarti, D., Stucchi, N., & Guasti, M. T. (2020). Timing anticipation in adults and children with developmental dyslexia: Evidence of an inefficient mechanism. Scientific Reports, 10(1), 17519. |
[85] | Pagliarini, E., Scocchia, L., Vernice, M., Zoppello, M., Balottin, U., Bouamama, S., Guasti, M. T., & Stucchi, N. (2017). Children’s first handwriting productions show a rhythmic structure. Scientific Reports, 7(1), 5516. |
[86] |
Patscheke, H., Degé, F., & Schwarzer, G. (2019). The effects of training in rhythm and pitch on phonological awareness in four-to six-year-old children. Psychology of Music, 47(3), 376-391.
doi: 10.1177/0305735618756763 |
[87] |
Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101(2), 385-413.
pmid: 16844106 |
[88] |
Pennington, B. F., Santerre-Lemmon, L., Rosenberg, J., MacDonald, B., Boada, R., Friend, A., Leopold, D. R., Samuelsson, S., Byrne, B., Willcutt, E. G., & Olson, R. K. (2012). Individual prediction of dyslexia by single versus multiple deficit models. Journal of Abnormal Psychology, 121(1), 212-224.
doi: 10.1037/a0025823 pmid: 22022952 |
[89] | Persici, V., Stucchi, N., & Arosio, F. (2019). Predicting the future in rhythm and language: The anticipation abilities of a group of Italian-speaking children. Paper presented at International conference 13 Generative Approaches to Language Acquisition (GALA 13), Sep, 2017, Palma de Mallorca, Spain. |
[90] | Piras, F., & Coull, J. T. (2011). Implicit, predictive timing draws upon the same scalar representation of time as explicit timing. Plos One, 6(3), e18203. |
[91] |
Power, A. J., Mead, N., Barnes, L., & Goswami, U. (2013). Neural entrainment to rhythmic speech in children with developmental dyslexia. Frontiers in Human Neuroscience, 7, 777.
doi: 10.3389/fnhum.2013.00777 pmid: 24376407 |
[92] |
Ramus, F., Hauser, M. D., Miller, C., Morris, D., & Mehler, J. (2000). Language discrimination by human newborns and by cotton-top tamarin monkeys. Science, 288(5464), 349-351.
pmid: 10764650 |
[93] | Ravignani, A., Dalla Bella, S., Falk, S., Kello, C. T., Noriega, F., & Kotz, S. A. (2019). Rhythm in speech and animal vocalizations:A cross‐species perspective. Annals of the New York Academy of Sciences, 1453(1), 79-98. |
[94] | Reifinger Jr, J. L. (2019). Dyslexia in the music classroom: A review of literature. Update: Applications of Research in Music Education, 38(1), 9-17. |
[95] | Rezvani, Z., Zare, M., Žarić, G., Bonte, M., Tijms, J., van der Molen, M., & González, G. F. (2019). Machine learning classification of dyslexic children based on EEG local network features. BioRxiv, 569996. |
[96] |
Richardson, U., Thomson, J. M., Scott, S. K., & Goswami, U. (2004). Auditory processing skills and phonological representation in dyslexic children. Dyslexia, 10(3), 215-233.
pmid: 15341199 |
[97] | Sanfilippo, J., Ness, M., Petscher, Y., Rappaport, L., Zuckerman, B., & Gaab, N. (2020). Reintroducing dyslexia: Early identification and implications for pediatric practice. Pediatrics, 146(1), e20193046. |
[98] |
Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Mencl, W. E., Fulbright, R. K., Skudlarski, P., Constable, R. T., Marchione, K. E., Fletcher, J. M., Lyon, G. R., & Gore, J. C. (2002). Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry, 52(2), 101-110.
doi: 10.1016/s0006-3223(02)01365-3 pmid: 12114001 |
[99] |
Smith, A. B., Smith, S. L., Locke, J. L., & Bennett, J. (2008). A longitudinal study of speech timing in young children later found to have reading disability. Journal of Speech Language and Hearing Research, 51(5), 1300-1314.
doi: 10.1044/1092-4388(2008/06-0193) URL |
[100] |
Smoller, J. W., Andreassen, O. A., Edenberg, H. J., Faraone, S. V., Glatt, S. J., & Kendler, K. S. (2019). Psychiatric genetics and the structure of psychopathology. Molecular Psychiatry, 24(3), 409-420.
doi: 10.1038/s41380-017-0010-4 pmid: 29317742 |
[101] |
Snowling, M. J. (2013). Early identification and interventions for dyslexia: A contemporary view. Journal of Research in Special Educational Needs, 13(1), 7-14.
doi: 10.1111/jrs3.2013.13.issue-1 URL |
[102] | Snowling, M. J., Lervåg, A., Nash, H. M., & Hulme, C. (2019). Longitudinal relationships between speech perception, phonological skills and reading in children at high‐risk of dyslexia. Developmental Science, 22(1), e12723. |
[103] |
Stefanics, G., Fosker, T., Huss, M., Mead, N., Szucs, D., & Goswami, U. (2011). Auditory sensory deficits in developmental dyslexia: A longitudinal ERP study. Neuroimage, 57(3), 723-732.
doi: 10.1016/j.neuroimage.2011.04.005 pmid: 21507346 |
[104] |
Sumner, E., Connelly, V., & Barnett, A. L. (2013). Children with dyslexia are slow writers because they pause more often and not because they are slow at handwriting execution. Reading and Writing, 26(6), 991-1008.
doi: 10.1007/s11145-012-9403-6 URL |
[105] |
Sumner, E., Connelly, V., & Barnett, A. L. (2014). The influence of spelling ability on handwriting production: Children with and without dyslexia. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(5), 1441-1447.
doi: 10.1037/a0035785 URL |
[106] |
Sun, C., Meng, X., Du, B., Zhang, Y., Liu, L., Dong, Q., Georgiou, G. K., & Nan, Y. (2022). Behavioral and neural rhythm sensitivities predict phonological awareness and word reading development in Chinese. Brain and Language, 230, 105126.
doi: 10.1016/j.bandl.2022.105126 URL |
[107] |
Suppanen, E., Huotilainen, M., & Ylinen, S. (2019). Rhythmic structure facilitates learning from auditory input in newborn infants. Infant Behavior and Development, 57, 101346.
doi: 10.1016/j.infbeh.2019.101346 URL |
[108] | Taha, J., Stucchi, N., Pagliarini, E., & Guasti, M. T. (2022). What is wrong with rhythm in Developmental Dyslexia? The inefficient anticipation hypothesis. PsyArXiv, PPR496135. |
[109] |
Thomson, J. M., & Goswami, U. (2008). Rhythmic processing in children with developmental dyslexia: Auditory and motor rhythms link to reading and spelling. Journal of Physiology-Paris, 102(1-3), 120-129.
doi: 10.1016/j.jphysparis.2008.03.007 pmid: 18448317 |
[110] |
Thomson, J. M., Leong, V., & Goswami, U. (2013). Auditory processing interventions and developmental dyslexia: A comparison of phonemic and rhythmic approaches. Reading and Writing, 26(2), 139-161.
doi: 10.1007/s11145-012-9359-6 URL |
[111] |
Tierney, A. T., & Kraus, N. (2013). The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills. Brain and Language, 124(3), 225-231.
doi: 10.1016/j.bandl.2012.12.014 pmid: 23400117 |
[112] |
Tseng, M. H. (1998). Development of pencil grip position in preschool children. The Occupational Therapy Journal of Research, 18(4), 207-224.
doi: 10.1177/153944929801800406 URL |
[113] |
van Zuijen, T. L., Plakas, A., Maassen, B. A., Been, P., Maurits, N. M., Krikhaar, E., van Driel, J., & van der Leij, A. (2012). Temporal auditory processing at 17 months of age is associated with preliterate language comprehension and later word reading fluency: An ERP study. Neuroscience Letters, 528(1), 31-35.
doi: 10.1016/j.neulet.2012.08.058 pmid: 22981882 |
[114] |
Vidal, M. M., Lousada, M., & Vigário, M. (2020). Music effects on phonological awareness development in 3-year-old children. Applied Psycholinguistics, 41(2), 299-318.
doi: 10.1017/S0142716419000535 URL |
[115] | Virtala, P., & Partanen, E. (2018). Can very early music interventions promote at‐risk infants’ development? Annals of the New York Academy of Sciences, 1423(1), 92-101. |
[116] | Winkler, I., Háden, G. P., Ladinig, O., Sziller, I., & Honing, H. (2009). Newborn infants detect the beat in music. PNAS Proceedings of the National Academy of Sciences of the United States of America, 106(7), 2468-2471. |
[117] |
Wolff, P. H. (2002). Timing precision and rhythm in developmental dyslexia. Reading and Writing, 15(1-2), 179-206.
doi: 10.1023/A:1013880723925 URL |
[118] | Yang, L., Li, C., Li, X., Zhai, M., An, Q., Zhang, Y., Zhao, J., & Weng, X. (2022). Prevalence of developmental dyslexia in primary school children: A systematic review and meta-analysis. Brain Sciences, 12(2), 240. |
[119] |
Yang, Y., Bi, H.-Y., Long, Z.-Y., & Tao, S. (2013). Evidence for cerebellar dysfunction in Chinese children with developmental dyslexia: An fMRI study. International Journal of Neuroscience, 123(5), 300-310.
doi: 10.3109/00207454.2012.756484 pmid: 23227882 |
[1] | 崔楠, 王久菊, 赵婧. 注意缺陷多动障碍−发展性阅读障碍共患儿童的干预效果及其内在机理[J]. 心理科学进展, 2023, 31(4): 622-630. |
[2] | 卜晓鸥, 王耀, 杜亚雯, 王沛. 机器学习在发展性阅读障碍儿童早期筛查中的应用[J]. 心理科学进展, 2023, 31(11): 2092-2015. |
[3] | 李凯茜, 梁丹丹. 发展性阅读障碍风险儿童的大脑异常及阅读障碍的早期神经标记[J]. 心理科学进展, 2023, 31(10): 1912-1923. |
[4] | 刘敏, 胡洋, 刘巧云. 孤独症儿童潜在早期识别标志——发声异常及原因探析[J]. 心理科学进展, 2022, 30(3): 635-647. |
[5] | 李何慧, 黄慧雅, 董琳, 罗跃嘉, 陶伍海. 发展性阅读障碍与小脑异常:小脑的功能和两者的因果关系[J]. 心理科学进展, 2022, 30(2): 343-353. |
[6] | 王润洲, 毕鸿燕. 发展性阅读障碍视听时间整合缺陷可能的机制:视听时间再校准能力受损[J]. 心理科学进展, 2022, 30(12): 2764-2776. |
[7] | 王润洲, 毕鸿燕. 发展性阅读障碍的听觉时间加工缺陷[J]. 心理科学进展, 2021, 29(7): 1231-1238. |
[8] | 任筱宇, 赵婧, 毕鸿燕. 动作视频游戏对发展性阅读障碍者阅读技能的影响及其内在机制[J]. 心理科学进展, 2021, 29(6): 1000-1009. |
[9] | 卫垌圻, 曹慧, 毕鸿燕, 杨炀. 发展性阅读障碍书写加工缺陷及其神经机制[J]. 心理科学进展, 2020, 28(1): 75-84. |
[10] | 季雨竹, 毕鸿燕. 发展性阅读障碍的噪音抑制缺陷[J]. 心理科学进展, 2019, 27(2): 201-208. |
[11] | 赵婧. 发展性阅读障碍的视觉注意广度技能[J]. 心理科学进展, 2019, 27(1): 20-26. |
[12] | 黄晨, 赵婧. 发展性阅读障碍的视觉空间注意加工能力[J]. 心理科学进展, 2018, 26(1): 72-80. |
[13] | 孟泽龙, 赵婧, 毕鸿燕. 汉语发展性阅读障碍儿童的视觉大细胞通路功能探究:一项ERPs研究[J]. 心理科学进展, 2017, 25(suppl.): 2-2. |
[14] | 冯小霞;李乐;丁国盛. 发展性阅读障碍的脑区连接异常[J]. 心理科学进展, 2016, 24(12): 1864-1872. |
[15] | 夏志超;洪恬;张林军;舒华. 脑干诱发电位在言语感知研究中的应用[J]. 心理科学进展, 2014, 22(1): 14-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||